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Schrödinger equation with singular potentials

We consider the Schrödinger equation{
i∂tu + ∆u − µ(x)u = F (u),

u(x , 0) = u0(x),
(1)

where t ∈ R, λ = ±1, µ is a given potential, and:

I In the continuous case x ∈ Rn, F (u) = λ |u|ρ−1 u with ρ > 1,
or F (u) = λuρ, with ρ ∈ N;

I In the periodic case x ∈ Tn, F (u) = λ |u|ρ−1 u with ρ ∈ N
odd, or F (u) = λuρ with ρ ∈ N.



The potential µ

I We are interested in two basic types of potentials. The first is
delta-type potentials like:

I µ(x) = σδ, µ(x) = σ(δ(x − a) + δ(x + a)) and µ(x) = σδ′

with σ ∈ R, where δ and δ′ represent the delta function in the
origin and its derivative.

I The second type is bounded potentials that do not decay to
zero or go to zero very slowly at infinity.
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Delta-type potentials

I Delta-type potentials arise in different areas of quantum field
theory and are important for understanding some phenomena
in condensed matter physics.

I From an experimental viewpoint, nanoscale devises have
caused an interest in point-like impurities (defects) that are
associated to Delta-type potentials.

I We have the case repulsive (σ > 0) and attractive (σ < 0).
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Delta-type potentials cont...

Results on fundamental solutions, global existence in Hs (s ≥ 0),
standing waves, and stability have been obtained in dimension
n = 1 by several authors.

See e.g. Albeverio-Gestezy-Krohn-Holden (Texts Monog. Phys.
’88), Albeverio-Brzezniak-Dabrowski(JFA 1995),
Caudrelier-Mintchev-Ragoucy (J. Math. Phys ’05),
Hölmer-Marzuola-Zworski (CMP ’07), Fukuizumi-Ohta-Ozawa
(AIHP ’08), Adami-Noja (CMP ’09), Datchev-Hölmer (CPDE’09),
Kovarik-Sacchetti (J.Phys.A ’10), Adami-Noja-Visciglia (DCDS-B
’13), among others.



Delta-type potentials cont...

As far as we know, there is a lack of results for n > 1. One of the
reasons is that a “good formula”for the associated linear unitary
group depending on the Schrödinger one e i∆tφ is found explicitly
only for n = 1.

In n = 4, von Neumann-Krein theory of self-adjoint extensions of
symmetric operators theory trivializes (see
Albeverio-Gestezy-Krohn-Holden ’88).

For n = 2, 3, the fundamental solution is well known (see
Albeverio-Gestezy-Krohn-Holden ’88), however there is no good
formula depending explicitly on e i∆tφ.
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Existence and asymptotic stability

In view of the singular potential, it is reasonable to investigate (1)
outside L2-framework.

On the other hand, for the sake of physical reasonability, one could
desire that elements in the functional setting have finite local
L2-norm;

and so they could be realized in the physical space in any region
with finite volume, though some of them may have infinite
L2-norm.
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Existence and asymptotic stability...

For n = 1, we prove global existence and asymptotic stability in a
time-weighted framework based on weak-Lp spaces.

Precisely, the Banach space L∞ϑ of all Bochner measurable
functions u : R→ L(ρ+1,∞) endowed with the norm

‖u‖L∞ϑ = sup
−∞<t<∞

|t|ϑ‖u(t)‖(ρ+1,∞),

where ϑ = 1
ρ−1 −

1
2(ρ+1) .

Define also the initial data class E0 as the set of all u ∈ S ′(R) such
that the norm

‖u0‖E0 = sup
−∞<t<∞

|t|ϑ‖Gσ(t)u0‖(ρ+1,∞) <∞,

where Gσ(t) is the linear group associated to (1).
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Existence and asymptotic stability...

Based on Lp-spaces and time-decay estimates for the associated
linear group, spaces like L∞ϑ were first used by Kato-Fujita (’62
and ’84) and F. Weissler (’80) in the context of Navier-Stokes and
semilinear parabolic equations.

