Scattering of solutions and stability of solitary waves for the generalized BBM-ZK equation

Amin Esfahani

Damghan University

Contents

- Introduction
- 2 Scattering
- 3 Stability
- Power-law nonlinearity $f(u) = u^{p+1}/p + 1$
- 6 References

$$u_t + u_{xxx} + f(u)_x = 0$$

$$u_t + \varepsilon u_x - u_{xxt} + f(u)_x = 0$$

$$u_t + u_{xxx} + f(u)_x = 0$$

• $(u_t + u_{xxx} + f(u)_x)_x \pm u_{yy} = 0$ KP equation

$$u_t + \varepsilon u_x - u_{xxt} + f(u)_x = 0$$

$$u_t + u_{xxx} + f(u)_x = 0$$

- $(u_t + u_{xxx} + f(u)_x)_x \pm u_{yy} = 0$ KP equation
- $u_t + (u_{xx} + u_{yy})_x + f(u)_x = 0$ ZK equation

$$u_t + \varepsilon u_x - u_{xxt} + f(u)_x = 0$$

$$u_t + u_{xxx} + f(u)_x = 0$$

- $(u_t + u_{xxx} + f(u)_x)_x \pm u_{yy} = 0$ KP equation
- $u_t + (u_{xx} + u_{yy})_x + f(u)_x = 0$ ZK equation

$$u_t + \varepsilon u_x - u_{xxt} + f(u)_x = 0$$

$$u_t + u_{xxx} + f(u)_x = 0$$

- $(u_t + u_{xxx} + f(u)_x)_x \pm u_{yy} = 0$ KP equation
- $u_t + (u_{xx} + u_{yy})_x + f(u)_x = 0$ ZK equation

BBM equation

$$u_t + \varepsilon u_x - u_{xxt} + f(u)_x = 0$$

• $(u_t + \varepsilon u_x - u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation

$$u_t + u_{xxx} + f(u)_x = 0$$

- $(u_t + u_{xxx} + f(u)_x)_x \pm u_{yy} = 0$ KP equation
- $u_t + (u_{xx} + u_{yy})_x + f(u)_x = 0$ ZK equation

$$u_t + \varepsilon u_x - u_{xxt} + f(u)_x = 0$$

- $(u_t + \varepsilon u_x u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation
- $u_t + \varepsilon u_x (u_{xx} + u_{yy})_t + f(u)_x = 0$ 2D-BBM equation

$$u_t + u_{xxx} + f(u)_x = 0$$

- $(u_t + u_{xxx} + f(u)_x)_x \pm u_{yy} = 0$ KP equation
- $u_t + (u_{xx} + u_{yy})_x + f(u)_x = 0$ ZK equation

$$u_t + \varepsilon u_x - u_{xxt} + f(u)_x = 0$$

- $(u_t + \varepsilon u_x u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation
- $u_t + \varepsilon u_x (u_{xx} + u_{yy})_t + f(u)_x = 0$ 2D-BBM equation
- $u_t + \varepsilon u_x (u_{xt} + \beta u_{yy})_x + f(u)_x = 0$ BBM-ZK equation

•
$$(u_t + \varepsilon u_x - u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$$
 BBM-KP equation

- $(u_t + \varepsilon u_x u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation
 - Global well-posedness [Saut, Tzvetkov, 2004; Bona, Liu, Tom, 2002]

- $(u_t + \varepsilon u_x u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation
 - Global well-posedness [Saut, Tzvetkov, 2004; Bona, Liu, Tom, 2002]
 - Blow-up and instability of solitary waves [Liu, Tom, 2003]

- $(u_t + \varepsilon u_x u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation
 - Global well-posedness [Saut, Tzvetkov, 2004; Bona, Liu, Tom, 2002]
 - Blow-up and instability of solitary waves [Liu, Tom, 2003]
 - Decay and Scattering [Mammeri, 2008]

- $(u_t + \varepsilon u_x u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation
 - Global well-posedness [Saut, Tzvetkov, 2004; Bona, Liu, Tom, 2002]
 - Blow-up and instability of solitary waves [Liu, Tom, 2003]
 - Decay and Scattering [Mammeri, 2008]
 - Transverse instability [Rousset, Tzvetkov, 2008]

- $(u_t + \varepsilon u_x u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation
 - Global well-posedness [Saut, Tzvetkov, 2004; Bona, Liu, Tom, 2002]
 - Blow-up and instability of solitary waves [Liu, Tom, 2003]
 - Decay and Scattering [Mammeri, 2008]
 - Transverse instability [Rousset, Tzvetkov, 2008]
 - UQ property [Mammeri, 2009]

- $(u_t + \varepsilon u_x u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation
 - Global well-posedness [Saut, Tzvetkov, 2004; Bona, Liu, Tom, 2002]
 - Blow-up and instability of solitary waves [Liu, Tom, 2003]
 - Decay and Scattering [Mammeri, 2008]
 - Transverse instability [Rousset, Tzvetkov, 2008]
 - UQ property [Mammeri, 2009]
- $u_t + \varepsilon u_x (u_{xx} + u_{yy})_t + f(u)_x = 0$ 2D-BBM equation

- $(u_t + \varepsilon u_x u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation
 - Global well-posedness [Saut, Tzvetkov, 2004; Bona, Liu, Tom, 2002]
 - Blow-up and instability of solitary waves [Liu, Tom, 2003]
 - Decay and Scattering [Mammeri, 2008]
 - Transverse instability [Rousset, Tzvetkov, 2008]
 - UQ property [Mammeri, 2009]
- $u_t + \varepsilon u_x (u_{xx} + u_{yy})_t + f(u)_x = 0$ 2D-BBM equation
 - Decay and Scattering [Biler, Dziubański, Hebisch, 1992]

