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Non-periodic Result

Goal of this talk

To show the existence and nonlinear instability of a family of
periodic cnoidal standing-wave solutions for the Schrodinger
equation (NLS-9 equation henceforth):

iur + o + Z6(X)u + |u?u =0, (1)

where u = u(x,t) € C, (x,t) € T x R, ¢ is the Dirac distribution
at the origin, which we see as the linear functional

(6,v) = v(0), for v e H}

per>»

and Z € R.
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Non-periodic Result

Physical Relevance: iu; + ty + Z6(x)u + |u]?u =0, (1)

Equation in (1), Z # 0, has been arisen in physical model with a
point defect: In nonlinear optics and Bose-Einstein condensates.
Indeed, the Dirac distribution is used to model an impurity, or
defect, localized at the origin.
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Non-periodic Result

The Mathematical Model

e Caudrelier&Mintchev&Ragoucy, The quantum non-linear
Schrédinger equation with point-like defect, J. Physics A:
Mathematical and General. 37 (30) (2004).

It is described by the following boundary problem

iue(x, t) + uxx(x, t) = Ju(x, t)[P u(x,t), x#0, teR
lim [u(x,€) — u(—x,6)] =0,

Xliﬁrz)u[f)xu(x7 t) — Oxu(—x, t)] = —Zu(0,t), lim u(x,t)

=0,
Xx—£o00
()
hence u(x, t) must be solution of the non-linear Schrodinger
equation on R~ and R™, continuous at x = 0 and satisfy a “jump
condition” at the origin .
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Non-periodic Result

NLS-6/ Non-periodic case results: Standing-Wave

iuy + U + Z6(x)u + |ulPu =0,
u=u(x,t)eC, (x,t) e RxR, p>0.

e Standing-wave:
u(x, t) = e“p(x)
where w € R, ¢ : R — R and lim|,_,; o #(x) = 0. Then,
d2
(=55 — 26006 +wo — |9lP6 = 0. (3)

dx?
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Standing-Wave
Peak standing-wave

Standing-Wave: (—5’722 — Z6(x))p + wop — |9|Pp =0

e The solution ¢ needs to satisfy ¢ € D(— & Z9).

dx?
* From the von Neumann theory of self-adjoint extensions for
symmetric operators,

d2
_AZC = _EC7 C € D(_AZ)a
D(-Az) = {¢ € HY(R) N H*(R - {0}) :
¢'(0+) = ¢'(0-) = =Z¢(0)}

represents the formal linear diff. oper. : —%22 — Z9, where for
(€ D(-Az)
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Standing-Wave
Peak standing-wave

Standing-Wave: —¢" — Z(x)¢p + wop — |¢p|Pp = 0 (3)

o Goodman&Holmes&Weinstein, Ohta&Ozawa and
Fukuizumi&Jeanjean: There exists a unique positive even
solution of (3) (modulo rotations):

a0l = [ 2 secr? (PL o (2]
if w> Z2%/4. “
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Standing-Wave
Peak standing-wave

Profile of ¢, 7,

Figure : for Z >0 Figure : for Z <0
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Standing-Wave
Peak standing-wave

Construction: (—51722 — Z6(x))p + weo — |9|P¢ =0 (3)

e Solution
buw,z,p(X) = [(p+22)wsech2( \F|X]+tanh 1 (2\%»];

is constructed from the solution with Z = 0 in (3):

Q —¢"(&) +wo(§) — pPTH(E) =0, for £ # 0.
@ ¢c{fecH(R)NHAR—{0}): F(0+) — F(0—) = —ZF(0)}.
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Orbital Stability

Stability Periodic Result

Orbital Stability

iuy + U + Z3(x)u + |ulPu=0 (NLS —9)

e The basic symmetry associated to NLS-§ is the
phase-invariance:

if u(x, t) is solution — eu(x, t) is solution for all § € R.
e The translation invariance: u(x,t) — u(x +y,t), y € R;
it is not true because of the defect.

o ¢ z-orbit: Qp , = {e"p,z: 0 €[0,2m)}.
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Orbital Stability

Stability Periodic Result

Orbital Stability

Forn >0 and ¢ = ¢, 7, we put
= X :inf [|v —e” .
Un(¢) = {v € X+ inf [lv — e"¢llx <n}
The standing wave et is (orbitally) stable in X if for e > 0 there

exists ) > 0 s. t. for ug € Upy(o), the solution u(t) of the NLS-§
with u(0) = ug satisfies u(t) € Uc(¢) for all t € R.

