Instability of cnoidal-peak solutions for the NLS equation with a periodic δ -interaction

Jaime Angulo Pava

Dept. of Mathematics/USP São Paulo/Brazil

First Workshop on Nonlinear Dispersive Equations, IMECC-UNICAMP, 30/10 to 1/11/2013

Goal of this talk

To show the existence and nonlinear instability of a family of periodic cnoidal standing-wave solutions for the Schrödinger equation (NLS- δ equation henceforth):

$$iu_t + u_{xx} + Z\delta(x)u + |u|^2u = 0,$$
 (1)

where $u = u(x, t) \in \mathbb{C}$, $(x, t) \in \mathbb{T} \times \mathbb{R}$, δ is the Dirac distribution at the origin, which we see as the linear functional

$$(\delta, v) = v(0), \text{ for } v \in H^1_{per},$$

and $Z \in \mathbb{R}$.

Physical Relevance:
$$iu_t + u_{xx} + Z\delta(x)u + |u|^2u = 0$$
, (1)

Equation in (1), $Z \neq 0$, has been arisen in physical model with a point defect: In nonlinear optics and Bose-Einstein condensates. Indeed, the Dirac distribution is used to model an impurity, or defect, localized at the origin.

The Mathematical Model

 Caudrelier&Mintchev&Ragoucy, The quantum non-linear Schrödinger equation with point-like defect, J. Physics A: Mathematical and General. 37 (30) (2004).

It is described by the following boundary problem

$$\begin{cases} iu_{t}(x,t) + u_{xx}(x,t) = |u(x,t)|^{p} u(x,t), & x \neq 0, \ t \in \mathbb{R} \\ \lim_{x \to 0^{+}} [u(x,t) - u(-x,t)] = 0, \\ \lim_{x \to 0^{+}} [\partial_{x} u(x,t) - \partial_{x} u(-x,t)] = -Zu(0,t), & \lim_{x \to \pm \infty} u(x,t) = 0, \end{cases}$$
(2)

hence u(x,t) must be solution of the non-linear Schrödinger equation on \mathbb{R}^- and \mathbb{R}^+ , continuous at x=0 and satisfy a "jump condition" at the origin .

NLS- δ / Non-periodic case results: Standing-Wave

$$iu_t + u_{xx} + Z\delta(x)u + |u|^p u = 0,$$

$$u = u(x, t) \in \mathbb{C}$$
, $(x, t) \in \mathbb{R} \times \mathbb{R}$, $p > 0$.

• Standing-wave:

$$u(x,t)=e^{i\omega t}\phi(x)$$

where $\omega \in \mathbb{R}$, $\phi : \mathbb{R} \to \mathbb{R}$ and $\lim_{|x| \to +\infty} \phi(x) = 0$. Then,

$$\left(-\frac{d^2}{dx^2} - Z\delta(x)\right)\phi + \omega\phi - |\phi|^p\phi = 0.$$
 (3)

Standing-Wave: $(-rac{d^2}{dx^2}-Z\delta(x))\phi+\omega\phi-|\phi|^p\phi=0$

- The solution ϕ needs to satisfy $\phi \in D(-\frac{d^2}{dx^2} Z\delta)$.
- From the von Neumann theory of self-adjoint extensions for symmetric operators,

$$-\Delta_{Z}\zeta = -\frac{d^{2}}{dx^{2}}\zeta, \qquad \zeta \in D(-\Delta_{Z}),$$

$$D(-\Delta_{Z}) = \{\zeta \in H^{1}(\mathbb{R}) \cap H^{2}(\mathbb{R} - \{0\}) :$$

$$\zeta'(0+) - \zeta'(0-) = -Z\zeta(0)\}$$

represents the formal linear diff. oper. : $-\frac{d^2}{dx^2}-Z\delta$, where for $\zeta\in D(-\Delta_Z)$

$$-\Delta_{Z}\zeta(x) = -\frac{d^{2}}{dx^{2}}\zeta(x), \quad x \neq 0$$

Standing-Wave: $-\phi'' - Z\delta(x)\phi + \omega\phi - |\phi|^p\phi = 0$ (3)

 Goodman&Holmes&Weinstein, Ohta&Ozawa and Fukuizumi&Jeanjean: There exists a unique positive even solution of (3) (modulo rotations):

$$\phi_{\omega,Z,p}(x) = \left[\frac{(p+2)\omega}{2} \operatorname{sech}^2\left(\frac{p\sqrt{\omega}}{2}|x| + \tanh^{-1}\left(\frac{Z}{2\sqrt{\omega}}\right)\right)\right]^{\frac{1}{p}}.$$
(4)
if $\omega > Z^2/4$.

Profile of $\phi_{\omega,Z,p}$

Figure : for Z > 0

Figure : for Z < 0

Construction:
$$(-\frac{d^2}{dx^2} - Z\delta(x))\phi + \omega\phi - |\phi|^p\phi = 0$$
 (3)

Solution

$$\phi_{\omega,Z,p}(x) = \left[\frac{(p+2)\omega}{2} sech^2 \left(\frac{p\sqrt{\omega}}{2}|x| + \tanh^{-1}\left(\frac{Z}{2\sqrt{\omega}}\right)\right)\right]^{\frac{1}{p}}$$

is constructed from the solution with Z = 0 in (3):

1
$$-\phi''(\xi) + \omega\phi(\xi) - \phi^{p+1}(\xi) = 0$$
, for $\xi \neq 0$.

Orbital Stability

$$iu_t + u_{xx} + Z\delta(x)u + |u|^p u = 0$$
 (NLS – δ)

• The basic symmetry associated to NLS- δ is the phase-invariance:

if
$$u(x,t)$$
 is solution $\to e^{i\theta}u(x,t)$ is solution for all $\theta \in \mathbb{R}$.

• The translation invariance: $u(x,t) \rightarrow u(x+y,t), y \in \mathbb{R}$;

it is not true because of the defect.