- $(u_t + \varepsilon u_x u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation
 - Global well-posedness [Saut, Tzvetkov, 2004; Bona, Liu, Tom, 2002]
 - Blow-up and instability of solitary waves [Liu, Tom, 2003]
 - Decay and Scattering [Mammeri, 2008]
 - Transverse instability [Rousset, Tzvetkov, 2008]
 - UQ property [Mammeri, 2009]
- $u_t + \varepsilon u_x (u_{xx} + u_{yy})_t + f(u)_x = 0$ 2D-BBM equation
 - Decay and Scattering [Biler, Dziubański, Hebisch, 1992]
 - Stability of solitary waves [de Bouard, 1996]

- $(u_t + \varepsilon u_x u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation
 - Global well-posedness [Saut, Tzvetkov, 2004; Bona, Liu, Tom, 2002]
 - Blow-up and instability of solitary waves [Liu, Tom, 2003]
 - Decay and Scattering [Mammeri, 2008]
 - Transverse instability [Rousset, Tzvetkov, 2008]
 - UQ property [Mammeri, 2009]
- $u_t + \varepsilon u_x (u_{xx} + u_{yy})_t + f(u)_x = 0$ 2D-BBM equation
 - Decay and Scattering [Biler, Dziubański, Hebisch, 1992]
 - Stability of solitary waves [de Bouard, 1996]
- $u_t + \varepsilon u_x (u_{xt} + \beta u_{yy})_x + f(u)_x = 0$ BBM-ZK equation

- $(u_t + \varepsilon u_x u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation
 - Global well-posedness [Saut, Tzvetkov, 2004; Bona, Liu, Tom, 2002]
 - Blow-up and instability of solitary waves [Liu, Tom, 2003]
 - Decay and Scattering [Mammeri, 2008]
 - Transverse instability [Rousset, Tzvetkov, 2008]
 - UQ property [Mammeri, 2009]
- $u_t + \varepsilon u_x (u_{xx} + u_{yy})_t + f(u)_x = 0$ 2D-BBM equation
 - Decay and Scattering [Biler, Dziubański, Hebisch, 1992]
 - Stability of solitary waves [de Bouard, 1996]
- $u_t + \varepsilon u_x (u_{xt} + \beta u_{yy})_x + f(u)_x = 0$ BBM-ZK equation
 - Transverse stability [Johnson, 2010]

- $(u_t + \varepsilon u_x u_{xxt} + f(u)_x)_x \pm u_{yy} = 0$ BBM-KP equation
 - Global well-posedness [Saut, Tzvetkov, 2004; Bona, Liu, Tom, 2002]
 - Blow-up and instability of solitary waves [Liu, Tom, 2003]
 - Decay and Scattering [Mammeri, 2008]
 - Transverse instability [Rousset, Tzvetkov, 2008]
 - UQ property [Mammeri, 2009]
- $u_t + \varepsilon u_x (u_{xx} + u_{yy})_t + f(u)_x = 0$ 2D-BBM equation
 - Decay and Scattering [Biler, Dziubański, Hebisch, 1992]
 - Stability of solitary waves [de Bouard, 1996]
- $u_t + \varepsilon u_x (u_{xt} + \beta u_{yy})_x + f(u)_x = 0$ BBM-ZK equation
 - Transverse stability [Johnson, 2010]
 - Global well-posedness, UQ property [A.E., 2012]

Contents

- Introduction
- 2 Scattering
- 3 Stability
- Power-law nonlinearity $f(u) = u^{p+1}/p + 1$
- 6 References

Assumptions: $f \in C^2(\mathbb{R})$ such that f(0) = 0 and $f(s) = O(|s|^{p+1})$ as $|s| \to +\infty$.

Theorem

 $\forall u_0 \in H^s(\mathbb{R}^2), s > 1, \exists T = T(\|u_0\|_s) > 0 \& \exists ! u \in C([0,T); H^s(\mathbb{R}^2))$ of the BBM-ZK Eq. with $u(0) = u_0$.

Assumptions: $f \in C^2(\mathbb{R})$ such that f(0) = 0 and $f(s) = O(|s|^{p+1})$ as $|s| \to +\infty$.

Theorem

 $\forall u_0 \in H^s(\mathbb{R}^2), s > 1, \exists T = T(||u_0||_s) > 0 \& \exists ! u \in C([0,T); H^s(\mathbb{R}^2))$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, $u(t), \forall t \in [0,T)$ satisfies

$$I(u(t)) = \int_{\mathbb{R}^2} u \, dx dy = I(u_0),$$

$$E(u(t)) = -\frac{1}{2} \int_{\mathbb{R}^2} \varepsilon u^2 + \beta u_y^2 + 2F(u) \, dx dy = E(u_0),$$

$$Q(u(t)) = \frac{1}{2} \int_{\mathbb{R}^2} (u^2 + u_x^2) \, dx dy = Q(u_0),$$

where F' = f. Furthermore, $u \in C([0,T); H^{s_1,s_2}(\mathbb{R}^2))$, where $s_1 \ge 0$ and $s_2 = s - s_1$.

Assumptions: $f \in C^2(\mathbb{R})$ such that f(0) = 0 and $f(s) = O(|s|^{p+1})$ as $|s| \to +\infty$.