Otherwise, e/“t¢ is said to be (orbitally) unstable in X.

Jaime Angulo Pava Stability Theory of Periodic-Peak Travelling-Wave



Orbital Stability

Stability Periodic Result

Stability Results: iu; + v + Zo(x)u + |ulPu =10

From Goodman&Holmes&Weinstein, Fukuizumi&Ohta&Ozawa,
Fukuizumi&Jeanjean, Le Coz&Fukuizumi&Fibich&Ksherim&Sivan:

e Let Z>0andw > Z%/4:

Q 0< p=4, ey, 7, is stable in H(R) for w € (Z%/4,+).
@ If p > 4, there exists a unique w; > Z2/4 such that:

1. e’:“fqﬁw,Z,p is stable in H'(R) for any w € (Z°/4,w1),
2. ¢, 7, is unstable in H*(R) for any w € (w1, +00).
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Orbital Stability

Stability Periodic Result

Stability Results: iu; + v + Zo(x)u + |ulPu =10

o let Z<0and w > Z2/4 [In general, they are unstable in
H'(R)]
Q@ If0<p=2andw> Z%/4

1. e"“’tqﬁw,z,p is stable in H2.e,(R).
2. e™'¢, 7, is unstable in H(R).
@ If 2 < p < 4, there exists a wo > Z2/4 such that:
1. e“*¢, z,p is unstable in H*(R), for w € (Z%/4,w2) U (w2, +00)
2. e, 7, is stable in Hlen(R), for w € (w2, +00).
© if p = 4, then €@, 7, is unstable in H'(R).
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Orbital Stability

Stability Periodic Result

NLS-6/ periodic case results: standing-wave

ity + o + Z6(X)u + |u?u =0, (5)
u=u(x,t)eC, (x,t) e T xR.
e Periodic standing-wave:
u(x, t) = e“p(x) (6)
where w € R, ¢ : R — R is a 2m-periodic function satisfying,

—¢" — Z5(x)p + wp — ¢ = 0.
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Standlng Wave Peak
ve to the cubic-NLS

Periodic Standing-Wave probl
Cnoidal-peak for

Conditions: Existence of 27-periodic peak

e The solution ¢ needs to satisfy ¢ € D(—(j’—;2 — Z9)).
* From the von Neumann theory of self-adjoint extensions for
symmetric operators,

—Az( = —CZ;C, ¢eD(-Az)
D(—Az) = {¢ € Ho([-m, 7]) N H*(0,27) :
¢'(0+) — C’(O—) = —Z(¢(0)}

represents the formal linear diff. oper. : —<5 — Z§, where for
(e D(-Az)

2
—Az((x) = —%C(X)7 x #2mn, n € Z.
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Standing-Wave Peak
Dnoidal standi ve to the cubic-NLS

Periodic Standing-Wave

Conditions: Existence of 27-periodic peakon

D(—-Az) = {¢ € Hae ([-7, 7])NH?(0,27) : ¢'(0+)—¢'(0—) = —Z¢(0)}

e Periodic-peak solutions of

— ¢~ Z(x)¢ +wo = ¢° (7)

will satisfy:
Q o(x+27) = ¢(x), forall xeR.
Q@ pcCR—-{2nm:neZ})NCR), j=1,2.
Q —¢"(x) +wo(x) = ¢3(x), for x € (—m,0) U (0, 7).
Q #'(0+) — ¢'(0-) = —Z¢(0).
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Standing-Wave Peak
Dnoidal standing-wave to the cubic-NLS
periodic stab
Periodic Standing-Wave proble
Cnoidal-peak for

