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In 1983, Tosio Kato in the paper On the Cauchy Pro-
blem for the (Generalized) Korteweg-de Vries Equation,
considers the initial value problem for (KdV):

%—I—D:%u—l—uDu:O, t>0, zeR, w0 =¢, (1)
0 L : :

where D = p for initial data in asymmetric spaces

with the resuﬁing irreversibility in time. Specifically

¢ €Y = H*(R) N L?(R) where L2(R) = L? (e%fﬂdx) for

s>0, b>0.

He notes that the semigroup exp (—tD3) in LZ2(R), is
formally equivalent to the semigroup

Uy (t) = exp [—t (D — b)3] >0, (2)



considered in L2(R) = HY9. Really of
(D —b) e’ u = e Du,
there follows
(D — b)3 "y = € D3,

where U(t) satisfies
Lemma 1 (T. Kato).

{Uy(t): t > 0} is an infinitely differentiable semigroup on
HS(R) for each real s, with

D" U g2y, 12r))y < ent ™2 exp(63t), n=1,2,3,...
1(d/dt)Up(| pr2cr), 12(R)) < ct™3/2 exp(b3t).
Uy(t) is bounded on H? to a¢', with

10O g, ey < et 72 exp®), s <’ (3)



T hese results are easy consequences of the factorization

Uy (t) = exp(b°t) exp(—3b%t D) exp(3bt D?) exp(—t D3),

where exp(—3b2t D) and exp(—t D3) are unitary on HS®
and exp(3bt D?) is heat semigroup, which is holomorphic
int> 0.

Moreover T. Kato (see Lemma 9.2.) shows which, if
ey € L ([0, T]: L2(R)), € f € L= ([0, T]: H~1(R))
and wu satisfies

0
8—1:—I—D3u=f, 0<t<T,

then

e e ¢ ([o, T]: LQ(R)) nC (]0, T]: H5(R)) Vs < 1
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and

el 4y = Uy(t) e’ u(0) + /Ot Uy (t — m)eb® £ (r)dr.

Now for the case not autonomous
ou

E+D3u—|—a(t)Du=O, tel, (4)

where I C R be an open interval, T. Kato shows which
(see Lemma 9.3. in [Kato]), if (a —c¢) € C (I; H*(R)),
where ¢ is a constant and u satisfies (4), then

e’ u e C (I; H®(R)),

this lemma shows the quasi-parabolic nature of the
equation (4).



Results for the globally well posed is obtained by Kato
(see Theorem 10.1 in [Kato]), if ¢ € HSN L2, s > 2
and b > 0, then exists a unique solution u to (1) such
that u € C ([0, 4o00); H*NLZ), with the map ¢ — u
continuous. Moreover, ¥y € C ([O, +00); HSI) for any
s’ < s+2. Inthe case ¢ € HONLZ, b > 0, exists a unique
solution

u € Cy ([O, +00); HO> :
(see Theorem 12.1 in [Kato]).



In 2002, Kenig - Ponce - Vega in the work On the
support of solutions to the generalized KdV equation
[KPV] showed that if u(x, t) is solution of the k-gKdV
equation

oru + Ogu —+ uk Orzu = 0,
such that

sup |u(:, Ol g1gy < Fo0,
te[0, 1]
and such that for a given 8 > 0 ef*ugy € L2(R) then
efu e C ([0, 1]: L2(R)) (Lemma 2.1 in [KPV]) and an
extension to higher derivatives.

We use the ideas of the proof of the following Carleman
estimates (see Lemma 2.3 in [KPV])

12 fllerzy < clle™® {8+ 02 fll s/ pey



for all A € R, where f € C2''(R2) this is, 8, f, 62 f, 83 f,
O f € Cp(R?) with compact support.

We also follow the ideas contained in the work On
uniqueness properties of solutions of the k-generalized
KdV equations by Escauriaza - Kenig - Ponce - Vega
'2007 [EKPV] and Lower bounds for non-trivial travel-
ling wave solutions of equations of KdV type by Kenig
- Ponce - Vega '2012 [KPV2].