Theorem

 $\forall \ u_0 \in H^s(\mathbb{R}^2), \ s > 1, \ \exists \ T = T(\|u_0\|_s) > 0 \ \& \ \exists ! \ u \in C\left([0,T); H^s(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, $u(t), \ \forall \ t \in [0,T)$ satisfies

$$I(u(t)) = \int_{\mathbb{R}^2} u \, dx dy = I(u_0),$$

$$E(u(t)) = -\frac{1}{2} \int_{\mathbb{R}^2} \varepsilon u^2 + \beta u_y^2 + 2F(u) \, dx dy = E(u_0),$$

$$Q(u(t)) = \frac{1}{2} \int_{\mathbb{R}^2} (u^2 + u_x^2) \, dx dy = Q(u_0),$$

where F' = f. Furthermore, $u \in C([0,T); H^{s_1,s_2}(\mathbb{R}^2))$, where $s_1 \ge 0$ and $s_2 = s - s_1$.

 $\forall u_0 \in H^{s_1,s_2}(\mathbb{R}^2), s_1, s_2 > 1/2, \exists T = T(\|u_0\|_{(s_1,s_2)}) > 0 \& \exists! \ u \in C\left([0,T); H^{s_1,s_2}(\mathbb{R}^2)\right) \text{ of the BBM-ZK Eq. with } u(0) = u_0.$

 $\forall u_0 \in H^{s_1,s_2}(\mathbb{R}^2), s_1, s_2 > 1/2, \exists T = T(\|u_0\|_{(s_1,s_2)}) > 0 \& \exists ! \ u \in C\left([0,T); H^{s_1,s_2}(\mathbb{R}^2)\right) \text{ of the BBM-ZK Eq. with } u(0) = u_0. \text{ In addition,} u(t) \text{ satisfies } E(u(t)) = E(u_0), \ Q(u(t)) = Q(u_0) \text{ and } I(u(t)) = I(u_0), \text{ for all } t \in [0,T).$

 $\forall \ u_0 \in H^{s_1,s_2}(\mathbb{R}^2), \ s_1,s_2 > 1/2, \ \exists \ T = T(\|u_0\|_{(s_1,s_2)}) > 0 \ \& \\ \exists! \ u \in C\left([0,T); H^{s_1,s_2}(\mathbb{R}^2)\right) \ \text{of the BBM-ZK Eq. with } u(0) = u_0. \ \text{In addition,} \\ u(t) \ \text{satisfies } E(u(t)) = E(u_0), \ Q(u(t)) = Q(u_0) \ \text{and } I(u(t)) = I(u_0), \ \text{for all} \\ t \in [0,T). \ \textit{Furthermore, } u \in C\left([0,T); H^{\min\{s_1,s_2\}}(\mathbb{R}^2)\right).$

- If $u_0 \in H^1(\mathbb{R}^2)$, $\exists \ u \in L^\infty\left([0,+\infty); H^1(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. Moreover, there exists T > 0 and a uniquely weak solution $u \in C\left([0,T); H^1(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, u(t) satisfies $E(u(t)) = E(u_0)$, $Q(u(t)) = Q(u_0)$ and $I(u(t)) = I(u_0)$, for all $t \in [0,T)$.
- If $u_0 \in H^{1,0}(\mathbb{R}^2)$, $\exists u \in L^{\infty}\left([0,+\infty);H^{1,0}(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. Moreover, there exists T > 0 and a uniquely weak solution $u \in C\left([0,T);H^{1,0}(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, u(t) satisfies $E(u(t)) = E(u_0)$, $Q(u(t)) = Q(u_0)$ and $I(u(t)) = I(u_0)$, for all $t \in [0,T)$.

- If $u_0 \in H^1(\mathbb{R}^2)$, $\exists \ u \in L^\infty\left([0,+\infty); H^1(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. Moreover, there exists T > 0 and a uniquely weak solution $u \in C\left([0,T); H^1(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, u(t) satisfies $E(u(t)) = E(u_0)$, $Q(u(t)) = Q(u_0)$ and $I(u(t)) = I(u_0)$, for all $t \in [0,T)$.
- If $u_0 \in H^{1,0}(\mathbb{R}^2)$, $\exists u \in L^{\infty}\left([0,+\infty);H^{1,0}(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. Moreover, there exists T > 0 and a uniquely weak solution $u \in C\left([0,T);H^{1,0}(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, u(t) satisfies $E(u(t)) = E(u_0)$, $Q(u(t)) = Q(u_0)$ and $I(u(t)) = I(u_0)$, for all $t \in [0,T)$.

- If $u_0 \in H^1(\mathbb{R}^2)$, $\exists \ u \in L^\infty\left([0,+\infty);H^1(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. Moreover, there exists T > 0 and a uniquely weak solution $u \in C\left([0,T);H^1(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, u(t) satisfies $E(u(t)) = E(u_0)$, $Q(u(t)) = Q(u_0)$ and $I(u(t)) = I(u_0)$, for all $t \in [0,T)$.
- If $u_0 \in H^{1,0}(\mathbb{R}^2)$, $\exists u \in L^{\infty}\left([0,+\infty);H^{1,0}(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. Moreover, there exists T > 0 and a uniquely weak solution $u \in C\left([0,T);H^{1,0}(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, u(t) satisfies $E(u(t)) = E(u_0)$, $Q(u(t)) = Q(u_0)$ and $I(u(t)) = I(u_0)$, for all $t \in [0,T)$.