Jacobi Elliptic Functions

e For -1 <y <1, k €(0,1) (fixed), we consider the elliptic
integral (strictly increasing)

N o4 dt
ulyik) = u= /o JI-D)(_ka)

We denote its inverse function (odd) by

y = sn(u; k), (snoidal)
e Cnoidal: cn(u; k) = /1 — sn?(u; k)
e Dnoidal: dn(u; k) = /1 — k?sn?(u; k)
o sn(u+4K(k); k) = sn(u; k), en(u + 4K(k); k) = cn(u; k),
dn(u + 2K (k); k) = dn(u; k),

! dt
Kk = /o 1- )1 - ket
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Standing-Wave
Dnoidal standin to the cubic-NLS
periodic stabilit;

Periodic Standing-Wave problem

Cnoidal-peak for

Periodic wave: —¢" — Z§(x)d + we — ¢3 =0 (7)

For Z =0 / Angulo (2007)

e Smooth Dnoidal Solutions: There exists a family of smooth
positive even solution of (7), w — ¢, 0 € Hpe ([, 7)),
w> 3

¢uw,0(&) = nodn (%

o = mo(w) € (w,V2w), k = k(w) € (0,1).

&k), €el-m]
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Standin
Dnoidal standing-wave to the cubic-NLS
periodic stability results

Periodic Standing-Wave problem
Cnoidal-peak for

"

Z5(x)p

Profile of Dnoidal Solution: ¢, ¢(§) = nodn L\/%f; k
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Figure : Profile with k = 0.1 Figure : Profile with k = 0.99
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Standing-Wave Peak
Dnoidal standing-wave to the cubic-NLS
periodic stability results

Periodic Standing-Wave problem

Cnoidal-peak for

Asymptotic limit of the dnoidal smooth solution

e Since dn(y; 1) = sech(y), we obtain the convergence
(uniformly on compact-set) for k — 17,

bwo(é) = mﬂn(\%f; k) — V2wsech (\@5)

o (€) = e\ 2wsech (\@g) w > 0, it is the well-known
soliton-solution for the cubic n3o-linear Schrodinger equation,

iUe + U + |u?u =0,

o The standing wave e/“*¢,, ¢ is orbitally stable in H2, ([, ]).
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Standing-Wave Peak
Dnoidal standing-wave to the cubic-NLS
periodic stability results

Periodic Standing-Wave problem

Cnoidal-peak for o'’ Z5(x)ep

Cnoidal Solution for: —¢" — Z§(x)¢ + wo = <Z53( )

For Z =0 / Angulo (2007)
e Smooth Cnoidal Solutions: There exists a family of smooth
sign changing even solution of (7),
€ (07 +OO) — Puw,0 € per([ 0 ﬂ-])
ng,o(g) = bocn( bg —w f; k).

Here, by = bo(w) € (v2w, +00) and k(w) € (0,1).
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Standi Vave Peak
Dnoidal standing-wave to the cubic-NLS
periodic stability results

Periodic Standing-Wave problem

Cnoidal-peak for o' — Z8(x)p + wp =

Profile of Cnoidal Solution: ¢(&) = cn(&; k)
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Figure : Profile with k = 0.1 Figure : Profile with k = 0.99
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Standing-Wave Peak
Dnoidal standing-wave to the cubic-NLS
periodic stability results

Periodic Standing-Wave problem

Cnoidal-peak for o!!

