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du
— = JE'(U 1
o= JEU) M)
in a Hilbert space X. The Hamiltonian system has two conserved
quantities E(U) and F(U). Then for any constant ¢, we may
consider the conserved quantity (first integral) E(U) — cF(U).
In our context, we named periodic traveling/standing waves
as the critical points of E(U) — cF(U), that is, solutions ® = &,
of the Euler-Lagrange equation

E'(®) — cF'(®) = 0. (2)
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As example, let us consider the Klein-Gordon equation with
logarithm nonlinearity (log-KG henceforth),

Upt — Usx + U — Iog(\u\z)u =0, (3)

where u: R x R — C is a complex valued function. We assume
that v is an L—periodic function, that is, u(x + L, t) = u(x, t) for
all x,t € R.
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u(x,t) = e“pc(x), t >0, c € (—1,1) and, ¢ is a smooth
L—periodic function, the Euler-Lagrange equation becomes

_Qb,c/ + ¢c — ¢ IOg(’¢c| )—¢ ¢

(EI . CF/)(CD) — C¢C 6 C¢C —

0

o

where ® := &, = (P, icodc) := (¢c, cpe,0,0) and

L L
U):Im/ Elutdxz/ (Re v Im vy —Im v Re u) dx.
0 0
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An important qualitative aspect regarding the Hamiltonian
systems (1) is the orbital stability.
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initial condition Uy for (1) is close to @, then the profile of the
solution U(t) of (1) with U(0) = Up remains close to ¢ for all
values of t. More precisely ® is orbitally stable with respect to (1)
if, for all € > 0, there exists 0 > 0 such that if ||Uy — ®||x < ¢ and
U(t) is the solution of (1) with U(0) = Up, then

sup inf{||U(t) — T1(s1)T2(s2)®P||x, —00 < 51,5 < 00} < €.

—oo<t<oo

Otherwise, we say that the periodic wave is orbitally unstable in X
(or X—unstable).
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In a general setting, it is understood that the periodic wave ®
is stable if we can show that E has a local minimum at ¢ for a
given value of F. By using methods introduced by Albert, Bona,
Henry, Grillakis, Shatah, Strauss and, Weinstein, to prove the
stability of ®, we must show that

@ the existence of a differentiable family ¢ of solutions of the
Euler-Lagrange equation (2)
@ we define the function

d(c) = E(®c) — cF(P.) (5)
and the linearized operator for (2) at ®.

Lo = E"(®.) — cF"(de). (6)

F. NATALI



@ Due to the invariance of the problem, it is expected that zero
is always an eigenvalue of L.

F. NATALI



@ Due to the invariance of the problem, it is expected that zero
is always an eigenvalue of L.

@ For the case of the Klein-Gordon equation, the periodic wave
®. is X—stable if d is non-degenerate at ¢ and:

F. NATALI



@ Due to the invariance of the problem, it is expected that zero
is always an eigenvalue of L.

@ For the case of the Klein-Gordon equation, the periodic wave
®. is X—stable if d is non-degenerate at ¢ and:

(1) n™(Le) =1

F. NATALI



@ Due to the invariance of the problem, it is expected that zero
is always an eigenvalue of L.

@ For the case of the Klein-Gordon equation, the periodic wave
®. is X—stable if d is non-degenerate at ¢ and:

(1) n™(Le) =1

(2) zero is a simple (or double) eigenvalue of L. = ( EOR go >
I

F. NATALI



@ Due to the invariance of the problem, it is expected that zero
is always an eigenvalue of L.

@ For the case of the Klein-Gordon equation, the periodic wave
®. is X—stable if d is non-degenerate at ¢ and:

(1) (o) =1

(2) zero is a simple (or double) eigenvalue of L. = ( EOR go >
I

(3) d"(c) >0, forall c € 7.
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In order to deduce the orbital stability of periodic waves, we
need to determine (at least) existence and uniqueness of (weak)
solutions.
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EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS

We suppose that f : R — R is a real function and the Cauchy
problem

Ut — U + U — F(JuZ)u=0
{ (7)

u(x,0) = up(x), u(x,0) = up(x),

has a unique (local) solution

u € C([0, T]; Haer ([0, L1)) N CH([0, T Lpe ([0, L1))-
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EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS

We suppose that f : R — R is a real function and the Cauchy
problem

Ut — U + U — F(JuZ)u=0
{ (7)

U(X,O) = UO(X)a ut(Xﬂ 0) = u(’)(x),
has a unique (local) solution

u € C([0, T]; Haer ([0, L1)) N CH([0, T Lpe ([0, L1))-

In addition, we assume that problem (7) has two (convenient)
conserved quantities E and F.
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Theorem 1.

