
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Dispersive perturbations of Burgers and hyperbolic equations

Felipe Linares
IMPA

First Workshop on

“Nonlinear Dispersive Equations”

UNICAMP, Campinas 31/10/2013



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Our motivation is to study the influence of dispersion on the space

of resolution, on the lifespan and on the dynamics of solutions to

the Cauchy problem for “weak” dispersive perturbations of hyperbo-

lic quasilinear equations or systems, as for instance the Boussinesq

systems for surface water waves.
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Motivation

In this talk we will focus on the model equation (the so-called Whitham

equation):

ut + uux +

∫ ∞
−∞

k(x− y)ux(y, t)dy = 0. (1)

This equation can also be written on the form

ut + uux − Lux = 0, (2)

where the Fourier multiplier operator L is defined by

L̂f (ξ) = p(ξ)f̂ (ξ),

where p = k̂.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

In the original Whitham equation, the kernel k was given by

k(x) =
1

2π

∫
R

(
tanh ξ

ξ

)1/2

eixξdξ, (3)

that is p(ξ) =
(
tanh ξ
ξ

)1/2
.

The dispersion is in this case that of the finite depth surface water

waves without surface tension.
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The general idea is to investigate the "fight” between nonlinearity and

dispersion. Usually we attack this problem by fixing the dispersion (eg

that of the KdV equation) and varying the nonlinearity (say upux in the

context of generalized KdV).

Our viewpoint is to fix the quadratic, nonlinearity (eg uux) and to vary

(lower) the dispersion. In fact in many problems arising from Physics

or Continuum Mechanics the nonlinearity is quadratic, with terms like

(u · ∇)u and the dispersion is in some sense weak. In particular the

dispersion is not strong enough for yielding the dispersive estimates

that allows to solve the Cauchy problem in relatively large functional

classes (like the KdV or Benjamin-Ono equation in particular), down

to the energy level for instance.
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Two basic issues can be addressed

1. Which amount of dispersion prevents the hyperbolic (ie by shock

formation) blow-up of the underlying hyperbolic quasilinear equation

or system. This question has been apparently raised for the first time

by Whitham for the Whitham equation (1).
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A typical result suggests that for not too dispersive Whitham type

equations that is for instance when

p(ξ) = |ξ|α, −1 < α ≤ 0,

(1) still presents a blow-up of Burgers type. This has been proved for

Whitham type equations, with a regular kernel k satisfying

k ∈ C(R)∩L1(R), symmetric and monotonically decreasing on R+, by

Naumkin and Shishmarev and by Constantin and Escher. The blow-

up is obtained for initial data which are sufficiently asymmetric.
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More precisely :

Theorem 1 (Constantin and Escher). Let u0 ∈ H∞(R) be such that

inf
x∈R
|u′0(x)| + sup

x∈R
|u′0(x)| ≤ −2k(0).

Then the corresponding solution of (1) undergoes a wave breaking

phenomena, that is there exists T = T (u0) > 0 with

sup
(x,t)∈[0,T )×R

|u(x, t)| <∞,while sup
x∈R
|ux(x, t)| → ∞ as t→ T.
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The previous result does not include the case of the Whitham equa-

tion (1) with kernel given by (3) since then k(0) = ∞. However the

method of proof adapts to more general kernels. This has been pro-

ven recently by Castro, Cordoba and Gancedo for the equation

ut + uux + DβHu = 0, (4)

where H is the Hilbert transform and Dβ is defined via Fourier trans-

form by

D̂βf (ξ) = |ξ|βf̂ (ξ), (5)

for any β ∈ R.
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They established that for 0 ≤ β < 1, there exist initial data u0 ∈
L2(R) ∩ C1+δ(R), 0 < δ < 1, and T (u0) such that the corresponding

solution u of (4) satisfies

lim
t→T
‖u(·, t)‖C1+δ(R) = +∞.

This rules out the case −1 < α < 0 in our notation. It would be

interesting to extend this result to a non pure power dispersion, for

instance (3).

The case 0 < α < 1 is much more delicate.
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2. Investigate the influence of the dispersive term on the theory of the

local well-posedness of the Cauchy problem associated to the general

“dispersive nonlinear hyperbolic system”

∂tU + ε A(U,∇U) + εLU = 0. (6)

Recall that, for the underlying hyperbolic system (that is when L = 0

in (6) ) assumed to be symmetrizable, the Cauchy problem is locally

well-posed for data in the Sobolev space Hs(Rn) for any s > n
2

+ 1.