Cnoidal picture: ¢(x) = cn(x; k)

Z5(x)p + wep =

Figure : A cnoidal wave, characterized by sharper crests and flatter

troughs than in a sine wave. For the shown case, the elliptic parameter is
k =0.9.
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Standing-Wave Peak
Dnoidal standing-wave to the cubic-NLS
periodic stability results

Periodic Standing-Wave problem

Cnoidal-peak for : —¢@’" — Z§(x)p + wp = ¢ 3

Cnoidal picture:

=

Figure : Aircrafts flying over near-periodic swell in shallow water, close to

the Panama coast (1933). The sharp crests and very flat troughs are
characteristic for cnoidal waves.
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Standing-Wave Peak
anding-wave to the cubic-NLS
stability results
Periodic Standing-Wave problem
Cnoidal-peak for

Comments about cnoidal profile’s stability

e Open problem: [s the cnoidal-orbit:
Qoo = {€%0uo(-+y) 1y €R, 6 € [0,27)}

stable by the periodic flow of the cubic-NLS?

e In the case of KdV models they are unstable: For k ~ 1T

the orbit Q. , = {©vw,0(- +y) : ¥ € R} is unstable, for
instance, by the periodic flow of the

Ut + Usxx + (U3)X = 0, us + Uy + (U3)X — Ut =0

(Angulo&Natali/2012)
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Standing-Wave Peak
Dnoidal standing-wave to the cubic-NLS
periodic stability results
Periodic Standing-Wave problem
Cnoidal-peak for :

Dnoidal-Peak: —¢” — Z§(x)¢ +wo — ¢* =0 (7)

e Angulo&Ponce (2012): There exists a peakon-family of
positive even solution of (7), (w, Z) = ¢u, z € Hie ([—m, ]),
w > Z%/4:

60,2(6) = nan( ¢

n=n(w,2) € (A 1\ [822 /30), k= k(Z,w) € (0,1).
e limz_ga(w,Z)=0.

|+ a k), cel-ma]  (8)
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Standing-Wave Peak
Dnoidal standing-wave to the cubic-NLS
periodic stability results

Periodic Standing-Wave problem
Cnoidal-peak for o' — Z8(x)p + w

Profile of ¢, 7, Z # 0: ¢, 7(€) = ndn(\%\f\ + a; k)

\ ) \ \ ) \ /
YRVIIVRY VARRRVES BRVARNAY
\ UM J \

Figure : The periodic Figure : The periodic

dnoidal-peak ¢, 7, Z> 0.  dnoidal-peak ¢, 7z, Z < 0.
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Standing-Wave Peak
Dnoidal standing-wave to the cubic-NLS
periodic stability results

Periodic Standing-Wave problem

Cnoidal-peak for

Asymptotic limit of the dnoidal-peak

e For

6,2(6) = ndn(lel £ aik), € € [-ma)

since limz_,p a(w, Z) = 0, we obtain for w > %

limz 00.2(6) = 6uo(€) = o dn( 256 k).
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periodic stability results
Periodic Standing-Wave problem
Cnoidal-peak for

Dnoidal-peak stability results

From Angulo&Ponce (2012): Let w be large. Then,

Q@ For Z > 0, the dnoidal-peak standing wave e"thpwyz is stable
in H. ([-~, 7).

per
@ For Z < 0, the dnoidal-peak standing wave e"thpwyz is
unstable in H2,, ([, 7]).

per
© For Z <0, the dnoidal-peak standing wave e"thpwyz is stable
in H! ([=m,7]).

per,even

Jaime Angulo Pava Stability Theory of Periodic-Peak Travelling-Wave



Periodic Standing-Wave
Cnoidal-peak for

Problems: Existence and stability of cnoidal-peak

e Existence: w — ¢, 7z of sign changing 27-periodic solutions
for

— " = Z86(x)p +wp = ¢°, (9)
st. g, €D(—%5 —Z6)=D(~Az), Z#0, and

—gogyz(x)—i—w(pwjz(x) = cpi Z(x), for x #= +2nm, n €N

lim = 0
Z—0 Yoz = Pu,

where ¢, o is the cnoidal solution for (9) with Z = 0.
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Periodic Standing-Wave problem
Cnoidal-peak for