•
$$\phi_{\omega,Z}$$
-orbit: $\Omega_{\phi_{\omega,Z}} = \{e^{i\theta}\phi_{\omega,Z}: \theta \in [0,2\pi)\}.$

Orbital Stability

Definition

For $\eta > 0$ and $\phi = \phi_{\omega,Z}$, we put

$$U_{\eta}(\phi) = \{ v \in X : \inf_{\theta \in \mathbb{R}} \| v - e^{i\theta} \phi \|_{X} < \eta \}.$$

The standing wave $e^{i\omega t}\phi$ is (orbitally) stable in X if for $\epsilon>0$ there exists $\eta>0$ s. t. for $u_0\in U_\eta(\phi)$, the solution u(t) of the NLS- δ with $u(0)=u_0$ satisfies $u(t)\in U_\epsilon(\phi)$ for all $t\in \mathbb{R}$.

Otherwise, $e^{i\omega t}\phi$ is said to be (orbitally) unstable in X.

Stability Results: $iu_t + u_{xx} + Z\delta(x)u + |u|^p u = 0$

From Goodman&Holmes&Weinstein, Fukuizumi&Ohta&Ozawa, Fukuizumi&Jeanjean, Le Coz&Fukuizumi&Fibich&Ksherim&Sivan:

- Let Z > 0 and $\omega > Z^2/4$:
 - **①** $0 , <math>e^{i\omega t}\phi_{\omega,Z,p}$ is stable in $H^1(\mathbb{R})$ for $\omega \in (Z^2/4,+\infty)$.
 - ② If p > 4, there exists a unique $\omega_1 > Z^2/4$ such that:
 - 1. $e^{i\omega t}\phi_{\omega,Z,p}$ is stable in $H^1(\mathbb{R})$ for any $\omega \in (Z^2/4,\omega_1)$,
 - 2. $e^{i\omega t}\phi_{\omega,Z,p}$ is unstable in $H^1(\mathbb{R})$ for any $\omega\in(\omega_1,+\infty)$.

Stability Results: $iu_t + u_{xx} + Z\delta(x)u + |u|^p u = 0$

- Let Z<0 and $\omega>Z^2/4$ [In general, they are unstable in $H^1(\mathbb{R})$]
 - **1** If $0 and <math>\omega > Z^2/4$
 - 1. $e^{i\omega t}\phi_{\omega,Z,p}$ is stable in $H^1_{even}(\mathbb{R})$.
 - 2. $e^{i\omega t}\phi_{\omega,Z,p}$ is unstable in $H^1(\mathbb{R})$.
 - ② If $2 , there exists a <math>\omega_2 > Z^2/4$ such that:
 - 1. $e^{i\omega t}\phi_{\omega,Z,p}$ is unstable in $H^1(\mathbb{R})$, for $\omega \in (Z^2/4,\omega_2) \cup (\omega_2,+\infty)$
 - 2. $e^{i\omega t}\phi_{\omega,Z,p}$ is stable in $H^1_{even}(\mathbb{R})$, for $\omega \in (\omega_2, +\infty)$.
 - **3** if $p \geq 4$, then $e^{i\omega t}\phi_{\omega,Z,p}$ is unstable in $H^1(\mathbb{R})$.

NLS- δ / periodic case results: standing-wave

$$iu_t + u_{xx} + Z\delta(x)u + |u|^2u = 0,$$
 (5)

 $u = u(x, t) \in \mathbb{C}$, $(x, t) \in \mathbb{T} \times \mathbb{R}$.

Periodic standing-wave:

$$u(x,t) = e^{i\omega t}\phi(x) \tag{6}$$

where $\omega \in \mathbb{R}$, $\phi : \mathbb{R} \to \mathbb{R}$ is a 2π -periodic function satisfying,

$$-\phi'' - Z\delta(x)\phi + \omega\phi - \phi^3 = 0.$$

Conditions: Existence of 2π -periodic peak

- The solution ϕ needs to satisfy $\phi \in D(-\frac{d^2}{dx^2} Z\delta)$.
- From the von Neumann theory of self-adjoint extensions for symmetric operators,

$$\begin{split} -\Delta_{Z}\zeta &= -\frac{d^{2}}{dx^{2}}\zeta, \qquad \zeta \in D(-\Delta_{Z}) \\ D(-\Delta_{Z}) &= \{\zeta \in H^{1}_{per}([-\pi,\pi]) \cap H^{2}(0,2\pi) : \\ &\qquad \qquad \zeta'(0+) - \zeta'(0-) = -Z\zeta(0) \} \end{split}$$

represents the formal linear diff. oper. : $-\frac{d^2}{dx^2}-Z\delta$, where for $\zeta\in D(-\Delta_Z)$

$$-\Delta_Z\zeta(x) = -\frac{d^2}{dx^2}\zeta(x), \quad x \neq 2\pi n, \ n \in \mathbb{Z}.$$

Conditions: Existence of 2π -periodic peakon

$$D(-\Delta_Z) = \{ \zeta \in H^1_{per}([-\pi, \pi]) \cap H^2(0, 2\pi) : \zeta'(0+) - \zeta'(0-) = -Z\zeta(0) \}$$

Periodic-peak solutions of

$$-\phi'' - Z\delta(x)\phi + \omega\phi = \phi^3 \tag{7}$$

will satisfy:

- **3** $-\phi''(x) + \omega\phi(x) = \phi^3(x)$, for $x \in (-\pi, 0) \cup (0, \pi)$.