Also use arguments analogous to those found in the
work of Carvajal - Panthee Well-posedness for some
perturbations of the KdV equation with low regularity
data 2008, they considering the initial value problem

ut + Ugzz +nLlu+uuy = 0, xR, t>0,
u(z,0) = O (5)



where n > 0 is a constant and the linear operator L is
defined via the Fourier transform by Lu(¢) = —d (&) (&).
The Fourier symbol

n  2m

D)= 3 €€, ¢ €ER, comn=—1, (6)

j=013=0
IS a real valued function which is bounded above, they
proved in [CP] the IVP (5) with n > 0 and ®(&) given
by (6) is locally well-posed for any data ug € H*(R),
s > —3/4 (see Theorem 1.1 in [CP]).



We consider the Cauchy problem for the forced Korteweg-
de Vries equation

gu—I—D?’u—l—uDu—f, t>0, xR (7)

with initial data in Y = X*NL? where X? is the Sobolev
space HS(R) or the Zhidkov spaces

{peDR): p € L°R), ¢ € HETHV(R)}.

Without loss of generality we consider b = 1, since

up(y, t') = b2 u(b™ty, b=3t)),
satisfies

Oup  O3uy %,
o ay3 3 g

Up
ay — fb7 (8)



where fy(y, t') = b2 f(b 1y, b=3t').
Multiplying by e* (7) obtain
%(exu) + (D-1)3(%u) + u (D —1) (*w) = € f,
(9)

We denote by v =e*u and g = e* f obtaining,

%+(D—1)3U—|—u(D—1)v=g. (10)

Since the linear symbol of (10) is i+ 4+ (£ — 1)3, by
analogy with the spaces introduced by Molinet and Ri-
baud '2002 (see [MR]) for Korteweg- de Vries - Burgers
equation, we define the function space X%° endowed
with the norm

[ollxas = [[(iT 4+ (i€ —1))*(€)° 8] L2(g2),

10



where (-) = (14|22, so that

[0l xas = [[{|7 — &>+ & 4+ 162 = 1))* (€)° 8| L2 g2y

We can re-express the norm of X% 95 as
|v]| xa,s ~ [[U(=t)v||ga,s + HvllLtz 17s+2a>

where U(t) = exp (—t D3) and

[0][Fra.s = /RQ (T)2% (€)2% |o(¢, T)|° d€ dr.

We denote by W the semigroup Uy(t) in (2) for b =1,
associated with the free evolution of (10), Vt > 0

Fo (W(0)¢) (§) = exp =36t +t +i (2 = 3¢)t|, s € 5,
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and we extend W to a linear operator defined on the
whole real axis by setting V¢ € R,

Fo (W()9) (&) = exp | =32t +t+i (&2 -3¢)t], g€ 5,

Using Duhamel “s principle, we will mainly work on the
integral formulation of the equation (10)

1t
o(t) = W(t)qS—E/O Wt — ') [D(uv) —uv] () dt’ +

/Ot W(t—t)F(t')dt, ¢t > 0. (11)

For T > O consider the localized spaces X7/° endowed

with the norm

a,s = inf a,s . t) =v(t)on |0, T|}.
loll s = inf. {llwllxes: w(®) = o() on [0, 71}
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If f € H®(R) time independent and ¢ € H5(R) for s >
—3/4, using the linear estimates and bilinear estimates
in Zihua Guo '2009 (see [GUO]) and Colliander - Keel
- Staffilani - Takaoka- Tao '2003 (see [CKSTT]), we
can adapt the proofs to show the existence the 7' > 0
and u € C ([—T, T]: H—S(R)> unique solution of (7) for
s > —3/4.

