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Summary

to obtain traveling wave solutions to many nonlinear
dispersive eq. with dissipation
we apply the derivation to BBM
via reductions to 1st kind Abel, with polynomial
nonlinearities and dissipation
we explain why such integration via ℘ functions can be
performed via genus of curves
we show equivalence between nonlinear dissipative PDEs
and classical ODE theory
we present graphs of closed form solutions of ℘ functions
from which in limiting cases classical solutions can be
obtained
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Ansatz

certain classes of PDEs can be reduced via via traveling
wave reduction ζ = x − vt into the ODE

uζζ + f2(u)uζ + f3(u) + f1(u)u2
ζ + f0(u)u3

ζ = 0 (1)

Examples KdV- type
KdV-Burgers: δuζζζ = νuζζ − αuuζ − cuζ

Gardner: δuζζζ = νuζζ − αuuζ − cuζ − βu2uζ

Fisher: uζ = uζζ + αu(1− u)
Ginzburg-Landau: −cuζ = εu + ν1uζζ + ν3u|u|2 + ν5u|u|4

after reduction f0(u) = f1(u) = 0
f2(u), f3(u) are polynomials
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Abel

letting uζ = η(u), we obtain a 2nd kind Abel’s equation

η
dη
du

+ f2(u)η + f3(u) + f1(u)η2 + f0(u)η3 = 0 (2)

2nd kind can be transformed into a 1st kind via η = 1
y

dy
du

= f0(u) + f1(u)y + f2(u)y2 + f3(u)y3 (3)

it is still not known how to integrate it for general fi(u), for
special cases, see Kamke [3] (normal, canonical form)
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BBM equation

The Benjamin-Bona-Mahony (1972) equation [1] or
regularized long-wave equation (small wave amplitude,
large wavelength, inviscid, incompressible flow)

ut + ux + uux − uxxt = 0 (4)

is a popular alternative to the Korteweg-de Vries (KdV)
(1895) [4] for modeling long waves in a wide class of
nonlinear dispersive systems.
A generalization to BBM to include a viscous term is given
by

ut + ux + uux − uxxt = νuxx (5)

where ν > 0 is transformed kinematic viscosity.
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BBM equation

Benjamin et. al showed (5) has similar properties as KdV
but solutions have better smoothness properties
moreover, the linearized version has dispersion relation for
which cp, cg are bounded for ∀k , so fine scales features
tend not to propagate
existence and stability of the solitary waves solutions of (5)
has been investigated by Benjamin et. al , Bona et. al ,
Pritchard, Scott, Tzvetkov, etc.
here, we will find the general solutions of (5) using
Weierstrass ℘ functions without simplifying assumptions
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Abel for BBM

using ζ = x − vt and integrating once (keeping the
integration constant)

(1− c)u +
u2

2
+ cuζζ = νuζ + A (6)

which leads to polynomials

f2(u) = −
ν

c

f3(u) =
1
2c

u2 +
1− c

c
u − A

c

(7)

in Abel’s equation

dy
du

= f2(u)y2 + f3(u)y3 (8)
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Weierstrass no dissipation

if f2(u) = 0 then (8) is separable with solution given by the
elliptic curve

η2 = q3(u) ≡ −
u3

3c
− 1− c

c
u2 +

2A
c

u − 2B (9)

therefore the well known solutions for nondisipative BBM
are found easily from the elliptic equation

u2
ζ = q3(u) (10)

which can be transformed in standard form

û2
ζ = 4û3 − g2û − g3 (11)

via transformation u = − 3
√

12cû − (1− c)
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Classical solutions

which has solution û(ζ) = ℘(ζ,g2,g3) with invariants

g2 =
3

√
12
c2 (c − 1)2 > 0 (12)

g3 =
2(1− c)3

3c
(13)

two limiting cases with assumption A = 0,B = 0:

c 6= 1
c > 1→ g3 < 0 fast waves solitary

0 < c < 1→ g3 > 0 slow waves periodic

c = 1

Jacobian elliptic functions with modulus k = sin 5π
12
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Classical solutions

c 6= 1

u(x , t) = 3(c − 1)Sech2
[√(c − 1)/c

2
(x − ct)