Jacobi Elliptic Functions

• For $-1 \le y \le 1$, $k \in (0,1)$ (fixed), we consider the elliptic integral (strictly increasing)

$$u(y;k) \equiv u = \int_0^y \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}.$$

We denote its inverse function (odd) by

$$y = sn(u; k),$$
 (snoidal)

- Cnoidal: $cn(u; k) = \sqrt{1 sn^2(u; k)}$
- **Dnoidal**: $dn(u; k) = \sqrt{1 k^2 sn^2(u; k)}$
- sn(u + 4K(k); k) = sn(u; k), cn(u + 4K(k); k) = cn(u; k),dn(u + 2K(k); k) = dn(u; k),

$$K(k) = \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}.$$

Periodic wave: $-\phi'' - Z\delta(x)\phi + \omega\phi - \phi^3 = 0$ (7)

For
$$Z = 0 / Angulo (2007)$$

• Smooth Dnoidal Solutions: There exists a family of smooth positive even solution of (7), $\omega \to \phi_{\omega,0} \in H^1_{per}([-\pi,\pi])$, $\omega > \frac{1}{2}$:

$$\phi_{\omega,0}(\xi) = \eta_0 dn \left(\frac{\eta_0}{\sqrt{2}} \xi; k\right), \quad \xi \in [-\pi, \pi]$$

$$\eta_0 = \eta_0(\omega) \in (\omega, \sqrt{2\omega}), \ k = k(\omega) \in (0, 1).$$

Profile of Dnoidal Solution: $\phi_{\omega,0}(\xi) = \eta_0 dn \left(\frac{\eta_0}{\sqrt{2}} \xi; k \right)$

Figure : Profile with k = 0.1

Figure : Profile with k = 0.99

Asymptotic limit of the dnoidal smooth solution

• Since dn(y; 1) = sech(y), we obtain the convergence (uniformly on compact-set) for $k \to 1^+$,

$$\phi_{\omega,0}(\xi) = \eta_0 dn \Big(\frac{\eta_0}{\sqrt{2}} \xi; k \Big) o \sqrt{2\omega} sech \Big(\sqrt{\omega} \xi \Big)$$

• $\varphi(\xi) = e^{i\omega t} \sqrt{2\omega} \operatorname{sech}\left(\sqrt{\omega}\xi\right)$, $\omega > 0$, it is the well-known soliton-solution for the cubic não-linear Schrödinger equation,

$$iu_t + u_{xx} + |u|^2 u = 0.$$

• The standing wave $e^{i\omega t}\phi_{\omega,0}$ is orbitally stable in $H^1_{per}([-\pi,\pi])$.

Cnoidal Solution for: $-\phi'' - Z\delta(x)\phi + \omega\phi = \phi^3$ (7)

For
$$Z = 0$$
 / Angulo (2007)

• Smooth Cnoidal Solutions: There exists a family of smooth sign changing even solution of (7),

$$\omega \in (0,+\infty) o \varphi_{\omega,0} \in H^n_{per}([-\pi,\pi]),$$

$$\varphi_{\omega,0}(\xi) = b_0 \operatorname{cn}\left(\sqrt{b_0^2 - \omega} \xi; k\right).$$

Here,
$$b_0 = b_0(\omega) \in (\sqrt{2\omega}, +\infty)$$
 and $k(\omega) \in (0, 1)$.

Profile of Cnoidal Solution: $\varphi(\xi) = cn(\xi; k)$

Figure : Profile with k = 0.1

Figure : Profile with k = 0.99

Cnoidal picture: $\varphi(x) = cn(x; k)$

Figure : A cnoidal wave, characterized by sharper crests and flatter troughs than in a sine wave. For the shown case, the elliptic parameter is k=0.9.

Cnoidal picture:

Figure: Aircrafts flying over near-periodic swell in shallow water, close to the Panama coast (1933). The sharp crests and very flat troughs are characteristic for cnoidal waves.

Comments about cnoidal profile's stability

• Open problem: Is the cnoidal-orbit:

$$\Omega_{\varphi_{\omega,0}} = \{e^{i\theta}\varphi_{\omega,0}(\cdot + y) : y \in \mathbb{R}, \ \theta \in [0,2\pi)\}$$

stable by the periodic flow of the cubic-NLS?

• In the case of KdV models they are unstable: For $k\approx 1^+$ the orbit $\Omega_{\varphi_{\omega,0}}=\{\varphi_{\omega,0}(\cdot+y):y\in\mathbb{R}\}$ is unstable, for instance, by the periodic flow of the

$$u_t + u_{xxx} + (u^3)_x = 0, \quad u_t + u_x + (u^3)_x - u_{xxt} = 0$$

(Angulo&Natali/2012)

Dnoidal-Peak: $-\phi'' - Z\delta(x)\phi + \omega\phi - \phi^3 = 0$ (7)

Theorem

• Angulo&Ponce (2012): There exists a peakon-family of positive even solution of (7), $(\omega, Z) \to \phi_{\omega, Z} \in H^1_{per}([-\pi, \pi])$, $\omega > Z^2/4$:

$$\phi_{\omega,Z}(\xi) = \eta dn \left(\frac{\eta}{\sqrt{2}} |\xi| \pm a; k\right), \quad \xi \in [-\pi, \pi]$$
 (8)

$$\eta = \eta(\omega, Z) \in (\frac{\sqrt{2}|Z|}{4} + \sqrt{\frac{8\omega - Z^2}{8}}, \sqrt{2\omega}), \ k = k(Z, \omega) \in (0, 1).$$

• $\lim_{Z\to 0} a(\omega, Z) = 0$.

Profile of $\phi_{\omega,Z}$, $Z \neq 0$: $\phi_{\omega,Z}(\xi) = \eta dn(\frac{\eta}{\sqrt{2}}|\xi| \pm a; k)$

Figure : The periodic dnoidal-peak $\phi_{\omega,Z}$, Z>0.

Figure : The periodic dnoidal-peak $\phi_{\omega,Z}$, Z<0.

Asymptotic limit of the dnoidal-peak

For

$$\phi_{\omega,Z}(\xi) = \eta dn \Big(rac{\eta}{\sqrt{2}} |\xi| \pm a; k \Big), \quad \xi \in [-\pi,\pi],$$

since $\lim_{Z \to 0} a(\omega, Z) = 0$, we obtain for $\omega > \frac{1}{2}$

$$\lim_{Z\to 0} \phi_{\omega,Z}(\xi) = \phi_{\omega,0}(\xi) = \eta_0 \operatorname{dn}\left(\frac{\eta_0}{\sqrt{2}}\xi; k\right).$$

Dnoidal-peak stability results

From Angulo&Ponce (2012): Let ω be large. Then,

- For Z>0, the dnoidal-peak standing wave $e^{i\omega t}\varphi_{\omega,Z}$ is stable in $H^1_{per}([-\pi,\pi])$.
- ② For Z<0, the dnoidal-peak standing wave $e^{i\omega t}\varphi_{\omega,Z}$ is unstable in $H^1_{per}([-\pi,\pi])$.
- **3** For Z<0, the dnoidal-peak standing wave $e^{i\omega t}\varphi_{\omega,Z}$ is stable in $H^1_{per,even}([-\pi,\pi])$.