Problems: Existence and stability of cnoidal-peak

e Stability of the orbit:

Q%’Z = {e"egow’z 10 €[0,27)}.
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Standing-Wave Peak
Dnoidal standing-wave to the cubic-NLS
periodic stability results

Periodic Standing-Wave problem

Cnoidal-peak for : —¢p’/ — Z5(x)p + wep = gp3

Cnoidal-peak family

o wc (Z%/4,+00) — P,z € H;e,([—ﬂ,ﬂ])

0u,2(€) = ben(VIP —w g 26, k), €€ [-ma]

b= b(w,Z) € (V2w,+0), k € (3,1).
o puz € D(—L — 25).
e Forw> Z?/4 and £ € [~7, 7]

limz0¢0,2(6) = Puo(€) = bo en(/ B — w & k).
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Standing-Wave Peak
Dnoidal standing-wave to the cubic-NLS
periodic stability results

Periodic Standing-Wave problem

Cnoidal-peak for : —¢p’/ — Z5(x)p + wep = @3

Cnoidal-peak family

The shift 6, 7 = 0(w, Z) is defined by

0(w,Z) = cn ! <M k)

bw,Z
where p(w, Z) is defined by
w—-Z)+ 24402 S(b2 5 — 2w)
pP(w, Z) = \/ :
Moreover,
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Standin

Periodic Standing-Wave problem
Cnoidal-peak for : —p’/ — Z&(x)p + wep = ¢

Profile of cnoidal-peak family

/“A\\ “‘r /JA\\ /’V\\ 7‘ \ "WA\
/] | \ /1) " |
/ \\ ‘r“ \ / \ / \ \/" \\ | \\
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10 ‘/ )\\ [o] 1 [ 5‘ 10 jur‘o T q‘ 7 1S
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| [ \ \ /,‘ \ | \ \
\// \\/ S \// \v’ Vo \v/
Figure : The periodic Figure : The periodic

cnoidal-peak ¢, 7, Z > 0. cnoidal-peak ¢, 7, Z < 0.
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Instability Theorem
Instability proof

per
ability-Criterium

Negative eigenvalues

Slope condition

Stability Theory

Instability Theorem

Let w be large. Then for Z < 0 and small the cnoidal-peak
standing wave e'“*¢,, 7 is unstable in H}, ([-m,7]).
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Instability Theorem
Instability proof

Global w osedness in H:m
Stability ability-Criterium
Negative eigenvalues

Slope condition

Stability Theory

Instability Theorem

Let w be large. Then for Z < 0 and small the cnoidal-peak
standing wave e'“*¢,, 7 is unstable in H}, ([-m,7]).

Remarks:

@ For Z > 0 our approach does not give information about the
stability of the cnoidal-peak e'“tp,, 7 in H;er([—ﬂ',ﬂ']).
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Instability Theorem
Instability proof
s in Hl,
. per
Criterium
Negative eigenvalues
Slope condition

Stability Theory

Instability Theorem

Let w be large. Then for Z < 0 and small the cnoidal-peak
standing wave e'“*¢,, 7 is unstable in H}, ([-m,7]).

Remarks:

@ For Z > 0 our approach does not give information about the
stability of the cnoidal-peak e'“tp,, 7 in H;er([—ﬂ',ﬂ']).

@ For Z < 0 our approach does not give information about the
stability of the cnoidal-peak ™ty 7 in Ho, cyen([—, 7]).
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ness in Hlm
y-Criterium
genvalues
Slope condition

Grillakis&Shatah&Strauss’s framework

Stability Theory

* For a Hamiltonian system which is invariant under a
one-parameter unitary group of operators (rotations), three
main informations are required for a stability study:

(1) The Cauchy problem: The initial value problem associated to
the NLS-6 equation is global well-posedness in H;er([0,27r]).