The question is then to look to which extent the presence of L can

lower the value of s. This issue is well understood for scalar equations

with a relatively high dispersion, as the KdV, BO equations, much less

for equations or systems with a weak dispersive part.
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Again, we will focus on the scalar equation (1) on its form (2) that is

∂tu−Dα∂xu + u∂xu = 0, (7)

where x, t ∈ R, ε is small positive number and Dα is the Riesz po-

tential of order −α defined in (5). When α = 1, respectively α = 2,

equation (7) corresponds to the well-known Benjamin-Ono and res-

pectively Korteweg -de Vries equations. This equation has been ex-

tensively studied for 1 ≤ α ≤ 2. In the following we will consider the

less dispersive case 0 < α < 1.
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Remark 1. The case α = 1
2

is somewhat reminiscent of the linear

dispersion of finite depth water waves with surface tension that have

phase velocity (in dimension one and two, where k̂ is a unit vector)

which writes in dimension one or two

c(k) =
ω(k)

|k|
k̂ = g

1
2

(
tanh(|k|h0)

|k|

)1
2
(

1 +
T

ρg
|k|2

)1
2

k̂, (8)
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In the case α = 0, equation (7) becomes the original Burgers equation

∂tũ = ũ∂xũ, (9)

by performing the natural change of variable ũ(x, t) = u(x − εt, t),

while the case α = −1 corresponds to the Burgers-Hilbert equation

∂tu +Hu = u∂xu, (10)

where H denotes the Hilbert transform. Equation (10) has been stu-

died by Hunter and Ifrim, Castro, Córdoba and Gancedo.
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The following quantities are conserved by the flow associated to (7),

M(u) =

∫
R
u2(x)dx, (11)

and

H(u) =

∫
R

(1
2
|D α

2u|2 − 1

6
u3
)
dx. (12)

Moreover, equation (7) is invariant under the scaling transformation

uλ(x, t) = λαu(λx, λα+1t),

for any positive number λ. A straightforward computation shows that

‖uλ‖Ḣs = λs+α−
1
2‖uλ‖Ḣs, and thus the critical index corresponding to

(7) is sα = 1
2
− α. In particular, equation (7) is L2-critical for α = 1

2
.
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By using standard compactness methods, one can prove that the

Cauchy problem associated to (7) is well-posed in Hs(R) for s > 3
2
.

Moreover, interpolation arguments or the following Gagliardo-

Nirenberg inequality,

‖u‖L3 . ‖u‖
3α−1
3α

L2 ‖D
α
2u‖

1
3α

L2, α ≥ 1

3
,

combined with the conserved quantities M and H defined in (11) and

(12) implies the existence of global weak solution in the energy space

H
α
2 (R) as soon as α > 1

2
and for small data in H

1
4(R) when α = 1

2
.

More precisely, We recall that we excludes the value α = 1 which cor-

responds to the Benjamin-Ono equation for which much more com-

plete results are known:
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Theorem 2. Let 1
2
< α < 1 and u0 ∈ H

α
2 (R). Then (7) possesses

a global weak solution in L∞([0, T ];H
α
2 (R)) with initial data u0. The

same result holds when α = 1
2

provided ‖u0‖L2 is small enough.

Moreover, Ginibre and Velo using that a Kato type local smoothing

property holds, showed the global existence of weak L2 solutions :

Theorem 3. Let 1
2
< α < 1 and u0 ∈ L2(R). Then (7) possesses a

global weak solution in L∞([0,∞);L2(R))∩L2
loc(R;H

α
2

loc(R)) with initial

data u0.