- If $u_0 \in H^1(\mathbb{R}^2)$, $\exists \ u \in L^\infty\left([0,+\infty); H^1(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. Moreover, there exists T > 0 and a uniquely weak solution $u \in C\left([0,T); H^1(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, u(t) satisfies $E(u(t)) = E(u_0)$, $Q(u(t)) = Q(u_0)$ and $I(u(t)) = I(u_0)$, for all $t \in [0,T)$.
- If $u_0 \in H^{1,0}(\mathbb{R}^2)$, $\exists u \in L^{\infty}\left([0,+\infty);H^{1,0}(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. Moreover, there exists T > 0 and a uniquely weak solution $u \in C\left([0,T);H^{1,0}(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, u(t) satisfies $E(u(t)) = E(u_0)$, $Q(u(t)) = Q(u_0)$ and $I(u(t)) = I(u_0)$, for all $t \in [0,T)$.

- If $u_0 \in H^1(\mathbb{R}^2)$, $\exists \ u \in L^\infty\left([0,+\infty); H^1(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. Moreover, there exists T > 0 and a uniquely weak solution $u \in C\left([0,T); H^1(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, u(t) satisfies $E(u(t)) = E(u_0)$, $Q(u(t)) = Q(u_0)$ and $I(u(t)) = I(u_0)$, for all $t \in [0,T)$.
- If $u_0 \in H^{1,0}(\mathbb{R}^2)$, $\exists u \in L^{\infty}\left([0,+\infty);H^{1,0}(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. Moreover, there exists T > 0 and a uniquely weak solution $u \in C\left([0,T);H^{1,0}(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, u(t) satisfies $E(u(t)) = E(u_0)$, $Q(u(t)) = Q(u_0)$ and $I(u(t)) = I(u_0)$, for all $t \in [0,T)$.

- If $u_0 \in H^1(\mathbb{R}^2)$, $\exists \ u \in L^\infty\left([0,+\infty); H^1(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. Moreover, there exists T > 0 and a uniquely weak solution $u \in C\left([0,T); H^1(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, u(t) satisfies $E(u(t)) = E(u_0)$, $Q(u(t)) = Q(u_0)$ and $I(u(t)) = I(u_0)$, for all $t \in [0,T)$.
- If $u_0 \in H^{1,0}(\mathbb{R}^2)$, $\exists u \in L^{\infty}\left([0,+\infty);H^{1,0}(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. Moreover, there exists T > 0 and a uniquely weak solution $u \in C\left([0,T);H^{1,0}(\mathbb{R}^2)\right)$ of the BBM-ZK Eq. with $u(0) = u_0$. In addition, u(t) satisfies $E(u(t)) = E(u_0)$, $Q(u(t)) = Q(u_0)$ and $I(u(t)) = I(u_0)$, for all $t \in [0,T)$.

- There is $\delta > 0$, such that if $||u_0||_1 < \delta$, the BBM-ZK Eq. has a unique solution $u \in C(\mathbb{R}; H^1(\mathbb{R}^2))$ with $u(0) = u_0$. Moreover, $||u(t)||_1 \le C||u_0||_1$, for all time $t \in \mathbb{R}$, where $C = C(||u_0||_1) > 0$ and the functionals E, Q and I are independent of t.
- 2 There is $\delta > 0$, such that if $||u_0||_{(1,0)} < \delta$, the BBM-ZK Eq. has a unique solution $u \in C(\mathbb{R}; H^{1,0}(\mathbb{R}^2))$ with $u(0) = u_0$. Moreover, $||u(t)||_{(1,0)} \le C||u_0||_{(1,0)}$, for all time $t \in \mathbb{R}$, where $C = C(||u_0||_{(1,0)}) > 0$ and the functionals E, Q and I are independent of t.

- There is $\delta > 0$, such that if $||u_0||_1 < \delta$, the BBM-ZK Eq. has a unique solution $u \in C(\mathbb{R}; H^1(\mathbb{R}^2))$ with $u(0) = u_0$. Moreover, $||u(t)||_1 \le C||u_0||_1$, for all time $t \in \mathbb{R}$, where $C = C(||u_0||_1) > 0$ and the functionals E, Q and I are independent of t.
- 2 There is $\delta > 0$, such that if $||u_0||_{(1,0)} < \delta$, the BBM-ZK Eq. has a unique solution $u \in C(\mathbb{R}; H^{1,0}(\mathbb{R}^2))$ with $u(0) = u_0$. Moreover, $||u(t)||_{(1,0)} \le C||u_0||_{(1,0)}$, for all time $t \in \mathbb{R}$, where $C = C(||u_0||_{(1,0)}) > 0$ and the functionals E, Q and I are independent of t.

- There is $\delta > 0$, such that if $||u_0||_1 < \delta$, the BBM-ZK Eq. has a unique solution $u \in C(\mathbb{R}; H^1(\mathbb{R}^2))$ with $u(0) = u_0$. Moreover, $||u(t)||_1 \le C||u_0||_1$, for all time $t \in \mathbb{R}$, where $C = C(||u_0||_1) > 0$ and the functionals E, Q and I are independent of t.
- 2 There is $\delta > 0$, such that if $||u_0||_{(1,0)} < \delta$, the BBM-ZK Eq. has a unique solution $u \in C(\mathbb{R}; H^{1,0}(\mathbb{R}^2))$ with $u(0) = u_0$. Moreover, $||u(t)||_{(1,0)} \le C||u_0||_{(1,0)}$, for all time $t \in \mathbb{R}$, where $C = C(||u_0||_{(1,0)}) > 0$ and the functionals E, Q and I are independent of t.