Consider (uo, up) € Hpe ([0, L]) x L3.,([0, L]). The Cauchy

Problem (7) has a unique (local) weak solution
u e C([0, T]; Hp..([0, L])) N CX([0, T]; L2,,([0, L])). In addition, we
have the following conserved quantities

L
EW) =5 [ [+ el + |uf? (2= fog(lu))] i

and

L
F(U) :Im/ uuy dx.
0
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INGREDIENTS OF THE PROOF:

@ In order to prove Theorem 1 we need to follow the arguments
in Cazenave and Haraux (1980).

@ We use Galerkin's approximation + compact embedding of

the space H;e, — L,%e, to obtain the existence of (global)

weak solutions.
@ In addition, we need to use the logarithmic Sobolev inequality

L L
47‘(‘2/ lul?log |u| dx < / |uy | dx
0 0

L L
2
+ 27r2/ |u|? log <Zr/ |ul? dx> dx,
0 0

u € Hi ([0, L]).
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@ Uniqueness of solutions is a big problem!
@ Let u and v be weak solutions of the problem (7). Thus, one
can prove that ¢ := u — v is a weak solution of the problem

@it — Pxx + ¢ — ulog(|ul?) + vlog(|v]?) = 0
(8)
©(x,0) =0, ¢¢(x,0)=0.
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X+t—7
/ / ulog u\ ) — vlog(|v] )] dydr, (9)

t+7
for all (x,t) € R x [0, T].
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@ In addition, solution ¢ can be expressed as

X+t—7
/ / ulog u\ ) — vlog(|v] )] dydr, (9)

t+7
for all (x,t) € R x [0, T].
e To prove equality above we must consider 0 < T < L/4.
o Finally, to establish that ¢ = 0 we need to use the logarithmic
Gronwall inequality:
e Consider T >0, a >0, o €[0,1/e] and B € L>(0, T) with
B8 >0 If

B0 <o 3(s)log B(s) ds

a.e. te [0, T].
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@ In addition, solution ¢ can be expressed as
X+t—T
/ | luwtog((u®) - viog(vP*)] dydr. (9)
X—t+T
for all (x,t) € R x [0, T].
e To prove equality above we must consider 0 < T < L/4.

o Finally, to establish that ¢ = 0 we need to use the logarithmic
Gronwall inequality:

e Consider T >0, a >0, o €[0,1/e] and B € L>(0, T) with
5>0. If

B(t) < Bo— o / B(s)log f(s) ds
0
a.e. t € [0, T]. Thus,
B(t) < BS ™,

ae. te[0, T*].
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ORBITAL STABILITY OF PERIODIC WAVES

In what follows, let us assume the following set of
assumptions:

@ there is ¢p € R such that ¢, is an even positive and
Lo—periodic solution associated with the equation

(Z5CO + ( Cg)qsco - f( Eo)qsco =0

@ The linearized operator L1 = —92 + (1 — c3) — F(¢¢,) has
zero as a simple eigenvalue whose eigenfunction is (b’CO and
n~(L1) = 1. Here F is real function satisfying

(F(s*)s)' = F(s).
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In a general framework, let us consider the nonlinear ODE

- Qb” + g(c, ¢) =0, (10)

where g : © C R? — R is a differentiable function.

Following the arguments due to — and Neves (2013) (see
also Neves [(2008), (2010)]), it is possible to establish sufficient
conditions on the function g, in order to prove the existence of a
smooth curve

cel— ¢,

of periodic solutions which solves equation (10), all of them with
the same (fixed) period L > 0.

In addition, the same approach determines sufficient
conditions to obtain the spectral property associated with the
operator L1.
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In order to find a local minimum, we define the orbit
generated by ®

Op. = {”(dc(- +y).icoc(-+ )i (v.6) € [0,1] x [0.2m) } .

Taking v := u, let us consider (y,0) € [0, L] x [0,27). Let
t € [0, T] be arbitrary but fixed. We define the continuous function

Qi(y,0) = \qu(-+y,t)ei9—¢’c!!fge,
A=Aty e —oclF ()
+ (- +y e —icdefs

Since Qq, t € [0, T], is continuous and [0, L] x [0,27) is bounded,
we can write,

Qu(y(t),0(¢)) = Qe(y,0) := [pe(d(-, 1), 05, )1 -(12)

inf
(v,0)€[0,L]x[0,27)
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Furthermore, the map

t inf Qu(y.0
™ o)clLlxo2n) t(r.0)

is continuous (see Bona (1975)).
Next, let us consider the following perturbations of the wave