However, the case 0 < α < 1
2

is more delicate and the previous results

are not known to hold. In particular the Hamiltonian H together with

the L2 norm do not control the H
α
2 (R) norm anymore. Note that the

Hamiltonian does not make sense when 0 < α < 1
3
.
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Molinet, Tzvetkov and Saut (2001) proved that, for 0 < α < 2 the

Cauchy problem is C2- ill-posed, that is, the flow map cannot be C2 for

initial data in any Sobolev spaces Hs(R), s ∈ R, and in particular that

the Cauchy problem cannot be solved by a Picard iterative scheme

implemented on the Duhamel formulation.
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On the one hand, it is well-known that one can still prove local well-

posedness (assuming only the continuity of the flow) for equation (7)

belowH
3
2+(R) when α ≥ 1. Actually, the Benjamin-Ono equation (cor-

responding to α = 1) is well-posed in L2(R) (Ionescu-Kenig, Molinet-

Pilod) as well as equation (7) when 1 < α < 2 Herr-Ionescu-Kenig-

Koch. On the other hand the question to know whether the same

occurs in the case 0 < α < 1 seems to be still open.
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Main Result

The space of resolution of the local Cauchy problem enlarges with α.

Theorem 4. Let 0 < α < 1. Define s(α) = 3
2
− 3α

8
and assume that

s > s(α). Then, for every u0 ∈ Hs(R), there exist a positive time

T = T (‖u0‖Hs) (which can be chosen as a nonincreasing function of

its argument), and a unique solution u to (7) satisfying u(·, 0) = u0

such that

u ∈ C([0, T ] : Hs(R)) and ∂xu ∈ L1([0, T ] : L∞(R)). (13)

Moreover, for any 0 < T ′ < T , there exists a neighborhood U of u0 in

Hs(R) such that the flow map data-solution

SsT ′ : U −→ C([0, T ′];Hs(R)), u0 7−→ u, (14)

is continuous.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Remark 2. In the case α = 1 in Theorem 4, we get s(1) = 9
8
, which

corresponds to Kenig, Koenig’s result for BO.

Remark 3. Of course, the problem to prove well-posedness in H
α
2 (R)

in the case 1
2
≤ α < 1, which would imply global well-posedness by

using the conserved quantities (11) is still open. This conjecture is

supported by the numerical simulations. The use of the techniques in

Herr et al might be useful to lower the value of s. Observe that the

value α = 1/2 is the L2 critical exponent.
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Remark 4. Theorem 4 can very likely be extended for non pure power

dispersions like

c(k) =
ω(k)

|k|
k̂ = g

1
2

(
tanh(|k|h0)

|k|

)1
2
(

1 +
T

ρg
|k|2

)1
2

k̂. (15)

Remark 5. One could wonder about the existence of global solutions

with small initial data. This was solved by Sidi, Sulem and Sulem

when α ≥ 1 but the case α < 1 seems to be open.
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Main Ingredients

Since we cannot prove Theorem 4 by a contraction method as ex-

plained above, we use a compactness argument. Standard energy

estimates, the Kato-Ponce commutator estimate:

Let s > 0, p, p2, p3 ∈ (1,∞) and p1, p4 ∈ (1,∞] be such that
1
p

= 1
p1

+ 1
p2

= 1
p3

+ 1
p4

. Then,

‖[J s, f ]g‖Lp . ‖∂xf‖Lp1‖J s−1g‖Lp2 + ‖J sf‖Lp3‖g‖Lp4 , (16)

and Gronwall’s inequality provide the following bound for smooth so-

lutions

‖u‖L∞T Hs
x
≤ c‖u0‖Hs

x
exp
(
c

∫ T

0

‖∂xu‖L∞x dt
)
.

Therefore, it is enough to control ‖∂xu‖L1
TL
∞
x

at the Hs-level to obtain

our a priori estimates.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Linear estimates

Next we consider the linear IVP associated to (7){
∂tu−Dα∂xu = 0

u(x, 0) = u0(x),
(17)

whose solution is given by the unitary group etD
α∂x, defined by

etD
α∂xu0 = F−1

(
eit|ξ|

αξF(u0)
)
. (18)

We will study the properties of etD
α∂x in the case where 0 < α < 1.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Strichartz estimates

The following estimate is obtained as an application of a general result

proved by Kenig, Ponce and Vega ’91

Proposition 1. Assume that 0 < α < 1. Let q and r satisfy 2
q

+ 1
r

= 1
2

with 2 ≤ q, r ≤ +∞. Then

‖etDα∂xD
α−1
q u0‖LqtLrx . ‖u0‖L2 , (19)

for all u0 ∈ L2(R).
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Remark 6. In particular, if we choose (q, r) = (4,∞), then we obtain

from (19) a Strichartz estimate with a lost of (1− α)/4 derivatives

‖etDα∂xu0‖L4
tL
∞
x
. ‖D 1−α

4 u0‖L2 .
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Next, we derive a refined Strichartz estimate for solutions of the no-

nhomogeneous linear equation

∂tu−Dα∂xu = F . (20)

This estimate generalizes the one derived by Kenig and Koenig in the

Benjamin-Ono case α = 1.