Ew) =5 [ 0GR x— g [ luGal* o= S1aO)P
Qu) = 5 | lu)? d.
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Instability Theorem
Instability proof

Global well-posedness in Hle,
Stability/Instability-Criterium
Negative eigenvalues

Stability Theory Slope condition

Local/Global W.P.: ju; + t + Z6(x)u + |u]?u =0

Theorem

For uy € H},.([0,27]), 3 T = T(||uoll1) > 0 and a unique solution
u€ C([=T, Tl Her ([0, 27])) N CH([= T, TT; Hper([0, 27])) 0
NLS-6, such that u(0) = ug. For each Ty € (0, T) the mapping

up € Hye ([0,27]) — u € C([—To, To]; Hae, ([0, 27]))

is continuous. Moreover, since u satisfies the conservation of the
energy and the charge, namely,

E(u(t)) = E(uwo),  Q(u(t)) = Q(uwo),

for all t € [0, T), we can choose T = +oc.
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Instability Theorem
Instability proof

Global well-posedness in Hle,
Stability/Instability-Criterium
Negative eigenvalues

Slope condition

Local W. P.: ju; + th + Z5(x)u + |u)?u =0

@ For —Az (==L, — 76), ~Az = — B, where § = K2, if
Z>0and B=0if Z<0. k, >0 with Z = 2k, tanh(k,).

Stability Theory

—B = inf{|lwl|* = Z|v(0)|? : ||v]| = 1, v € Hpe }.

Q@ A= Ay—[is a self-adjoint operator on X = L%er and A £0.

Q@ X4 = (H}e, | - lIx4) has an equivalent-norm to H},-norm,

lull3, = lluxll® + (8 + Dlull* = Z|u(0)[*.

* From Theorem 3.7.1 of Cazenave's book (Semi-linear
Schrodinger equation, AMS), we obtain the l.w.p result in
Hl
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Instability
Instability

Stability Theory

Slope condition

Grillakis&Shatah&Strauss’s framework

@ Z5 3 =0
(= g~ 2000)0uz ez =2, =

(2) The spectral study: For ( real-valued:
@ The self-adjoint operator £, , with domain D(—Az):
d2
2, ZC ( + W= i Z)C
has Ker(L2,z) = [¢., ,]-
@ The self-adjoint operator £, , with domain D(—Az),
2
1, ZC = ( + W — 390 )C

has Ker(Lq,7) = {0} for all Z € R — {0} .
© The number of negative eigenvalues of £, , and L, , .
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Instability Theorem
Instability proof

Global well-posedness in Hle,
Stability/Instability-Criterium
Negative eigenvalues

Slope condition

Grillakis&Shatah&Strauss’s framework

Stability Theory

(3) The slope condition: The sign of

aw”‘:%,sz =0y @iyz(f)dé-

—T
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Instability Theorem
Instability proof

Global well-posedness in Hlm
Stability/Instability-Criterium
Negative eigenvalues

Stability Theory

Stability /Instability-Criterium

o Define H,, 7 = ( Lz 0 )

Slope condition

0 £Z,,
e Let n(H,, z) be the number of negative eigenvalues of H,, 7.
e Define p,(wo) = 1, if 9w z||? > 0 at w = wp, and

pz(wo) =0if 8ng0w’2H2 < 0 at w = wy.

Theorem (Grillakis&Shatah&Strauss& Weinstein)
Suppose Ker(L3,7) = [pw,z| and Ker(L1,z) = {0}. Then,

© The cnoidal-peak standing wave e"WOtgowO,z is stable in

H}e,([—m, 7)) if we have n(Hy, z) = pz(wo).
© The cnoidal-peak standing wave e"“’otgowo,z is unstable in
Hyer([—m,7]) if we have n(H, z) — pz(wo) is odd.
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Instability Theorem
Instability proof

Global well-posedness in Hlm
Stability/Instability-Criterium
Negative eigenvalues

Stability Theory Slope condition

Trivial kernel for L, ,

Let Z € R — {0} and w > Z2/4 and large. Then

d2
ELZ: I —— tw-— 3<p

has a trivial kernel on D(L, ;) = D(—Az).