(¢c, icoe)

u(x +y, t)e’? := o(x) + w(x, t) where w:=A+iB  (13)
and

v(x +y, t)e :=ich.(x) + z(x,t) where z:= C+iD, (14)
Denoting

w = (w,z) = (Re w,Im z,Im w,Re z) = (A, D, B, C).
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By using the minimum property (above) one has

<< g(( ft)) )( log(¢§l¢;’i+2¢’c >>272 o (15)

(53) (2,0 oo

and

F. NATALI



Next, since G = E — cF is a conserved quantity and
G'(pc, icpe) = (E' — cF') (e, icpc) = 0, we deduce from Taylor's
Theorem
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Next, since G = E — cF is a conserved quantity and
G'(pc, icpe) = (E' — cF') (e, icpc) = 0, we deduce from Taylor's

Theorem
AG = G(ug,u1) — G(¢c,ichc)
= G(w(-\t)+ de, 2(-, t)+,c¢c G(dc, icoe)
= 3 (e (500) (503,
~a(e(&@d) (4 i>>22

= BalwW(, 0P = Ballw (-, )] = O(Iw (-, )]1°),

F. NATALI



Here, operators Lr and L, are defined as

Lr= ( —8)2( +1- |og(|¢c|2) -2 —c ) (17)

—C 1

and
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and
_ [ -3 +1—log(|pc?) ¢
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@ Since zero is a simple eigenvalue of £1 and n™(£1) =1, we
can use the min-max Theorem to guarantee that zero is a
simple eigenvalue of Lg whose eigenfunction is (¢L, coL).
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Here, operators Lr and L, are defined as

[ O+ 1—log(|¢c]?) -2 —c
and
_ [ -3 +1—log(|pc?) ¢
Go (B R S) oy

@ Since zero is a simple eigenvalue of £1 and n™(£1) =1, we
can use the min-max Theorem to guarantee that zero is a
simple eigenvalue of Lg whose eigenfunction is (¢L, c¢.). In
addition, the min-max Theorem give us that n™(Lg) = 1.

@ The fact that ¢, is positive enable us to conclude that zero is
the first eigenvalue of £; which is simple.
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Thus, classical methods of orbital stability (in the sense of
definition above) is established on the set

A={(u,v) € H;e, X Lf,er; F(u,v) = F(oc, icoc)},
provided that

(o ()-8 () (),

=—d"(c)

F. NATALI



Thus, classical methods of orbital stability (in the sense of
definition above) is established on the set

A={(u,v) € H), x L3i F(u,v) = F(c,icoc)},

provided that

(o (2N () (),

=—d"(c)

where
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However, one has

L d L
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To find a convenient expression for the term /., we need to
consider the ODE

—¢l + (1= c?)¢c — log(¢2)pe = 0.
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However, one has

L d L
—d“(c):/0 2 dx—i—cdc</0 ¢> dx). (19)

v~

le

To find a convenient expression for the term /., we need to
consider the ODE

7+ (1 - c?)gc — log(¢2)pe = 0.

Since ¢ € T+ ¢, is smooth one has
— 1 = 2c¢c + (1 = c*)c — log(¢2)ne — 2ne = 0, (20)

d
where e = J-¢c.
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However, one has

—d"(c / $2 dx + < </ P2 dx) (19)

lc

To find a convenient expression for the term /., we need to
consider the ODE

7+ (1 - c?)gc — log(¢2)pe = 0.

Since ¢ € T+ ¢, is smooth one has
— 1 = 2c¢c + (1 = c*)c — log(¢2)ne — 2ne = 0, (20)

where 7. = %qﬁc.
Multiplying equation (20) by ¢ and integrating the final
expression over [0, L], we have

F. NATALI



However, one has

—d"(c / $2 dx + < </ P2 dx) (19)

lc

To find a convenient expression for the term /., we need to
consider the ODE

7+ (1 - c?)gc — log(¢2)pe = 0.

Since ¢ € T+ ¢, is smooth one has
— 1 = 2c¢c + (1 = c*)c — log(¢2)ne — 2ne = 0, (20)

where 7. = %qﬁc.
Multiplying equation (20) by ¢ and integrating the final
expression over [0, L], we have

L
lo = —2c/ $? dx. (21)
0



Collecting the results in (19) and (21) we deduce
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Collecting the results in (19) and (21) we deduce
L
—d"(c) = (1 2c2)/ 62 dx,
0

that is, —d”(c) < 0 if, and only if, |¢| > ¥2.
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Collecting the results in (19) and (21) we deduce
L
~d'(e) = (1-2¢) | o2 o,
0
that is, —d”(c) < 0 if, and only if, |¢| > ¥2.
A simple application of the triangle inequality and the fact

that G is C! map in a neighborhood of the point (¢, ic$.) give us
the orbital stability if (u,v) ¢ A
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THANK YOU VERY MUCH!
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