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Schrodinger equation with singular potentials

We consider the Schrodinger equation

i0ru + Au — p(x)u = F(u),
u(x,0) = up(x),

where t € R, A = £1, p is a given potential, and:

> In the continuous case x € R”, F(u) = A|u|’~* u with p > 1,
or F(u) = AuP, with p € N;

> In the periodic case x € T", F(u) = A |ul’"* u with p e N
odd, or F(u) = Au” with p € N.



The potential

» We are interested in two basic types of potentials. The first is
delta-type potentials like:



The potential

» We are interested in two basic types of potentials. The first is
delta-type potentials like:

> u(x) =06, p(x) =o(d(x —a) + d(x + a)) and p(x) = od’
with o € R, where § and ¢’ represent the delta function in the
origin and its derivative.



The potential u

» We are interested in two basic types of potentials. The first is
delta-type potentials like:

> u(x) =06, p(x) =o(d(x —a) + d(x + a)) and p(x) = od’
with o € R, where § and ¢’ represent the delta function in the
origin and its derivative.

» The second type is bounded potentials that do not decay to
zero or go to zero very slowly at infinity.
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Delta-type potentials

» Delta-type potentials arise in different areas of quantum field
theory and are important for understanding some phenomena
in condensed matter physics.

» From an experimental viewpoint, nanoscale devises have
caused an interest in point-like impurities (defects) that are
associated to Delta-type potentials.

» We have the case repulsive (¢ > 0) and attractive (o < 0).



Delta-type potentials cont...

Results on fundamental solutions, global existence in H* (s > 0),
standing waves, and stability have been obtained in dimension
n =1 by several authors.

See e.g. Albeverio-Gestezy-Krohn-Holden (Texts Monog. Phys.
'88), Albeverio-Brzezniak-Dabrowski(JFA 1995),
Caudrelier-Mintchev-Ragoucy (J. Math. Phys '05),
Holmer-Marzuola-Zworski (CMP '07), Fukuizumi-Ohta-Ozawa
(AIHP '08), Adami-Noja (CMP '09), Datchev-Hdlmer (CPDE'09),
Kovarik-Sacchetti (J.Phys.A '10), Adami-Noja-Visciglia (DCDS-B
'13), among others.
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As far as we know, there is a lack of results for n > 1. One of the
reasons is that a “good formula” for the associated linear unitary
group depending on the Schrédinger one e/2t¢ is found explicitly
only for n = 1.

In n = 4, von Neumann-Krein theory of self-adjoint extensions of
symmetric operators theory trivializes (see
Albeverio-Gestezy-Krohn-Holden '88).

For n = 2,3, the fundamental solution is well known (see
Albeverio-Gestezy-Krohn-Holden '88), however there is no good
formula depending explicitly on e/®t¢p.
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In view of the singular potential, it is reasonable to investigate (1)
outside L?-framework.

On the other hand, for the sake of physical reasonability, one could
desire that elements in the functional setting have finite local
L2-norm:;

and so they could be realized in the physical space in any region
with finite volume, though some of them may have infinite
L2-norm.
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For n =1, we prove global existence and asymptotic stability in a
time-weighted framework based on weak-LP spaces.

Precisely, the Banach space L3° of all Bochner measurable
functions u : R — L(P+1:2°) endowed with the norm

[
lullese = sup  [t]"[[u(t)ll(p+1,00),
—oo<t<o0
_ 1 1
where ¥ = ﬁ — m

Define also the initial data class & as the set of all u € S’(R) such
that the norm

lwolle, = sup [t Go(t)tnoll(ps1,00) < 005
<t<oo

where G,(t) is the linear group associated to (1).
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Based on LP-spaces and time-decay estimates for the associated
linear group, spaces like £3° were first used by Kato-Fujita ('62
and '84) and F. Weissler ('80) in the context of Navier-Stokes and
semilinear parabolic equations.

For dispersive equations, this type of space was first employed by
Cazenave-Weissler (Math Z. '98) for (1) with 1 = 0 in LP-spaces.

Motivated by this work, Ferreira-Villamizar-Roa-Silva (PAMS '09)
studied (1) with x = 0 in such type of framework based on
weak-LP spaces.