- There is $\delta > 0$, such that if $||u_0||_1 < \delta$, the BBM-ZK Eq. has a unique solution $u \in C(\mathbb{R}; H^1(\mathbb{R}^2))$ with $u(0) = u_0$. Moreover, $||u(t)||_1 \le C||u_0||_1$, for all time $t \in \mathbb{R}$, where $C = C(||u_0||_1) > 0$ and the functionals E, Q and I are independent of t.
- 2 There is $\delta > 0$, such that if $||u_0||_{(1,0)} < \delta$, the BBM-ZK Eq. has a unique solution $u \in C(\mathbb{R}; H^{1,0}(\mathbb{R}^2))$ with $u(0) = u_0$. Moreover, $||u(t)||_{(1,0)} \le C||u_0||_{(1,0)}$, for all time $t \in \mathbb{R}$, where $C = C(||u_0||_{(1,0)}) > 0$ and the functionals E, Q and I are independent of t.

Let $N \gg 1$, $t \neq 0$ and J = [-N, N]. Then there exists a constant C > 0, independent of t and N, such that

$$\left| \int_J \int_{\mathbb{R}} e^{-i\left(t\xi\left(\frac{\varepsilon+\beta\eta^2}{1+\xi^2}\right)-x\xi-y\eta\right)} d\eta \ d\xi \right| \le Ct^{-1/2}N^{3/2}.$$

$$u_t + \varepsilon u_x - (u_{xt} + \beta u_{yy})_x = 0.$$

Lemma

• Let $s_1, s_2 > 1/2$, $\theta = (2(s_1 + 1))^{-1} \in [0, 1/3)$ and $u_0 \in H^{s_1, s_2}(\mathbb{R}^2) \cap L^1(\mathbb{R}^2)$. Then there exists a constant C > 0, depending only on s_1 , such that for all $t \in \mathbb{R}$, we have

$$|S(t)u_0|_{\infty} \le C(1+|t|)^{\frac{3\theta-1}{2}} (|u_0|_1+||u_0||_{(s_1,s_2)}).$$

$$|S(t)u_0|_{\infty} \le C(1+|t|)^{\frac{3\theta-1}{2}} (|u_0|_1+||u_0||_{2s}).$$

$$u_t + \varepsilon u_x - (u_{xt} + \beta u_{yy})_x = 0.$$

Lemma

• Let $s_1, s_2 > 1/2$, $\theta = (2(s_1 + 1))^{-1} \in [0, 1/3)$ and $u_0 \in H^{s_1, s_2}(\mathbb{R}^2) \cap L^1(\mathbb{R}^2)$. Then there exists a constant C > 0, depending only on s_1 , such that for all $t \in \mathbb{R}$, we have

$$|S(t)u_0|_{\infty} \le C(1+|t|)^{\frac{3\theta-1}{2}} (|u_0|_1+||u_0||_{(s_1,s_2)}).$$

$$|S(t)u_0|_{\infty} \le C(1+|t|)^{\frac{3\theta-1}{2}} (|u_0|_1+||u_0||_{2s}).$$

$$u_t + \varepsilon u_x - (u_{xt} + \beta u_{yy})_x = 0.$$

Lemma

• Let $s_1, s_2 > 1/2$, $\theta = (2(s_1 + 1))^{-1} \in [0, 1/3)$ and $u_0 \in H^{s_1, s_2}(\mathbb{R}^2) \cap L^1(\mathbb{R}^2)$. Then there exists a constant C > 0, depending only on s_1 , such that for all $t \in \mathbb{R}$, we have

$$|S(t)u_0|_{\infty} \le C(1+|t|)^{\frac{3\theta-1}{2}} (|u_0|_1+||u_0||_{(s_1,s_2)}).$$

$$|S(t)u_0|_{\infty} \le C(1+|t|)^{\frac{3\theta-1}{2}} (|u_0|_1+||u_0||_{2s}).$$

$$u_t + \varepsilon u_x - (u_{xt} + \beta u_{yy})_x = 0.$$

Lemma

• Let $s_1, s_2 > 1/2$, $\theta = (2(s_1 + 1))^{-1} \in [0, 1/3)$ and $u_0 \in H^{s_1, s_2}(\mathbb{R}^2) \cap L^1(\mathbb{R}^2)$. Then there exists a constant C > 0, depending only on s_1 , such that for all $t \in \mathbb{R}$, we have

$$|S(t)u_0|_{\infty} \le C(1+|t|)^{\frac{3\theta-1}{2}} (|u_0|_1+||u_0||_{(s_1,s_2)}).$$

$$|S(t)u_0|_{\infty} \le C(1+|t|)^{\frac{3\theta-1}{2}} (|u_0|_1+||u_0||_{2s}).$$

Let $1 < q \le \infty$ and 1/q + 1/q' = 1.

• If $s_1, s_2 > 1/2$, $\theta = (2(s_1 + 1))^{-1} \in [0, 1/3)$ and $u_0 \in H^{s_1, s_2}(\mathbb{R}^2) \cap L^q(\mathbb{R}^2)$, then there exists a constant C > 0, depending only on s_1 , such that for all $t \in \mathbb{R}$, we have

$$|S(t)u_0|_{q'} \le C(1+|t|)^{\left(\frac{3\theta-1}{2}\right)\left(1-\frac{2}{q'}\right)} \left(|u_0|_q + ||u_0||_{(s_1,s_2)}\right).$$

$$|S(t)u_0|_{q'} \le C(1+|t|)^{\left(\frac{3\theta-1}{2}\right)\left(1-\frac{2}{q'}\right)} \left(|u_0|_q + ||u_0||_{2s}\right).$$

Let $1 < q \le \infty$ and 1/q + 1/q' = 1.