If g = eb® f € H®(R),

¢ € Hi(R) = {¢ € ' " € H(R)},
and v € C([0,T]): H5(R)) be a solution to (7) for
s > —3/4 and using the argument used in Molinet and

Ribaud '2002 ([MR]) find estimates analogous to (2.1)
for example, exists C > 0 such that

1P (@) W9l x1/2,s < ClIdlgs(r), Vo € H*(R),
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s € R, where ¢ is a time cutoff function satisfying

Y e Cg°(R), supy C [-2,2], v =1o0n[-1, 1].

Also show estimates analogous to (2.2), (2.9), (2.33),
(2.34) and bilinear estimates as in Proposition 3.1,
show the existence the T’ > 0 such that, there exists a
unique solution

ve ([0, T': HR)) N X >°

Y

of (10).

Combining these results we prove the |local existence
result
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Theorem 2. Let f € H*®(R) time independent, eb*f ¢
H*°(R), ¢ € H*(R) N H (R) for s > —3/4 and b > 0.
Then there exist T' > 0 and unique solution u(t) of the
IVP (7) in the time interval [0, T] in

C ([0, T1: H°(R) N H;(R)) .
Moreover, the map ¢ — u is smooth from H*(R)NHy(R)
to C ([0, T]: H*(R) N H{(R));

w and eP*wu belongs to C (]0, T]: H®(R)).

15



Using the results for the local existence of KdV for s > 0

and ideas of Kato [Kato] (see Theorem 11.1), follows
easily

Theorem 3. Let f € H*®(R) time independent, eb*f ¢
H>®(R), ¢ € H*(R) N LZ(R) for s > 0 and b > 0. Then
there exist T' > 0 and unique solution u(t) of the IVP
(7) in the time interval [0, T] in

C ([o, T]: H(R) N Lg(R)) .

Moreover, the map ¢ — u is smooth from HS(R)HLE(]R{)
to C ([o, T]: H5(R) N Lg(R));

w and eP* v belongs to C (]0, T]: H®(R)).
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To prove the global well-posedness in HS(R)ﬁLbQ(R) for
s > 0, first we establish a series of a priori estimates.

We can adapt Fourier proof that ||u(t)||L2(R) = |[9[l 2R
vVt € R for u solution the KdV equation (see [CKSTT(]).

By Plancherel,

@ Bogy = [ @€ @) dér deo.
§1+62=0

Hence, for u local solution of (7), we apply 9, use
symmetry, and the equation to find

o (Il Bay) =2 [ Fle) ale) déadéo,
§1+£2=0
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we have

()l 2y < 1161l 2z) + 11l 20y b ¥E € [0, T]. (12)

For t > O, multiplying by v and integrating by parts in
R with respect to « the equation

%—I—(D—b)?’v—l—u(D—b)v:g,

we have
1d
> vl dr = —3b/(Dv)2 d:c—/uvad:r:—I—b/qudx—l—

/gvda:.
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Using the Cauchy-Schwartz inequality and Gagliardo-
Niremberg interpolation, we obtain the estimate

1d 13

1
[Pde = € (5 lullag +blullfhg ) 11022 +
1911128y 112y

An application of Gronwall “s inequality, using (12) and
theorem (3) gives
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Theorem 4. Let f € H®(R) time independent, e® f €
H>®(R), ¢ € LZ(R)N H2(R) for s > 0 and b > 0. Then
exist a unique solution u(t) of the IVP (7) in

C ([0, +oo[: LZ(R) N H*(R)).

Moreover, the map ¢ — u is smooth from HS(R) to
Lg(R) N H(R),

w and e’ u belongs to C (]0, +oo[: H®(R)).

For initial value problem in spaces Zhidkov, we can
adapt the estimates in H*(R) N LZ(R) and apply the
methods used in Iorio-Linares-Scialom '1998 (see [ILS])
and Gallo '2005 (see [G]) for establish existence the
global solutions of (7) for s > 1.
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We are interested in the case forced for the existence of
global attractors in Y, this is, a compact invariant set
A attracts an open set of initial conditions and Haus-
dorff dimension finite, is a consequence of the quasi-
parabolic nature of the KdV equation in the asymme-
trically weighted Sobolev space.
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