Proof
Follows from Floquet theory, from theory of elliptic functions and
from £,z ¢ D(-Az).

Ol
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2
Let w > ZT and w large. Then we have,

Q@ ForZ>0,n(Lyz7)=2.
Q@ ForZ<0,n(Ly1z7)=3.
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2
Let w > ZT and w large. Then we have,

Q@ ForZ>0,n(Lyz7)=2.
Q@ ForZ<0,n(Ly1z7)=3.

x Strategy: for Z small, £; 7 can be seen as a real-holomorphic
perturbation of

2

d
LI,O = _W +w— 3903.;,07 D([’LO) = ngn

¢w,0 being the smooth cnoidal solution to the NLS. So, the
spectrum of £; 7 depends holomorphically on the spectrum of £; .
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Lemma (Spectrum of £/ Angulo (2007))
For Z =0, the Hill operator L1 defined on L2.,([0,2x]) by

with domain HZ2.,([0,27]) and w > 0, has exactly two simple
negative eigenv. with associated even eigenf. The eigenv. zero is
the third one, which is simple with eigenf. d%%;,o- The rest of the

spectrum is positive, discrete and converging to infinity.

Floquet theory.
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Lemma (Analyticity)

As a function of Z, (L1,7) and (L3 7) are a real-analytic family of
self-adjoint operators in the sense of Kato.

Proof.
Qi’z(f,g) = [ fugxdx +w [ fgdx — Zf(0)g(0) — f3gpiyzfgdx
Q2 7(f,g) = [ fgxdx +w [ fgdx — Zf(0)g(0) — [ 2 ,fgdx

(1) D(QLZ) = Hpe ([-m,7]), forall Z and i =1,2.

@ They are symmetric, bounded from below and closed.
Q@ Z— Qijyz(f, f) is analytic for every f € H} ([—m, 7).
@ The self-adjoint operators induced by QL,Z are L; 7.
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The number of negative eigenvalues for £; 7 with Z small

* The spectrum of £; 7 depends holomorphically on the spectrum
of L19. In fact, from analytic perturb. and from the Kato-Rellich
Theorem:

Lemma

There exist Zg > 0 and analytic functions I : (—Zy, Zy) — R and
Q:(~2Zy, Zo) — L2, such that

per

(i) (N(0),2(0)) = (0, 5 ..0)-
(i) M(Z) is the simple lso/ated third eigenvalue of Ly 7z and Q(Z)
is an eigenvector for (Z), with Z € (—2y, Zp).

(iii) For Zy small enough, except the three first eigenvalues
(simple), the spectrum of Ly 7 is positive.
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The sign of M1(Z) for Z small

For Z € (—Z,,0), N(Z) < 0. For Z € (0, Z), N(Z) > 0.

@ Since I1(0) = 0, from Taylor's theorem for Z € (—2y, Zp)

N(z) =6z +0(z%),

where g € R, g = I1(0).
wio? 4
« ldea 8> 0: = — 22070000 | 7).

Il 5w 0ll?
® by = ¢, 0(0) > v2w: w«pio(O) — 4,010(0) = wh3 — b} < 0.
L]
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# negative eigenvalues for £; 7 for Z small

2
Let w > ZT. Then we have,

@ For Z >0 and small, n(Ly,7) = 2.
@ For Z <0 and small, n(Ly 7) = 3.
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# negative eigenv. for £ 7 = —j—; e 3995,’,‘2

Proof: For Z <0, n(£L1 7) = 3.

o Let Z,, be defined by

Zs = inf{r < 0:L; 7 has exactly three negative eigenvalues
for all Z € (r,0)}.

@ The last Theorem implies £; 7 has exactly three negative
eigenvalues for all Z € (—2p,0), so Zy € [—00,0).

e Z,, = —o0o. Suppose Z,, > —o0.
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# negative eigenv. for £ 7 = —j—; e 3995,12

For w large, Ker(L1 7) = {0}.