Proposition 2. Assume that 0 < α < 1, T > 0 and δ ≥ 0. Let u be a

smooth solution to (20) defined on the time interval [0, T ]. Then, there

exist 0 < κ1, κ2 <
1
2

such that

‖∂xu‖L2
TL
∞
x
. T κ1‖J1+ δ

4+
1−α
4 +θu‖L∞T L2

x
+ T κ2‖J1−3δ

4 +
1−α
4 +θF‖L2

T,x
, (21)

for any θ > 0.
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Remark 7. In our analysis, the optimal choice in estimate (21) corres-

ponds to δ = 1 − α
2
. Indeed, if we denote a = 1 + δ

4
+ 1−α

4
+ θ and

b = 1 − 3δ
4

+ 1−α
4

+ θ, we should adapt δ to get a = b + 1 − α
2
, since

we need to absorb 1 derivative appearing in the nonlinear part of (7)

and we are able to recover α
2

derivatives by using the smoothing effect

associated with solutions of (20). The use of δ = 1 − α
2

in estimate

(21) provides the optimal regularity s > s(α) = 3
2
− 3α

8
in Theorem 4.
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Maximal Function estimates

We also use a maximal function estimate for etD
α∂x in the case 0 <

α < 1, which follows directly from the arguments of Kenig, Ponce and

Vega (91). We get the following maximal function estimate in L2 for

the group etD
α∂x.

Proposition 3. Assume that 0 < α < 1. Let s > 1
2
. Then, we have

that

‖etDα∂xu0‖L2
xL
∞
[−1,1]
≤
( +∞∑
j=−∞

sup
|t|≤1

sup
j≤x<j+1

|etDα∂xu0(x)|2
)1

2

.‖u0‖Hs , (22)

for any u0 ∈ Hs(R).
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Corollary 1. Assume that 0 < α < 1. Let s > 1
2
, β > 1

2
and T > 0.

Then, we have that( +∞∑
j=−∞

sup
|t|≤T

sup
j≤x<j+1

|etDα∂xu0(x)|2
)1

2

. (1 + T )β‖u0‖Hs , (23)

for any u0 ∈ Hs(R).
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Smoothing Effects

To complete our argument, we need a local smoothing effect for

the solutions of the nonlinear equation (7), which is based on se-

ries expansions and remainder estimates for commutator of the type

[Dα∂x, u] derived by Ginibre and Velo (’89).

We see that the solutions of the linear equation (17) recover α/2 spa-

tial derivatives locally in space (Kenig, Ponce, Vega ’91).

Proposition 4. Assume that 0 < α < 1. Then, we have that

‖D α
2etD

α∂xu0‖L∞x L2
T
. ‖u0‖L2, (24)

for any u0 ∈ L2(R).
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However in our analysis, we will need a nonlinear version of Proposi-

tion 4, whose proof uses the original ideas of Kato ’83.

Proposition 5. Let χ denote a nondecreasing smooth function such

that suppχ′ ⊂ (−1, 2) and χ|[0,1] = 1. For j ∈ Z, we define χj(·) =

χ(· − j). Let u ∈ C([0, T ] : H∞(R)) be a smooth solution of (7)

satisfying u(·, 0) = u0 with 0 < α < 1. Assume also that s ≥ 0 and

l > 1
2
. Then,( ∫ T

0

∫
R

(
|Ds+α

2u(x, t)|2 + |Ds+α
2Hu(x, t)|2

)
χ′j(x)dxdt

)1
2

.
(
1 + T + ‖∂xu‖L1

TL
∞
x

+ T‖u‖L∞T H l
x

)1
2‖u‖L∞T Hs

x
.

(25)
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The proof of Proposition 5 is based on the following identity.