Problems: Existence and stability of cnoidal-peak

• Existence: $\omega \to \varphi_{\omega,Z}$ of **sign changing** 2π -periodic solutions for

$$-\varphi'' - Z\delta(x)\varphi + \omega\varphi = \varphi^{3},$$
 (9)
s.t. $\varphi_{\omega,Z} \in D(-\frac{d^{2}}{dx^{2}} - Z\delta) = D(-\Delta_{Z}), Z \neq 0, \text{ and}$
$$\begin{cases} -\varphi''_{\omega,Z}(x) + \omega\varphi_{\omega,Z}(x) = \varphi^{3}_{\omega,Z}(x), & \text{for } x \neq \pm 2n\pi, \ n \in \mathbb{N} \\ \lim_{Z \to 0} \varphi_{\omega,Z} = \varphi_{\omega,0} \end{cases}$$

where $\varphi_{\omega,0}$ is the cnoidal solution for (9) with Z=0.

Problems: Existence and stability of cnoidal-peak

• Stability of the orbit:

$$\Omega_{arphi_{\omega,Z}}=\{e^{i heta}arphi_{\omega,Z}: heta\in [0,2\pi)\}.$$

Cnoidal-peak family

Theorem

•
$$\omega \in (Z^2/4, +\infty) \to \varphi_{\omega,Z} \in H^1_{per}([-\pi, \pi])$$

$$\varphi_{\omega, \mathbf{Z}}(\xi) = bcn\Big(\sqrt{b^2 - \omega} \; |\xi| \pm \theta_{\omega, \mathbf{Z}}; \, k\Big), \quad \xi \in [-\pi, \pi]$$

$$b = b(\omega, Z) \in (\sqrt{2\omega}, +\infty), k \in (\frac{1}{2}, 1).$$

- $\varphi_{\omega,Z} \in D(-\frac{d^2}{dx^2} Z\delta).$
- For $\omega > Z^2/4$ and $\xi \in [-\pi, \pi]$

$$\lim_{Z\to 0} \varphi_{\omega,Z}(\xi) = \varphi_{\omega,0}(\xi) = b_0 \operatorname{cn}\left(\sqrt{b_0^2 - \omega} \xi; k\right).$$

Cnoidal-peak family

Theorem

The shift $\theta_{\omega,Z} = \theta(\omega,Z)$ is defined by

$$\theta(\omega, Z) = cn^{-1} \left(\frac{\rho(\omega, Z)}{b_{\omega, Z}}; k \right)$$

where $\rho(\omega, Z)$ is defined by

$$\rho^{2}(\omega, Z) = \frac{(2\omega - \frac{Z^{2}}{2}) + \sqrt{(2\omega - \frac{Z^{2}}{2})^{2} + 4b_{\omega, Z}^{2}(b_{\omega, Z}^{2} - 2\omega)}}{2}$$

Moreover.

$$\lim_{Z\to 0}\theta(\omega,Z)=0.$$

Profile of cnoidal-peak family

Figure : The periodic cnoidal-peak $\varphi_{\omega,Z}$, Z > 0.

Figure : The periodic cnoidal-peak $\varphi_{\omega,Z}$, Z < 0.

Instability Theorem

Theorem

Let ω be large. Then for Z < 0 and small the cnoidal-peak standing wave $e^{i\omega t}\varphi_{\omega,Z}$ is unstable in $H^1_{per}([-\pi,\pi])$.

Remarks:

- ① For Z>0 our approach does not give information about the stability of the cnoidal-peak $e^{i\omega t}\varphi_{\omega,Z}$ in $H^1_{per}([-\pi,\pi])$.
- ② For Z<0 our approach does not give information about the stability of the cnoidal-peak $e^{i\omega t}\varphi_{\omega,Z}$ in $H^1_{per,even}([-\pi,\pi])$.

Instability Theorem

Theorem

Let ω be large. Then for Z < 0 and small the cnoidal-peak standing wave $e^{i\omega t}\varphi_{\omega,Z}$ is unstable in $H^1_{per}([-\pi,\pi])$.

Remarks:

- For Z>0 our approach does not give information about the stability of the cnoidal-peak $e^{i\omega t}\varphi_{\omega,Z}$ in $H^1_{per}([-\pi,\pi])$.
- ② For Z<0 our approach does not give information about the stability of the cnoidal-peak $e^{i\omega t}\varphi_{\omega,Z}$ in $H^1_{per,even}([-\pi,\pi])$.

Instability Theorem

Theorem

Let ω be large. Then for Z < 0 and small the cnoidal-peak standing wave $e^{i\omega t}\varphi_{\omega,Z}$ is unstable in $H^1_{per}([-\pi,\pi])$.

Remarks:

- For Z>0 our approach does not give information about the stability of the cnoidal-peak $e^{i\omega t}\varphi_{\omega,Z}$ in $H^1_{per}([-\pi,\pi])$.
- ② For Z<0 our approach does not give information about the stability of the cnoidal-peak $e^{i\omega t}\varphi_{\omega,Z}$ in $H^1_{per,even}([-\pi,\pi])$.