• If $s_1, s_2 > 1/2$, $\theta = (2(s_1 + 1))^{-1} \in [0, 1/3)$ and $u_0 \in H^{s_1, s_2}(\mathbb{R}^2) \cap L^q(\mathbb{R}^2)$, then there exists a constant C > 0, depending only on s_1 , such that for all $t \in \mathbb{R}$, we have

$$|S(t)u_0|_{q'} \le C(1+|t|)^{\left(\frac{3\theta-1}{2}\right)\left(1-\frac{2}{q'}\right)} \left(|u_0|_q + ||u_0||_{(s_1,s_2)}\right).$$

$$|S(t)u_0|_{q'} \le C(1+|t|)^{\left(\frac{3\theta-1}{2}\right)\left(1-\frac{2}{q'}\right)} \left(|u_0|_q + ||u_0||_{2s}\right).$$

Let $1 < q \le \infty$ and 1/q + 1/q' = 1.

• If $s_1, s_2 > 1/2$, $\theta = (2(s_1 + 1))^{-1} \in [0, 1/3)$ and $u_0 \in H^{s_1, s_2}(\mathbb{R}^2) \cap L^q(\mathbb{R}^2)$, then there exists a constant C > 0, depending only on s_1 , such that for all $t \in \mathbb{R}$, we have

$$|S(t)u_0|_{q'} \le C(1+|t|)^{\left(\frac{3\theta-1}{2}\right)\left(1-\frac{2}{q'}\right)} \left(|u_0|_q + ||u_0||_{(s_1,s_2)}\right).$$

$$|S(t)u_0|_{q'} \le C(1+|t|)^{\left(\frac{3\theta-1}{2}\right)\left(1-\frac{2}{q'}\right)} \left(|u_0|_q + ||u_0||_{2s}\right).$$

Let $1 < q \le \infty$ and 1/q + 1/q' = 1.

• If $s_1, s_2 > 1/2$, $\theta = (2(s_1 + 1))^{-1} \in [0, 1/3)$ and $u_0 \in H^{s_1, s_2}(\mathbb{R}^2) \cap L^q(\mathbb{R}^2)$, then there exists a constant C > 0, depending only on s_1 , such that for all $t \in \mathbb{R}$, we have

$$|S(t)u_0|_{q'} \le C(1+|t|)^{\left(\frac{3\theta-1}{2}\right)\left(1-\frac{2}{q'}\right)} \left(|u_0|_q + ||u_0||_{(s_1,s_2)}\right).$$

$$|S(t)u_0|_{q'} \le C(1+|t|)^{\left(\frac{3\theta-1}{2}\right)\left(1-\frac{2}{q'}\right)} \left(|u_0|_q + ||u_0||_{2s}\right).$$

Suppose that s > 1, $\mu = (1 - 3\theta)/2$, $\theta = (2(s + 1))^{-1} \in [0, 1/3)$ and

$$p > \frac{3(1-\theta)}{1-3\theta}.$$

Then there exists $\delta > 0$ and C > 0 such that for any $u_0 \in H^{2s}(\mathbb{R}^2) \cap L^1(\mathbb{R}^2)$ satisfying $|u_0|_1 + ||u_0||_{2s} < \delta$, there is a unique solution $u \in C(\mathbb{R}; H^{2s}(\mathbb{R}^2))$ of the BBM-ZK Eq. with $u(0) = u_0$ such that

$$|u(t)|_{\infty} \le C(1+|t|)^{-\mu}.$$

Suppose that s > 1, $\mu = (1 - 3\theta)/2$, $\theta = (2(s + 1))^{-1} \in [0, 1/3)$ and

$$p > \frac{3(1-\theta)}{1-3\theta}.$$

Then there exists $\delta > 0$ and C > 0 such that for any $u_0 \in H^{2s}(\mathbb{R}^2) \cap L^1(\mathbb{R}^2)$ satisfying $|u_0|_1 + ||u_0||_{2s} < \delta$, there is a unique solution $u \in C(\mathbb{R}; H^{2s}(\mathbb{R}^2))$ of the BBM-ZK Eq. with $u(0) = u_0$ such that

$$|u(t)|_{\infty} \le C(1+|t|)^{-\mu}.$$

Let
$$r, s > 1$$
, $q' > 2$, $s' > 2/r$, $\mu = (1 - 3\theta)/2 < q'/(q' - 2)$, $\theta = (2(s+1))^{-1} \in [0, 1/3)$ and

$$p > \frac{4(r-q') + 2rq'}{(1-3\theta)(q'-2)(rs-2)}.$$

Then there exists $\delta > 0$ and C > 0 such that for any $u_0 \in H^{2s}(\mathbb{R}^2) \cap L^{q'}(\mathbb{R}^2) \cap L^{r}_{s'}(\mathbb{R}^2)$ satisfying $|u_0|_{q'} + ||u_0||_{2s} + ||u_0||_{s',r} < \delta$, there is a unique solution $u \in C(\mathbb{R}; H^{2s}(\mathbb{R}^2) \cap L^{r}_{s'}(\mathbb{R}^2))$ of the BBM-ZK Eq. with $u(0) = u_0$ such that