@ Let I a closed curve with 0 € I' C p(£1,z. ) and all the
negatives eigenv. of £ 7 belong to the inner domain of I'.

o Since for £ € T, Z — (L1,7 — €)1 is analytic, the existence of
the analytic family of Riesz-projections

Z— P(Z) = —zim_ /r(ﬁl,z —&)71d¢

implies for § small, that for Z € [Z_ —§,Z_ + ]

dim(Rank P(Z)) = dim(Rank P(Zx)),

because of |P(Z) — P(Zx)|| < 1.
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xZ €|Z, —6,Z_ +0]: dim(Rank P(Z)) = dim(Rank P(Z))

For w large, Ker(L1 z) = {0}.

@ By definition of Z,, we obtain that n(£y 7, _45) = 3.

@ Therefore n(Ly z) = 3 for Z € (Z — 9,0), contradicting the
definition of Z.

Ol
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Stability Theory

Proof: for Z > 0 and w large, n(£q,7) = 2.

The proof is similar to the case Z < 0. ]
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2

Spectral analysis for £, 7 = —;"722 +w =~

Let Z € R small and w > Z%/4. Then,
o Ker(ﬁz,z) = [Sow,Z]'
Q n(ﬁz,z) =1.
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Stability Theory

Spectral analysis for £, 7 = —;"722 +w— @32

Let Z € R small and w > Z%/4. Then,
o Ker(ﬁz,z) = [Sow,Z]'
Q n(ﬁz,z) =1.

Remark: ¢, 7 € D(-Az) =D(L,,) and

d2
Lz,z(gpw,z) = *ﬁww,z twe,z — 903,2 =0,

then zero is an eigenvalue for £, ,.
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5 2
Spectral analysis for £, 7 = —% +w— a,o,i,*z

Lemma (Spectrum of £/ Angulo-2007)
For Z = 0, the Hill operator L defined on L2..([0,2x]) by

d? 5
Lrg = 2 +Tw—=¢,0

with domain H2.,([0,27]) and w > 0, has exactly one negative
eigenvalue which is simple. The eigenvalue zero is also simple with
eigenfunction ¢, 0. The rest of the spectrum is positive, discrete

and converging to infinity

Floquet theory.
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Ker(L,,) = [pw z] and n(L,,) =1, Z small

o It follows from the last Lemma and from that £ 7 can be
seen as a real-holomorphic perturbation of L.
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Slope Condition

Theorem
Let Z € R — {0} and w large. Then for the cnoidal-peak smooth
curve w — ¢, , we have

™

8wH‘Pw,ZH2 =0y %%,z(f)df > 0.

—T

Therefore, p,(w) = 1.

By using the theory of elliptic integrals and Jacobian elliptic
functions.
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Proof of Instability Theorem:

o pz(w)=1, for all Z € R — {0} and w large,
e For Z < 0and small, n(£, ;) =3 and n(L,,) = 1. Then

n(Hez) — pz(w) =4—-1=3.

Therefore we obtain instability of cnoidal-peak in H;e, for
Z < 0 and small, and w large.

Ol

Jaime Angulo Pava Stability Theory of Periodic-Peak Travelling-Wave



Instability Theorem
Instability proof

Global well-posedness in Hlm
Stability/Instability-Criterium
Negative eigenvalues

Stability Theory Sl @enchien

Proof of Instability Theorem:

o pz(w)=1, for all Z € R — {0} and w large,
e For Z < 0and small, n(£, ;) =3 and n(L,,) = 1. Then

n(Hez) — pz(w) =4—-1=3.

Therefore we obtain instability of cnoidal-peak in H;e, for
Z < 0 and small, and w large.

Ol

Remark: Grillakis et al. theory can not be applied to Z > O:
e n(L,,)=2and n(L,,) =1, then

n('Hwyz) —pz(w)=3-1=2.
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