Grillakis&Shatah&Strauss's framework

- * For a Hamiltonian system which is invariant under a one-parameter unitary group of operators (rotations), three main informations are required for a stability study:
- (1) The Cauchy problem: The initial value problem associated to the NLS- δ equation is global well-posedness in $H^1_{per}([0, 2\pi])$.

$$E(u) = \frac{1}{2} \int |u'(x)|^2 dx - \frac{1}{4} \int |u(x)|^4 dx - \frac{Z}{2} |u(0)|^2,$$

$$Q(u) = \frac{1}{2} \int |u(x)|^2 dx.$$

Instability Theorem Instability proof Global well-posedness in H^1_{per} Stability/Instability-Criterium Negative eigenvalues Slope condition

Local/Global W.P.: $iu_t + u_{xx} + Z\delta(x)u + |u|^2u = 0$

Theorem

For $u_0 \in H^1_{per}([0,2\pi])$, $\exists T = T(\|u_0\|_1) > 0$ and a unique solution $u \in C([-T,T];H^1_{per}([0,2\pi])) \cap C^1([-T,T];H^{-1}_{per}([0,2\pi]))$ of NLS- δ , such that $u(0) = u_0$. For each $T_0 \in (0,T)$ the mapping

$$u_0 \in H^1_{per}([0,2\pi]) \to u \in C([-T_0,T_0];H^1_{per}([0,2\pi]))$$

is continuous. Moreover, since u satisfies the conservation of the energy and the charge, namely,

$$E(u(t)) = E(u_0), \quad Q(u(t)) = Q(u_0),$$

for all $t \in [0, T)$, we can choose $T = +\infty$.

Instability Theorem Instability proof Global well-posedness in H^1_{per} Stability/Instability-Criterium Negative eigenvalues Slope condition

Local W. P.: $iu_t + u_{xx} + Z\delta(x)u + |u|^2u = 0$

Proof.

• For $-\Delta_Z$ (= $-\frac{d^2}{dx^2} - Z\delta$), $-\Delta_Z \ge -\beta$, where $\beta = k_Z^2$, if Z > 0 and $\beta = 0$ if Z < 0. $k_Z > 0$ with $Z = 2k_Z \tanh(k_Z\pi)$.

$$-\beta = \inf\{\|v_{\mathsf{x}}\|^2 - Z|v(0)|^2: \|v\| = 1, v \in H^1_{per}\}.$$

- ② $A \equiv \Delta_Z \beta$ is a self-adjoint operator on $X = L_{per}^2$ and $A \leq 0$.
- $lacksquare{0} X_{\mathcal{A}} = (H^1_{per}, \|\cdot\|_{X_{\mathcal{A}}})$ has an equivalent-norm to H^1_{per} -norm,

$$||u||_{X_A}^2 = ||u_x||^2 + (\beta + 1)||u||^2 - Z|u(0)|^2.$$

* From Theorem 3.7.1 of Cazenave's book (Semi-linear Schrödinger equation, AMS), we obtain the l.w.p result in H^1_{per} .

Grillakis&Shatah&Strauss's framework

$$\left(-\frac{d^2}{dx^2} - Z\delta(x)\right)\varphi_{\omega,Z} + \omega\varphi_{\omega,Z} - \varphi_{\omega,Z}^3 = 0$$

- (2) The *spectral study*: For ζ real-valued:
 - **1** The self-adjoint operator $\mathcal{L}_{2,Z}$ with domain $D(-\Delta_Z)$:

$$\mathcal{L}_{2,z}\zeta \equiv (-\frac{d^2}{dx^2} + \omega - \varphi_{\omega,z}^2)\zeta$$

has $Ker(\mathcal{L}_{2,Z}) = [\varphi_{\omega,Z}].$

2 The self-adjoint operator $\mathcal{L}_{1,Z}$ with domain $D(-\Delta_Z)$,

$$\mathcal{L}_{_{1,Z}}\zeta\equiv(-rac{d^{2}}{dx^{2}}+\omega-3arphi_{_{\omega,Z}}^{2})\zeta$$

has $\mathit{Ker}(\mathcal{L}_{1,Z}) = \{0\}$ for all $Z \in \mathbb{R} - \{0\}$.

3 The number of negative eigenvalues of $\mathcal{L}_{1,Z}$ and $\mathcal{L}_{2,Z}$.

Grillakis&Shatah&Strauss's framework

(3) The slope condition: The sign of

$$\partial_{\omega} \| \varphi_{\omega, \mathbf{Z}} \|^2 = \partial_{\omega} \int_{-\pi}^{\pi} \varphi_{\omega, \mathbf{Z}}^2(\xi) d\xi.$$

Stability/Instability-Criterium

- ullet Define $\mathcal{H}_{\omega,Z}=\left(egin{array}{cc} \mathcal{L}_{\scriptscriptstyle 1,Z} & 0 \ 0 & \mathcal{L}_{\scriptscriptstyle 2,Z} \end{array}
 ight)$
- Let $n(\mathcal{H}_{\omega,Z})$ be the number of negative eigenvalues of $\mathcal{H}_{\omega,Z}$.
- Define $p_Z(\omega_0) = 1$, if $\partial_{\omega} \|\varphi_{\omega,Z}\|^2 > 0$ at $\omega = \omega_0$, and $p_Z(\omega_0) = 0$ if $\partial_{\omega} \|\varphi_{\omega,Z}\|^2 < 0$ at $\omega = \omega_0$.

Theorem (Grillakis&Shatah&Strauss&Weinstein)

Suppose $Ker(\mathcal{L}_{2,Z}) = [\varphi_{\omega,Z}]$ and $Ker(\mathcal{L}_{1,Z}) = \{0\}$. Then,

- The cnoidal-peak standing wave $e^{i\omega_0 t} \varphi_{\omega_0,Z}$ is stable in $H^1_{per}([-\pi,\pi])$ if we have $n(\mathcal{H}_{\omega,Z}) = p_Z(\omega_0)$.
- ② The cnoidal-peak standing wave $e^{i\omega_0 t} \varphi_{\omega_0,Z}$ is unstable in $H^1_{per}([-\pi,\pi])$ if we have $n(\mathcal{H}_{\omega,Z}) p_Z(\omega_0)$ is odd.

Trivial kernel for $\mathcal{L}_{_{1,Z}}$

Theorem

Let $Z \in \mathbb{R} - \{0\}$ and $\omega > Z^2/4$ and large. Then

$$\mathcal{L}_{1,Z} = -\frac{d^2}{dx^2} + \omega - 3\varphi_{\omega,Z}^2$$

has a trivial kernel on $\mathcal{D}(\mathcal{L}_{1,Z}) = \mathcal{D}(-\Delta_Z)$.