$$|u(t)|_{q'} \le C(1+|t|)^{-\mu\left(1-\frac{2}{q'}\right)}.$$

Let
$$r, s > 1$$
, $q' > 2$, $s' > 2/r$, $\mu = (1 - 3\theta)/2 < q'/(q' - 2)$, $\theta = (2(s+1))^{-1} \in [0, 1/3)$ and

$$p > \frac{4(r - q') + 2rq'}{(1 - 3\theta)(q' - 2)(rs - 2)}.$$

Then there exists $\delta > 0$ and C > 0 such that for any $u_0 \in H^{2s}(\mathbb{R}^2) \cap L^{q'}(\mathbb{R}^2) \cap L^{r_{s'}}(\mathbb{R}^2)$ satisfying $|u_0|_{q'} + ||u_0||_{2s} + ||u_0||_{s',r} < \delta$, there is a unique solution $u \in C(\mathbb{R}; H^{2s}(\mathbb{R}^2) \cap L^{r_{s'}}(\mathbb{R}^2))$ of the BBM-ZK Eq. with $u(0) = u_0$ such that

$$|u(t)|_{q'} \le C(1+|t|)^{-\mu\left(1-\frac{2}{q'}\right)}.$$

Let u(t) be the solution of the BBM-ZK Eq., then there exists a unique solution $u^{\pm}(t) \in H^{2s}(\mathbb{R}^2)$, $s \ge 1/2$, of the linearized equation of the BBM-ZK Eq. such that

$$||u(t) - u^{\pm}(t)||_{2s} \to 0,$$

as $t \to \pm \infty$.

Contents

- Introduction
- 2 Scattering
- 3 Stability
- Power-law nonlinearity $f(u) = u^{p+1}/p + 1$
- 6 References

Solitary wave solution of the BBM-ZK Eq. of the form $u(x, y, t) = \varphi_c(x - ct, y)$, vanishing at infinity, where c > 0 is the wave velocity:

$$-c\partial_x^2 \varphi_c + (c - \varepsilon)\varphi_c + \beta \partial_y^2 \varphi_c - F(\varphi_c) = 0.$$
 (*)

Let c>0 and $\beta<0$, then equation (*) possesses a cylindrically symmetric positive solution $\varphi_c\in H^1(\mathbb{R}^2)$, which is called a ground state of (*). Moreover, $\varphi_c\in H^\infty(\mathbb{R}^2)$, $\partial_r\varphi_c(r)<0$, for all $r\neq 0$ where $r=|(\sqrt{c}x,\sqrt{-\beta}y)|$, and there is a $\sigma>0$ such that for all $\alpha\in\mathbb{N}^2$ with $|\alpha|\leq 2$, $|\partial^\alpha\varphi_c(x,y)|\leq C_\alpha \mathrm{e}^{-\sigma r}$.

Let c>0 and $\beta<0$, then equation (*) possesses a cylindrically symmetric positive solution $\varphi_c\in H^1(\mathbb{R}^2)$, which is called a ground state of (*). Moreover, $\varphi_c\in H^\infty(\mathbb{R}^2)$, $\partial_r\varphi_c(r)<0$, for all $r\neq 0$ where $r=|(\sqrt{c}x,\sqrt{-\beta}y)|$, and there is a $\sigma>0$ such that for all $\alpha\in\mathbb{N}^2$ with $|\alpha|\leq 2$, $|\partial^\alpha\varphi_c(x,y)|\leq C_\alpha \mathrm{e}^{-\sigma r}$.

Define the functional S_c and the linearized operator L_c around φ_c by

$$S_c(\varphi_c) = E(\varphi_c) + cQ(\varphi_c)$$

and

$$L_c = S_c'' = E'' + cQ'' = -c\partial_x^2 - \partial_y^2 + c - \varepsilon - f'(\varphi_c).$$

Define the functional S_c and the linearized operator L_c around φ_c by

$$S_c(\varphi_c) = E(\varphi_c) + cQ(\varphi_c)$$

and

$$L_c = S_c^{\prime\prime} = E^{\prime\prime} + cQ^{\prime\prime} = -c\partial_x^2 - \partial_y^2 + c - \varepsilon - f^{\prime}(\varphi_c).$$

Hypothesis I

The ground state solution of equation (*) is unique and the curve $c \mapsto \varphi_c$ defined for $c > \varepsilon$ is C^1 with values in $H^2(\mathbb{R}^2)$. Moreover there are positive constants C and ϱ , such that

$$\left| \frac{\mathrm{d}\varphi_c}{\mathrm{d}c}(x,y) \right| \le C \mathrm{e}^{-\varrho|(x,y)|},$$

for all $(x, y) \in \mathbb{R}^2$ and $c > \varepsilon$.

Hypothesis II

The operator L_c , for $c > \varepsilon$, has a unique simple negative eigenvalue λ_c with a corresponding cylindrically symmetric positive eigenfunction χ_c such that for all $(x,y) \in \mathbb{R}^2$,

$$|\chi_c(x,y)| \le C_c e^{-\rho|(x,y)|},$$

for some positive constants C_c and ρ . In addition, the mapping $c \mapsto \chi_c$ is continuous with values in $H^2(\mathbb{R}^2)$. Furthermore the essential spectrum of L_c is positive and bounded away from zero and the null space of L_c is spanned by $\partial_x \varphi_c$ and $\partial_y \varphi_c$.

Hypothesis III

$$\mathcal{L}(\frac{\mathrm{d}\varphi_c}{\mathrm{d}c})\in L^1(\mathbb{R}^2)$$
, where $\mathcal{L}=I-\partial_x^2$.