See also Cazenave-Vega-Vilela (CCM '01) for another approach in
weak-LP spaces via Strichartz type estimates.
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Our results read as follows.

Theorem (A)

(Global-in-time existence) Let n=1, 0 =2 0, pg = ”2@, and

po < p < oc. Thereise > 0 such that if |lug| g, < then (1) has a
unique global-in-time mild solution u € L3° satisfying ||ul[ze < 2e.

Theorem (B)

(Asymptotic Stability) Let u and v be two solutions obtained from
Theorem (A) with initial data up and vy, respectively. We have
that

. 0 —
im el 1) = v D100 = 0

if only if limie| oo [t|” | Go(£)(to = v0)l(41,00) = O This last

ptl
condition holds, in particular, for ug — vy € L( 2 ’OO).
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The IVP is formally converted to (mild solutions)

u(t):GU(t)uo—i)\/O Go(t — S)Ju(s)[Pu(s)]ds.  (2)

For p =00, 0 20, and n = 1, Holmer-Marzuola-Zworski (CMP
2007) proved the formula (there are similar ones for the other
potentials)

Go(t)(x) = "2 (0x 7o) (XG + | €2 0(x) + €2 (95 po) (—x) [ x2
(3)

where

po(x) = —5€2%%. 70(x) = 5(x) + po ()

with x9 and X the characteristic function of [0, +00) and
(—o0, 0], respectively.
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Some steps in the proof...

From (3) and following Ferreira-VillamizarRoa-Silva (PAMS '09),
one can obtain the dispersive estimate in Lorentz spaces

16 () llpr.ay < ClEI 2 D [[F gy - (4)

From (4) and Holder inequality in weak-LP spaces, one can prove
that the nonlinear part NV'(u) of (2) verifies

V(W) = N(W)lleg < Kllu = viieg(lullzs + IvIg)- (5)

Using (4) and (5), one proves that the map

V() = Gy(t)uo — iA / Go(t — 5)[|u(s) P Lu(s))ds

is a contraction on a small ball of £3°.
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» Note that the distributions § and ¢’ on R" are homogeneous
of degree —n and —n — 1, respectively.

» The PDE (1) with 4 =6 and p = ¢’ has the scaling
2
u(x,t) = A\p-Tu(Ax, \t) when n =2 and n = 1, respectively.
» In the case u = &', if a homogeneous function of degree —ﬁ
belonged to & then one could prove existence of self-similar

solutions and asymptotic self-similar ones by means of
Theorem (A) and (B).

» The case p = ¢ for n = 2 is more delicate. Here, besides
needing homogeneous data in &, one would need the
dispersive estimate (4) with n = 2 which is not known to be
true.
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Some comments...

(Local-in-time solutions) Let n =1, 1 < p < po, dop = %(pji) and
%<C<%

For 0 < T < o0, consider the Banach space ECT of all Bochner

measurable functions u : (=T, T) — L(Pt1:°°) endowed with the
norm

lullzr = sup Jtl°lluC, )l (prr00)-
t<T

A local-in-time existence result in ECT can be proved for (1) by

1
considering ug € L(%’OO)(]R) and small T > 0.
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Nondecaying potentials and periodic solutions

For n > 1, we prove local existence in a framework outside L2 for
potentials p nondecaying at infinity in R”, and also consider
periodic solutions.

We consider the Banach space
I =[MR")]Y = {f € S'(R") : f € M(R")} C BC(R"),
with norm ||f||; = ||? lla1, and its periodic version
Tper = {f € D'(T") : f € IY(Z")}
with the norm [|fll = || |[nzn).

In general up € Z may not belong to LP(R"), nor to LP>°(R"),
with p # oo. In particular, ug € Z may have infinite [2-mass. Also,
pw=1then p=0¢c M(R").
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Nondecaying potentials and periodic solutions

Our local-in-time well-posedness result in Z reads as follows.