Proof.

Follows from Floquet theory, from theory of elliptic functions and from $\frac{d}{dx}\varphi_{\omega,Z}\notin D(-\Delta_Z)$.

negative eigenvalues for $\mathcal{L}_{1,Z} = -rac{d^2}{d\mathsf{x}^2} + \omega - 3arphi_{\omega,Z}^2$

Theorem

Let $\omega > \frac{Z^2}{4}$ and ω large. Then we have,

- **1** For Z > 0, $n(\mathcal{L}_{1,Z}) = 2$.
- ② For Z < 0, $n(\mathcal{L}_{1,Z}) = 3$.
- \star **Strategy**: for Z small, $\mathcal{L}_{1,Z}$ can be seen as a *real-holomorphic* perturbation of

$$\mathcal{L}_{1,0} = -\frac{d^2}{dx^2} + \omega - 3\varphi_{\omega,0}^2, \quad D(\mathcal{L}_{1,0}) = H_{per}^2,$$

 $\varphi_{\omega,0}$ being the smooth cnoidal solution to the NLS. So, the spectrum of $\mathcal{L}_{1,Z}$ depends holomorphically on the spectrum of $\mathcal{L}_{1,Z}$.

negative eigenvalues for $\mathcal{L}_{1,Z}=-rac{d^2}{dx^2}+\omega-3arphi_{\omega,Z}^2$

Theorem

Let $\omega > \frac{Z^2}{4}$ and ω large. Then we have,

- **1** For Z > 0, $n(\mathcal{L}_{1,Z}) = 2$.
- **2** For Z < 0, $n(\mathcal{L}_{1,Z}) = 3$.
- \star **Strategy**: for Z small, $\mathcal{L}_{1,Z}$ can be seen as a *real-holomorphic* perturbation of

$$\mathcal{L}_{1,0} = -rac{d^2}{dx^2} + \omega - 3\varphi_{\omega,0}^2, \quad D(\mathcal{L}_{1,0}) = H_{per}^2,$$

 $\varphi_{\omega,0}$ being the smooth cnoidal solution to the NLS. So, the spectrum of $\mathcal{L}_{1,Z}$ depends holomorphically on the spectrum of $\mathcal{L}_{1,Q}$.

Instability Theorem Instability proof Global well-posedness in H^1_{per} Stability/Instability-Criterium Negative eigenvalues Slope condition

$$\#$$
 negative eigenvalues for $\mathcal{L}_{1,Z} = -rac{d^2}{d\mathsf{x}^2} + \omega - 3arphi_{\omega,Z}^2$

Lemma (Spectrum of $\mathcal{L}_{1,0}/$ Angulo (2007))

For Z=0, the Hill operator $\mathcal{L}_{1,0}$ defined on $L^2_{per}([0,2\pi])$ by

$$\mathcal{L}_{1,0} = -\frac{d^2}{dx^2} + \omega - 3\varphi_{\omega,0}^2,$$

with domain $H^2_{per}([0,2\pi])$ and $\omega>0$, has exactly two simple negative eigenv. with associated even eigenf. The eigenv. zero is the third one, which is simple with eigenf. $\frac{d}{dx}\varphi_{\omega,0}$. The rest of the spectrum is positive, discrete and converging to infinity.

Proof.

Floquet theory.

Instability Theorem Instability proof Global well-posedness in H^1_{pe} Stability/Instability-Criterium Negative eigenvalues Slope condition

negative eigenvalues for $\mathcal{L}_{1,Z} = -rac{d^2}{d\mathrm{x}^2} + \omega - 3arphi_{\omega,Z}^2$

Lemma (Analyticity)

As a function of Z, $(\mathcal{L}_{1,Z})$ and $(\mathcal{L}_{2,Z})$ are a real-analytic family of self-adjoint operators in the sense of Kato.

Proof.

$$Q_{\omega,Z}^{1}(f,g) = \int f_{x}g_{x}dx + \omega \int fgdx - Zf(0)g(0) - \int 3\varphi_{\omega,Z}^{2}fgdx$$

$$Q_{\omega,Z}^{2}(f,g) = \int f_{x}g_{x}dx + \omega \int fgdx - Zf(0)g(0) - \int \varphi_{\omega,Z}^{2}fgdx$$

- **1** $D(Q_{\omega, Z}^i) = H_{per}^1([-\pi, \pi])$, for all Z and i = 1, 2.
- 2 They are symmetric, bounded from below and closed.
- **3** $Z \to \mathcal{Q}_{\omega,Z}^i(f,f)$ is analytic for every $f \in H^1_{per}([-\pi,\pi])$.
- The self-adjoint operators induced by $\mathcal{Q}_{\omega,Z}^i$ are $\mathcal{L}_{i,Z}$.

200

The number of negative eigenvalues for $\mathcal{L}_{1,Z}$ with Z small

 \star The spectrum of $\mathcal{L}_{1,Z}$ depends holomorphically on the spectrum of $\mathcal{L}_{1,0}$. In fact, from analytic perturb. and from the Kato-Rellich Theorem:

Lemma

There exist $Z_0>0$ and analytic functions $\Pi:(-Z_0,Z_0)\to\mathbb{R}$ and $\Omega:(-Z_0,Z_0)\to L^2_{per}$ such that

- (i) $(\Pi(0), \Omega(0)) = (0, \frac{d}{dx}\varphi_{\omega,0}).$
- (ii) $\Pi(Z)$ is the simple isolated third eigenvalue of $\mathcal{L}_{1,Z}$ and $\Omega(Z)$ is an eigenvector for $\Pi(Z)$, with $Z \in (-Z_0, Z_0)$.
- (iii) For Z_0 small enough, except the three first eigenvalues (simple), the spectrum of $\mathcal{L}_{1,Z}$ is positive.