Lemma 1. Assume 0 < α < 1. Let h ∈ C∞(R) with h′ having compact

support. Then,∫
R
f (Dα∂xf )h dx =

α + 1

2

∫
R

(
|D α

2f |2 + |D α
2Hf |2

)
h′dx+

∫
R
fRα(h)f,

where ‖Rα(h)f‖L2 ≤ cα‖F(Dαh′)‖L1‖f‖L2, for any f ∈ L2(R).
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A priori estimates for smooth solutions

Theorem 5. Let 0 < α < 1 and s > 3
2
. For any u0 ∈ Hs(R), there

exist a positive time T = T (‖u0‖Hs) and a unique solution to (7) u ∈
C([0, T ] : Hs(R)) satisfying u(·, 0) = u0.

Moreover, the map:

u0 ∈ Hs(R) 7→ u ∈ C([0, T ] : Hs(R))

is continuous.
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Proposition 6. Assume 0 < α < 1 and s > 3
2
− 3α

8
. For any M >

0, there exists a positive time T̃ = T̃ (M) such that for any initial

data u0 ∈ H∞(R) satisfying ‖u0‖Hs ≤ M , the solution u obtained in

Theorem 5 is defined on [0, T̃ ] and satisfies

Λs
T (u) ≤ Cs(T̃ )‖u0‖Hs, (26)

for all T ∈ (0, T̃ ], where

Λs
T (u) := max

{
‖u‖L∞T Hs

x
, ‖∂xu‖L2

TL
∞
x
, (1+T )−ρ

( +∞∑
j=−∞

‖u‖2L∞([j,j+1)×[0,T ])

)1
2
}
,

ρ > 1
2

and Cs(T̃ ) is a positive constant depending only on s and T̃ .
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All those estimates allow us to obtain the desired a priori bound for

‖∂xu‖L1
TL
∞
x

at the Hs-level, when s > s(α) = 3
2
− 3α

8
, via a recursive

argument. Finally, we conclude the proof of Theorem 4, by applying

the same method to the differences of two solutions of (7) and by

using the Bona-Smith argument.
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Further Comments

• Solitary wave solutions (Frank and Lenzmann)

DαQc + cQc −
1

2
Q2
c = 0. (27)

Theorem 6. Assume that 0 < α < 1
3
. Then (27) does not posses-

ses any nontrivial solution Qc in the class H
α
2 (R) ∩ L3(R).

• Long time behavior

Germain-Masmudi-Shatah
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• “Nonlinear-Dispersive” blow-up.

This blow-up phenomenum, due to the competition between nonli-

nearity and dispersion is expected to occur for L2 critical or super-

critical equations such as the generalized Korteweg-de Vries

equation (GKdV)

∂tu + up∂xu + ∂3
xu = 0, (28)

when p ≥ 4. The only known result for GKdV is that of the critical

case p = 4. The supercritical case p > 4 is still open but the

numerical simulations suggest that blow-up occurs in this case too.
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Recently, Kenig, Martel and Robbiano proved that the same type of

blow-up occurs for the critical equation

∂tu−Dα∂xu + |u|2α∂xu = 0 (29)

when α is closed to 2, i.e. near the GKdV equation with critical nonli-

nearity. Recall that for the dispersive Burgers equation (7), the critical

case corresponds to α = 1
2

(or α = 1
2

for equation (29)).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Things are a bit different for the dispersive Burgers equation (7) equa-

tion since in addition to the L2 critical exponent α = 1/2, one has

the energy critical exponent α = 1/3 which has no equivalent for the

generalized KdV equations. As this stage one could conjecture that

the Cauchy problem for the dispersive Burgers equation (7) is glo-

bally well-posed (in a suitable functional setting) when α > 1
2
, that a

blow-up similar to the critical GKdV case, occurs when α = 1
2
, that a

supercritical blow-up occurs when 1
3
≤ α < 1

2
, and that a blow-up of

a totally nature occurs in the energy supercritical case, that is when

0 < α < 1
3
.This is supported by numerical simulations but should be

difficult to prove.
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• BBM version of the dispersive Burgers equation,

∂tu + ∂xu + u∂xu + Dα∂tu = 0. (30)

Theorem 7. Let 0 < α < 1. Then the Cauchy problem for (30) is

locally well-posed for initial data in Hr(R), r > rα = 3
2
− α.