For dispersive equations, this type of space was first employed by
Cazenave-Weissler (Math Z. ’98) for (1) with µ = 0 in Lp-spaces.

Motivated by this work, Ferreira-Villamizar-Roa-Silva (PAMS ’09)
studied (1) with µ = 0 in such type of framework based on
weak-Lp spaces.

See also Cazenave-Vega-Vilela (CCM ’01) for another approach in
weak-Lp spaces via Strichartz type estimates.
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Existence and asymptotic stability...

Our results read as follows.

Theorem (A)

(Global-in-time existence) Let n = 1, σ = 0, ρ0 = 3+
√

17
2 , and

ρ0 < ρ <∞. There is ε > 0 such that if ‖u0‖E0
≤ ε then (1) has a

unique global-in-time mild solution u ∈ L∞ϑ satisfying ‖u‖L∞ϑ ≤ 2ε.

Theorem (B)

(Asymptotic Stability) Let u and v be two solutions obtained from
Theorem (A) with initial data u0 and v0, respectively. We have
that

lim
|t|→∞

|t|ϑ ‖u(·, t)− v(·, t)‖(ρ+1,∞) = 0

if only if lim|t|→∞ |t|ϑ ‖Gσ(t)(u0 − v0)‖(ρ+1,∞) = 0. This last

condition holds, in particular, for u0 − v0 ∈ L( ρ+1
ρ
,∞)

.
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Some steps in the proof of Thm (A)

The IVP is formally converted to (mild solutions)

u(t) = Gσ(t)u0 − iλ

∫ t

0
Gσ(t − s)[|u(s)|ρ−1u(s)]ds. (2)

For µ = σδ, σ = 0, and n = 1, Holmer-Marzuola-Zworski (CMP
2007) proved the formula (there are similar ones for the other
potentials)

Gσ(t)φ(x) = e it∆(φ∗ τσ)(x)χ0
+ +

[
e it∆φ(x) + e it∆(φ∗ρσ)(−x)

]
χ0
−

(3)
where

ρσ(x) = −σ
2
e
σ
2
xχ0
−, τσ(x) = δ(x) + ρσ(x),

with χ0
+ and χ0

− the characteristic function of [0,+∞) and
(−∞, 0], respectively.
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Some steps in the proof...
From (3) and following Ferreira-VillamizarRoa-Silva (PAMS ’09),
one can obtain the dispersive estimate in Lorentz spaces

‖Gσ(t)f ‖(p′,d) ≤ C |t|−
1
2

( 2
p
−1) ‖f ‖(p,d) . (4)

From (4) and Hölder inequality in weak-Lp spaces, one can prove
that the nonlinear part N (u) of (2) verifies

‖N (u)−N (v)‖L∞ϑ ≤ K‖u − v‖L∞ϑ (‖u‖ρ−1
L∞ϑ

+ ‖v‖ρ−1
L∞ϑ

). (5)

Using (4) and (5), one proves that the map

Ψ(u) = Gσ(t)u0 − iλ

∫ t

0
Gσ(t − s)[|u(s)|ρ−1u(s)]ds

is a contraction on a small ball of L∞ϑ .
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Some comments

I Note that the distributions δ and δ′ on Rn are homogeneous
of degree −n and −n − 1, respectively.

I The PDE (1) with µ = δ and µ = δ′ has the scaling

u(x , t) = λ
2
ρ−1 u(λx , λ2t) when n = 2 and n = 1, respectively.

I In the case µ = δ′, if a homogeneous function of degree − 2
ρ−1

belonged to E0 then one could prove existence of self-similar
solutions and asymptotic self-similar ones by means of
Theorem (A) and (B).

I The case µ = δ for n = 2 is more delicate. Here, besides
needing homogeneous data in E0, one would need the
dispersive estimate (4) with n = 2 which is not known to be
true.
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Some comments...

(Local-in-time solutions) Let n = 1, 1 < ρ < ρ0, d0 = 1
2 (ρ−1
ρ+1 ), and

d0 < ζ < 1
ρ .