The sign of $\Pi(Z)$ for Z small

Lemma

For $Z \in (-Z_0, 0)$, $\Pi(Z) < 0$. For $Z \in (0, Z_0)$, $\Pi(Z) > 0$.

Proof.

• Since $\Pi(0) = 0$, from Taylor's theorem for $Z \in (-Z_0, Z_0)$

$$\Pi(Z) = \beta Z + O(Z^2),$$

where $\beta \in \mathbb{R}$, $\beta = \Pi'(0)$.

$$\star \ \mathsf{Idea} \ \beta > 0 \colon \beta = -\frac{\omega \varphi_{\omega,0}^2(0) - \varphi_{\omega,0}^4(0)}{\|\frac{d}{dx}\varphi_{\omega,0}\|^2} + \mathit{O}(\mathit{Z}).$$

•
$$b_0 = \varphi_{\omega,0}(0) > \sqrt{2\omega}$$
: $\omega \varphi_{\omega,0}^2(0) - \varphi_{\omega,0}^4(0) = \omega b_0^2 - b_0^4 < 0$.

negative eigenvalues for $\mathcal{L}_{1,Z}$ for Z small

Theorem

Let $\omega > \frac{Z^2}{4}$. Then we have,

- For Z > 0 and small, $n(\mathcal{L}_{1,Z}) = 2$.
- ② For Z < 0 and small, $n(\mathcal{L}_{1,Z}) = 3$.

Instability Theorem Instability proof Global well-posedness in H^1_{pe} Stability/Instability-Criterium Negative eigenvalues Slope condition

$$\#$$
 negative eigenv. for $\mathcal{L}_{1,Z}=-rac{d^2}{dx^2}+\omega-3arphi_{\omega,Z}^2$

Proof: For Z < 0, $n(\mathcal{L}_{1,Z}) = 3$.

• Let Z_{∞} be defined by

$$Z_{\infty}=\inf\{r<0:\mathcal{L}_{1,Z} \text{ has exactly three negative eigenvalues}$$
 for all $Z\in(r,0)\}.$

- The last Theorem implies $\mathcal{L}_{1,Z}$ has exactly three negative eigenvalues for all $Z \in (-Z_0, 0)$, so $Z_\infty \in [-\infty, 0)$.
- $Z_{\infty} = -\infty$. Suppose $Z_{\infty} > -\infty$.

negative eigenv. for $\mathcal{L}_{1,Z}=-rac{d^2}{dx^2}+\omega-3arphi_{\omega,Z}^2$

For ω large, $Ker(\mathcal{L}_{1,Z}) = \{0\}.$

- Let Γ a closed curve with $0 \in \Gamma \subset \rho(\mathcal{L}_{1,Z_{\infty}})$ and all the negatives eigenv. of $\mathcal{L}_{1,Z_{\infty}}$ belong to the inner domain of Γ .
- Since for $\xi \in \Gamma$, $Z \to (\mathcal{L}_{1,Z} \xi)^{-1}$ is analytic, the existence of the analytic family of Riesz-projections

$$Z \rightarrow P(Z) = -\frac{1}{2\pi i} \int_{\Gamma} (\mathcal{L}_{1,Z} - \xi)^{-1} d\xi$$

implies for δ small, that for $Z \in [Z_{\infty} - \delta, Z_{\infty} + \delta]$

$$\dim(Rank\ P(Z)) = \dim(Rank\ P(Z_{\infty})),$$

because of
$$||P(Z) - P(Z_{\infty})|| < 1$$
.

Instability Theorem Instability proof Global well-posedness in H^1_{per} Stability/Instability-Criterium Negative eigenvalues Slope condition

negative eigenvalues for $\mathcal{L}_{1,Z} = -rac{d^2}{d\mathsf{x}^2} + \omega - 3arphi_{\omega,Z}^2$

$$\star \ Z \in [Z_{\infty} - \delta, Z_{\infty} + \delta] \text{: } \dim(\textit{Rank P}(Z)) = \dim(\textit{Rank P}(Z_{\infty}))$$

For ω large, $Ker(\mathcal{L}_{1,Z}) = \{0\}$.

- By definition of Z_{∞} we obtain that $n(\mathcal{L}_{1,Z_{\infty}+\delta})=3$.
- Therefore $n(\mathcal{L}_{1,Z})=3$ for $Z\in (Z_{\infty}-\delta,0)$, contradicting the definition of Z_{∞} .

Instability Theorem Instability proof Global well-posedness in H^1_{per} Stability/Instability-Criterium Negative eigenvalues Slope condition

$$\#$$
 negative eigenvalues for $\mathcal{L}_{1,Z} = -rac{d^2}{d\mathsf{x}^2} + \omega - 3arphi_{\omega,Z}^2$

Proof: for
$$Z>0$$
 and ω large, $n(\mathcal{L}_{1,Z})=2$.

The proof is similar to the case Z < 0.

Spectral analysis for $\mathcal{L}_{2,Z} = -\frac{d^2}{dx^2} + \omega - \varphi_{\omega,Z}^2$

Theorem

Let $Z \in \mathbb{R}$ small and $\omega > Z^2/4$. Then,

- **2** $n(\mathcal{L}_{2,Z}) = 1$.

Remark: $\varphi_{\omega,Z} \in D(-\Delta_Z) = \mathcal{D}(\mathcal{L}_{2.Z})$ and

$$\mathcal{L}_{2,Z}(\varphi_{\omega,Z}) = -\frac{d^2}{dx^2}\varphi_{\omega,Z} + \omega\varphi_{\omega,Z} - \varphi_{\omega,Z}^3 = 0,$$

then zero is an eigenvalue for $\mathcal{L}_{2,7}$

Spectral analysis for $\mathcal{L}_{2,Z} = -rac{d^2}{dx^2} + \omega - arphi_{\omega,Z}^2$

Theorem

Let $Z \in \mathbb{R}$ small and $\omega > Z^2/4$. Then,

- **2** $n(\mathcal{L}_{2,Z}) = 1$.