Theorem (C)

(Periodic case) Let 1 < p < 00, ug € Iper, and pu € Lper. There is
T > 0 such that the IVP (1) has a unique mild solution
ue L*®((—=T,T); Iper) satisfying

sup_[lu( )]z, <2|uoll, -
te(—T,T)

Moreover, the data-map solution uy — u is Lipschitz continuous
from Lper to L°((— T, T);Zper)-

(Nonperiodic case) Let uy € T and pw € Z. The same conclusion of
item (1) holds true by replacing Zper by T.
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The IVP is formally converted to (mild solution)
U(t) = Sper(t)UO + Bper(u) + Lu,per(u)a (6)

where the operators are defined via Fourier transform in D'(T"):

SPer(t)UO = Z ﬁo(m)e747"2"‘m|2te27rix-m7 (7)
mez"

—

t .
L0}, £) = =i [ 4T GG, s)ds ()
0

and
—_— t -
Boor(u)(m, £) = —i)\/o e ImP(E=S) (G4 T . x G)(m, 5)ds,

p—times

(9)

where the symbol * denotes the discrete convolution

frg(m) =Y f(m-9&().

gezn
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Some steps in the proof...

A basic tool is the Young inequality for measures and discrete

convolutions:

[l vl g < Dlell o 171 g
I+ glln < IFll gl -

The operator L, per can be estimated as

HL“’per(u)HIper = HL#»PGI‘(U) ll(Z")
/ Z],u*u)ms]ds
mezn

/ 17l o 18l s

< Tlpllz,, 1ull oo, 7:2,0) -

(10)
(11)



Some steps in the proof...

By elementary convolution properties and Young inequality,

(UsxUx..xU)—(V*xVx..%xV)
e

par- s o gz
<|I[(@=?0)«ux.. *ﬁ+...—1—\7*?*...*@—?)“,1(2,1)
= Dl JEE™ + 10 = 9 11 [+
1@ = Dl I3l 171572 + 11 @ = )l 1717

< K@= o)l (5" + 1915
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It follows that

1Bper (1) () = Bper(v)(t)ll,,,

t
< /e—4”2'|f2(f—5> (UxUx...x0)— (Vs V*...xV)| ds
0

p—times p—times n

t
~ N ~1p—1 ~p—1
<k [ o= ol (15 + 19157 s

< KT =Vl oo, 7200y (16100, 7:20) + Vb0 72,01 ) -

Now one can show that

W(u) = Sper(t)uo + Bper(u) + Lyu,per(u) (12)

has a fixed point in L>((—T, T); Zper) for T > 0 small enough.
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> Let us denote by Zy the subspace of Z whose elements have
Fourier transform with no point mass at the origin x = 0.

» Y. Giga at all (IMUJ '08 and Meth. Appl. Anal '05) showed
local solvability for Coriolis-Navier-Stokes equations in Zy.

> As far as we know, the analysis on spaces Z and Z,- seems to
be new in the context of dispersive equations, and in
particular for the nonlinear Schrodinger equation = 0.
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» In R", Theorem (C) provides a framework for NLS type
equations that contains functions with high oscillation and
infinite L2-mass (but with finite local one).

> For instance, f(x) =37, a;je?™*bi where x € R",
2, ]aj| < oo and (bj)jen C R" can grow arbitrarily fast as
Jj — 00. These functions are called almost periodic.

» The approach used by us could be employed to treat (1) with
lul”~* u and p odd, instead of u”. For that, it would be
enough to write [u|’ " u as

o1
[<|u|2) P = (UxT* .. x0)*(TxT ... %0)*u

~~ -~

p=l_ 4 =1 _4i
5 times 5 times

and to note that H(€) = a(—¢) and [[a(&) 1z, = u(©)llz,, -
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» In n=1, Griinrock (IRMN '05) and Griinrock-Herr (SIAM
'08) proved that the cubic NLS and DNLS equations are LWP
in a space based on Fourier transform in the continuous and
periodic cases, respectively.

> For DNLS, they used the norms [[(§)°u(&)I[ () With
2 < p < ooand [[(€)5T(E)||;, with 2 < p < 4, where s > 1.

» For NLS (continuous case), Griinrock (IRMN '05) used the
norm [[(§)*U(&)|| .p(ry With 1 < p < oo and s > 0.

» Comparing with the continuous case for NLS in n =1, the
space Z is not contained in the above ones, and in fact

[allz < CIKE U Loy -

for1<p<ooands>1—%.



Thank you for your attention
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