For 0 < T <∞, consider the Banach space LTζ of all Bochner

measurable functions u : (−T ,T )→ L(ρ+1,∞) endowed with the
norm

‖u‖LTζ = sup
−T<t<T

|t|ζ‖u(·, t)‖(ρ+1,∞).

A local-in-time existence result in LTζ can be proved for (1) by

considering u0 ∈ L( ρ+1
ρ
,∞)(R) and small T > 0.
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Nondecaying potentials and periodic solutions

For n ≥ 1, we prove local existence in a framework outside L2 for
potentials µ nondecaying at infinity in Rn, and also consider
periodic solutions.

We consider the Banach space

I =[M(Rn)]∨ = {f ∈ S ′(Rn) : f̂ ∈M(Rn)} ⊂ BC (Rn),

with norm ‖f ‖I = ‖f̂ ‖M, and its periodic version

Iper = {f ∈ D′(Tn) : f̂ ∈ l1(Zn)}

with the norm ‖f ‖Iper = ‖f̂ ‖l1(Zn).

In general u0 ∈ I may not belong to Lp(Rn), nor to Lp,∞(Rn),
with p 6=∞. In particular, u0 ∈ I may have infinite L2-mass. Also,
µ ≡ 1 then µ̂ = δ ∈M(Rn).
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Nondecaying potentials and periodic solutions

Our local-in-time well-posedness result in I reads as follows.

Theorem (C)

(Periodic case) Let 1 ≤ ρ <∞, u0 ∈ Iper , and µ ∈ Iper . There is
T > 0 such that the IVP (1) has a unique mild solution
u ∈ L∞((−T ,T ); Iper ) satisfying

sup
t∈(−T ,T )

‖u(·, t)‖Iper ≤ 2 ‖u0‖Iper .

Moreover, the data-map solution u0 → u is Lipschitz continuous
from Iper to L∞((−T ,T );Iper ).

(Nonperiodic case) Let u0 ∈ I and µ ∈ I. The same conclusion of
item (1) holds true by replacing Iper by I.
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Some steps of the proof of Thm (C)
The IVP is formally converted to (mild solution)

u(t) = Sper (t)u0 + Bper (u) + Lµ,per (u), (6)

where the operators are defined via Fourier transform in D′(Tn):

Sper (t)u0 =
∑
m∈Zn

û0(m)e−4π2i |m|2te2πix ·m, (7)

̂Lµ,per (u)(m, t) = −i
∫ t

0
e−4π2i |m|2(t−s)(µ̂ ∗ û)(m, s)ds (8)

and

B̂per (u)(m, t) = −iλ
∫ t

0
e−4π2i |m|2(t−s)(û ∗ û ∗ ... ∗ û︸ ︷︷ ︸

ρ−times

)(m, s)ds,

(9)
where the symbol ∗ denotes the discrete convolution

f̂ ∗ ĝ(m) =
∑
ξ∈Zn

f̂ (m − ξ)ĝ(ξ).
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Some steps in the proof...
A basic tool is the Young inequality for measures and discrete
convolutions:

‖µ ∗ ν‖M ≤ ‖µ‖M ‖ν‖M (10)

‖f ∗ g‖l1 ≤ ‖f ‖l1 ‖g‖l1 . (11)

The operator Lµ,per can be estimated as

‖Lµ,per (u)‖Iper =
∥∥∥ ̂Lµ,per (u)

∥∥∥
l1(Zn)

≤
∫ t

0

∑
m∈Zn

|(µ̂ ∗ û)(m, s)| ds

≤
∫ t

0
‖µ̂‖l1(Zn) ‖û(·, s)‖l1(Zn) ds

≤ T ‖µ‖Iper ‖u‖L∞(0,T ;Iper ) .
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Some steps in the proof...

By elementary convolution properties and Young inequality,∥∥∥∥∥∥∥(û ∗ û ∗ ... ∗ û)︸ ︷︷ ︸
ρ−times

− (v̂ ∗ v̂ ∗ ... ∗ v̂)︸ ︷︷ ︸
ρ−times

∥∥∥∥∥∥∥
l1(Zn)

≤ ‖[(û − v̂) ∗ û ∗ ... ∗ û + ...+ v̂ ∗ v̂ ∗ ... ∗ (û − v̂)‖l1(Zn)

≤ ‖(û − v̂)‖l1 ‖û‖
ρ−1
l1

+ ‖(û − v̂)‖l1 ‖û‖
ρ−2
l1
‖v̂‖l1 + ...