Remark: $\varphi_{\omega,Z} \in D(-\Delta_Z) = \mathcal{D}(\mathcal{L}_{2,Z})$ and

$$\mathcal{L}_{2,\mathsf{Z}}(arphi_{\omega,\mathsf{Z}}) = -rac{d^2}{d\mathsf{x}^2}arphi_{\omega,\mathsf{Z}} + \omegaarphi_{\omega,\mathsf{Z}} - arphi_{\omega,\mathsf{Z}}^3 = 0,$$

then zero is an eigenvalue for $\mathcal{L}_{\mathbf{2},\mathbf{Z}}$.

Instability Theorem
Instability proof
Global well-posedness in H¹_{pe}
Stability/Instability-Criterium
Negative eigenvalues
Slope condition

Spectral analysis for
$$\mathcal{L}_{2,Z} = -\frac{d^2}{dx^2} + \omega - \varphi_{\omega,Z}^2$$

Lemma (Spectrum of $\mathcal{L}_{2,0}/$ Angulo-2007)

For Z=0, the Hill operator $\mathcal{L}_{2,0}$ defined on $L^2_{per}([0,2\pi])$ by

$$\mathcal{L}_{2,0} = -\frac{d^2}{dx^2} + \omega - \varphi_{\omega,0}^2,$$

with domain $H^2_{per}([0,2\pi])$ and $\omega > 0$, has exactly one negative eigenvalue which is simple. The eigenvalue zero is also simple with eigenfunction $\varphi_{\omega,0}$. The rest of the spectrum is positive, discrete and converging to infinity

Proof.

Floquet theory.

$$\mathit{Ker}(\mathcal{L}_{\scriptscriptstyle 2,Z}) = [\varphi_{\omega,Z}]$$
 and $\mathit{n}(\mathcal{L}_{\scriptscriptstyle 2,Z}) = 1$, Z small

Proof.

• It follows from the last Lemma and from that $\mathcal{L}_{2,Z}$ can be seen as a *real-holomorphic perturbation* of $\mathcal{L}_{2,0}$.

Instability Theorem Instability proof Global well-posedness in H^1_{pei} Stability/Instability-Criterium Negative eigenvalues Slope condition

Slope Condition

Theorem

Let $Z \in \mathbb{R} - \{0\}$ and ω large. Then for the cnoidal-peak smooth curve $\omega \to \varphi_{\omega,Z}$ we have

$$\|\partial_{\omega}\|arphi_{\omega,Z}\|^2 = \partial_{\omega}\int_{-\pi}^{\pi}arphi_{\omega,Z}^2(\xi)d\xi > 0.$$

Therefore, $p_z(\omega) = 1$.

Proof.

By using the theory of elliptic integrals and Jacobian elliptic functions.

Proof of Instability Theorem:

Proof.

- $p_Z(\omega) = 1$, for all $Z \in \mathbb{R} \{0\}$ and ω large,
- ullet For Z<0 and small, $n(\mathcal{L}_{_{1,Z}})=3$ and $n(\mathcal{L}_{_{2,Z}})=1$. Then

$$n(\mathcal{H}_{\omega,Z}) - p_Z(\omega) = 4 - 1 = 3.$$

Therefore we obtain instability of cnoidal-peak in H^1_{per} for Z<0 and small, and ω large.

Remark: Grillakis *et al.* theory can not be applied to Z > 0:

•
$$n(\mathcal{L}_{_{1,Z}})=2$$
 and $n(\mathcal{L}_{_{2,Z}})=1$, then

Proof of Instability Theorem:

Proof.

- $p_Z(\omega)=1$, for all $Z\in\mathbb{R}-\{0\}$ and ω large,
- ullet For Z<0 and small, $n(\mathcal{L}_{1,Z})=3$ and $n(\mathcal{L}_{2,Z})=1$. Then

$$n(\mathcal{H}_{\omega,Z}) - p_Z(\omega) = 4 - 1 = 3.$$

Therefore we obtain **instability of cnoidal-peak in** H^1_{per} for Z<0 and small, and ω large.

Remark: Grillakis *et al.* theory can not be applied to Z > 0:

•
$$n(\mathcal{L}_{_{1,Z}})=2$$
 and $n(\mathcal{L}_{_{2,Z}})=1$, then

$$n(\mathcal{H}_{\omega,Z})-p_Z(\omega)=3-1=2$$

Relevant References:

- Albeverio, S. and Kurasov, P., Singular Perturbations of Differential Operators, London Mathematical Society, Lecture Note Series, 271, Cambridge University Press, (2000).
- Angulo, J., Non-linear stability of periodic travelling-wave solutions for the Schrödinger and modified Korteweg-de Vries equation, J. of Differential Equations, 235 (2007), 1–30.
- 3. **Angulo, J.**, *Instability of cnoidal-peak for the NLS-\delta equation*, Math. Nachr. v. 285, # 13, p. 1572-1602, (2012).
- 4. **Angulo, J. and Ponce, G.** The Non-Linear Schrödinger equation with a periodic δ -interaction, Bulletin Braz. Math. Soc. 44(3) 497-551(2013).

Relevant References:

- Cazenave, T., Semilinear Schrödinger Equation, Courant Lecture Notes in Mathematics, vol. 10, AMS, Courant Institute of Mathematical Science, (2003).
- Grillakis, M., Shatah, J. and Strauss, W., Stability theory of solitary waves in the presence of symmetry II, J. Functional Anal., 94 (1990), 308-348.
- 7. **Kato, T.**, *Perturbation Theory for Linear Operators*, 2nd edition, Springer, Berlin, 1984.
- 8. **Reed, S. and Simon, B.**, *Methods of Modern Mathematical Physics: Analysis of Operators*, A.P., v. IV, (1975).

 $\begin{array}{c} {\rm NLS-}\delta \\ {\rm Standing\text{-}Wave} \\ {\rm Stability} \\ {\rm Periodic\ Standing\text{-}Wave} \\ {\rm Stability\ Theory} \end{array}$

Instability Theorem Instability proof Global well-posedness in H^1_{per} Stability/Instability-Criterium Negative eigenvalues Slope condition

THANKS!!!!!