]
if c > 1 (14)

u(x , t) = − 3c
1 + c

Sec2
[√c

2

(
x − t/(1 + c)

)]
if 0 < c < 1 (15)

c = 1

u(x , t) = C
[
1−
√

3
1∓ cn

(√
C/ 4
√

3(x− t), k
)

1± cn
(√

C/ 4
√

3(x− t), k
)] (16)
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Graphs of classical solutions

Figure : Traveling waves ν = 0, left c = 1.5; middle c = 0.5 ; right
c = 1
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Weierstrass for dissipative BBM

consider (8) in the form of non-authonomous eq
F (y , yu,u) = 0
Poincare [6] proved in 1885 that any non-autonomous eq
having genus p = 1 is integrable via Weierstrass ℘
functions, after linear fractional transformation
∀ elliptic functions f (z) = A(℘) + B(℘)℘′, see Whittaker [7]
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Lemke’s transformation

progress of integration of (8) is based on Lemke
transformation v =

∫
f2(u)du = ν

c u + D [5]

dy
dv

= y2 + g(v)y3, (17)

where g(v) = a2v2 + a1v + a0 = f3(v)
f2(v)

letting y = −1
z

dz
dv , we obtain the 2nd order non-autonomous

system

z2 d2v
dz2 + g(v) = 0 (18)
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since g(v) has no singularities→ v has only poles of O(2)
→ solution is an elliptic function
Ince [2] proposed solutions to (18) of the type

v = Ezpω(zq) + F (19)

which by substitution give p = 2
5 , q = 1

5

E ,F are arbitrary constants to be determined next
we will show next that the function ω satisfies an elliptic
equation, while due to Lemke’s transformation z satisfies a
linear equation (23)
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all the above transformations can be combined into

u(ζ) = σ − e−nζω(z(ζ)) (20)

which by substitution into (5) leads to

(z ′)2ω̈+
(

z ′′−
(
2n+

ν

c
)
z ′
)
ω̇+
(

n2+
1− c + σ + nν

c

)
ω =

1
2c

e−nζω2

(21)

The free term was eliminated by setting A = σ2

2 + σ(1− c).
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By letting
z ′′ −

(
2n +

ν

c
)
z ′ = 0 (22)

we obtain
z ′(ζ) = c1e(2n+ ν

c )ζ (23)

We also choose σ = −(n2c + nν + 1− c) which cancels the
linear term in (21).
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We are left to solve

(z ′)2ω̈ − 1
2c

e−nζω2 = 0 (24)

subject to (23). If n = −2ν
5c , then

σ =
14ν2

25c
+ c − 1 (25)

By substituting (23) into (24), we obtain

ω̈ =
1

2cc2
1
ω2. (26)
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Letting c1 = 1
2
√

3c
, we arrive at the elliptic equation

ω̈ = 6ω2 (27)

which by multiplication by ω̇ and integration becomes

(ω̇)2 = 4ω3 − g3. (28)

Its solution is
ω(z) = ℘(z + c3,0,g3) (29)

with invariants g2 = 0, and g3.
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Then, the general solution to (5) is

u(ζ) =
14ν2

25c
±
√(14ν2

25c

)2
− 2A− e

2νζ
5c ℘(c4 +

5
√

3c
6ν

e
νζ
5c ,0,g3)

(30)

If A = 0→ c − 1 = ±14ν2

25c , and one selects the lower branch of
the radical, we obtain

u(ζ) =− e
2νζ
5c ℘(c4 +

5
ν

√
c

3a
e
νζ
5c ,0,g3) if g3 6= 0

u(ζ) =− e
2νζ
5c(

c6 ± 5
√

3c
6ν e

νζ
5c

)2 if g3 = 0.
(31)
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Graphs of ℘ solutions

Figure : Weierstrass solutions ν = 0.1 left c = 1.5; middle c = 0.5;
right c = 1
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Graphs of kink solutions

Figure : Kink solutions ν = 1 left c = 1.5; middle c = 0.5; right c = 1
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Nonlinear Waves Lab

16′ × 4′ × 4′

3′ water max
192ft3 ≈ 5500l
1.5 yrs to build
attracted > 120k USD
shallow and deep water for UWV research, supercavitation
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