+ ‖(û − v̂)‖l1 ‖û‖l1 ‖v̂‖
ρ−2
l1

+ ‖(û − v̂)‖l1 ‖v̂‖
ρ−1
l1

≤ K ‖(û − v̂)‖l1
(
‖û‖ρ−1

l1
+ ‖v̂‖ρ−1

l1

)



Some steps in the proof...

It follows that

‖Bper (u)(t)− Bper (v)(t)‖Iper

≤

∥∥∥∥∥∥∥
∫ t

0
e−4π2i |ξ|2(t−s)

(û ∗ û ∗ ... ∗ û)︸ ︷︷ ︸
ρ−times

− (v̂ ∗ v̂ ∗ ... ∗ v̂)︸ ︷︷ ︸
ρ−times

 ds

∥∥∥∥∥∥∥
l1

≤ K

∫ t

0
‖û − v̂‖l1

(
‖û‖ρ−1

l1
+ ‖v̂‖ρ−1

l1

)
ds

≤ KT ‖u − v‖L∞(0,T ;Iper )

(
‖u‖ρ−1

L∞(0,T ;Iper ) + ‖v‖ρ−1
L∞(0,T ;Iper )

)
.

Now one can show that

Ψ(u) = Sper (t)u0 + Bper (u) + Lµ,per (u) (12)

has a fixed point in L∞((−T ,T ); Iper ) for T > 0 small enough.
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Some comments

I Let us denote by I0 the subspace of I whose elements have
Fourier transform with no point mass at the origin x = 0.

I Y. Giga at all (IMUJ ’08 and Meth. Appl. Anal ’05) showed
local solvability for Coriolis-Navier-Stokes equations in I0.

I As far as we know, the analysis on spaces I and Iper seems to
be new in the context of dispersive equations, and in
particular for the nonlinear Schrödinger equation µ = 0.
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Some comments...

I In Rn, Theorem (C) provides a framework for NLS type
equations that contains functions with high oscillation and
infinite L2-mass (but with finite local one).

I For instance, f (x) =
∑∞

j=1 aje
2πix ·bj where x ∈ Rn,

Σ∞j=1 |aj | <∞ and (bj)j∈N ⊂ Rn can grow arbitrarily fast as
j →∞. These functions are called almost periodic.

I The approach used by us could be employed to treat (1) with
|u|ρ−1 u and ρ odd, instead of uρ. For that, it would be
enough to write |u|ρ−1 u as

[
(
|u|2
) ρ−1

2
u]∧ = (û ∗ û ∗ ... ∗ û)︸ ︷︷ ︸

ρ−1
2
−times

∗(û ∗ û ∗ ... ∗ û)︸ ︷︷ ︸
ρ−1

2
−times

∗u

and to note that û(ξ) = û(−ξ) and ‖u(ξ)‖Iper = ‖u(ξ)‖Iper .
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Some comments...

I In n = 1, Grünrock (IRMN ’05) and Grünrock-Herr (SIAM
’08) proved that the cubic NLS and DNLS equations are LWP
in a space based on Fourier transform in the continuous and
periodic cases, respectively.

I For DNLS, they used the norms ‖〈ξ〉s û(ξ)‖Lp(R) with

2 ≤ p <∞ and ‖〈ξ〉s û(ξ)‖lp with 2 < p < 4, where s ≥ 1
2 .

I For NLS (continuous case), Grünrock (IRMN ’05) used the
norm ‖〈ξ〉s û(ξ)‖Lp(R) with 1 < p <∞ and s ≥ 0.

I Comparing with the continuous case for NLS in n = 1, the
space I is not contained in the above ones, and in fact

‖û‖I ≤ C ‖〈ξ〉s û(ξ)‖Lp(R) ,

for 1 < p <∞ and s > 1− 1
p .
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Thank you for your attention
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