Suppose that the Hypotheses I-III hold. Then φ_c is stable if and only if d''(c) > 0, where

$$d(c) = E(\varphi_c) + cQ(\varphi_c).$$

$$A(t) = \int_{\mathbb{R}^2} \partial_x^{-1} u(x, y, t) \mathcal{L} \vartheta(x - \gamma(t), y) \, dx \, dy,$$

where
$$\vartheta = \frac{\mathrm{d}\varphi_c}{\mathrm{d}c} + s'(c)\chi_c$$
.

Let
$$u_0 \in H^{s_1,s_2}(\mathbb{R}^2) \cap L^{\infty}(\mathbb{R}_y; L^1(\mathbb{R}_x)) \cap L^1(\mathbb{R}^2)$$
, $s_1, s_2 > 1/2$,

$$A(t) = \int_{\mathbb{R}^2} \partial_x^{-1} u(x, y, t) \mathcal{L} \vartheta(x - \gamma(t), y) \, dx \, dy,$$

where $\vartheta = \frac{\mathrm{d}\varphi_c}{\mathrm{d}c} + s'(c)\chi_c$.

Theorem

Let $u_0 \in H^{s_1,s_2}(\mathbb{R}^2) \cap L^{\infty}(\mathbb{R}_y; L^1(\mathbb{R}_x)) \cap L^1(\mathbb{R}^2)$, $s_1, s_2 > 1/2$, then if u(t) is the solution of the BBM-ZK Eq. with $u(0) = u_0$, we have

$$\left|\partial_x^{-1} u(z, y, t)\right|_{\infty} \le C(1 + |t|)^{\frac{3\theta + 1}{2}},$$

where $\theta = (2(s_1 + 1))^{-1} \in (0, 1/3)$ and C is a constant depending only on

$$\sup_{t>0} \|u(t)\|_1 + \|u_0\|_{L_y^{\infty}L_x^1} + |u_0|_1.$$

Contents

- Introduction
- 2 Scattering
- 3 Stability
- 4 Power-law nonlinearity $f(u) = u^{p+1}/p + 1$
- 6 References

• $p = 4, \varepsilon > 1 \text{ and } c > \max \left\{ \varepsilon, \frac{\varepsilon}{2(\varepsilon - 1)} \right\},$

- $p = 4, \varepsilon > 1 \text{ and } c > \max \left\{ \varepsilon, \frac{\varepsilon}{2(\varepsilon 1)} \right\},$
- 2 p < 4, $p\varepsilon = 4$ and $c > \max \left\{ \varepsilon, \sqrt{\frac{\varepsilon}{\varepsilon^2 1}} \right\}$,

•
$$p = 4, \varepsilon > 1 \text{ and } c > \max \left\{ \varepsilon, \frac{\varepsilon}{2(\varepsilon - 1)} \right\},$$

3
$$p < 4$$
, $p\varepsilon \neq 4$ and

$$c > \max \left\{ \varepsilon, \frac{4 - p\varepsilon + \sqrt{(p\varepsilon - 4)^2 + \varepsilon(16 - p^2)}}{16 - p^2} p \right\},$$

•
$$p = 4$$
, $\varepsilon > 1$ and $c > \max \left\{ \varepsilon, \frac{\varepsilon}{2(\varepsilon - 1)} \right\}$,

$$c > \max \left\{ \varepsilon, \frac{4 - p\varepsilon + \sqrt{(p\varepsilon - 4)^2 + \varepsilon(16 - p^2)}}{16 - p^2} p \right\},$$

$$\{c>\varepsilon\}\cap\left\{c<\frac{p\varepsilon-4+\sqrt{p^2\varepsilon(\varepsilon-1)-8p\varepsilon+16(\varepsilon+1)}}{p^2-16}p\right\},$$

•
$$p = 4, \varepsilon > 1 \text{ and } c > \max \left\{ \varepsilon, \frac{\varepsilon}{2(\varepsilon - 1)} \right\},$$

$$c > \max \left\{ \varepsilon, \frac{4 - p\varepsilon + \sqrt{(p\varepsilon - 4)^2 + \varepsilon(16 - p^2)}}{16 - p^2} p \right\},$$

p > 4, $p\varepsilon < 4$ and

$$\{c>\varepsilon\}\cap\left\{c<\frac{p\varepsilon-4+\sqrt{p^2\varepsilon(\varepsilon-1)-8p\varepsilon+16(\varepsilon+1)}}{p^2-16}p\right\},$$

5 p > 4, $p\varepsilon \neq 4$ and $\{c > \varepsilon\} \cap \{a_1(p) < c < a_2(p)\}$, where

$$a_1(p) = \frac{p\varepsilon - 4 - \sqrt{p^2\varepsilon(\varepsilon - 1) - 8p\varepsilon + 16(\varepsilon + 1)}}{p^2 - 16}p$$

and

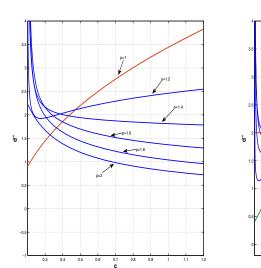
$$a_2(p) = \frac{p\varepsilon - 4 + \sqrt{p^2\varepsilon(\varepsilon - 1) - 8p\varepsilon + 16(\varepsilon + 1)}}{p^2 - 16}p.$$

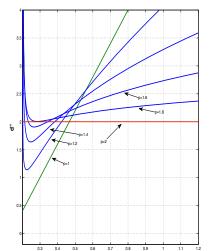
When $\varepsilon = 1$, we observe that φ_c , with c > 1, is stable for $p \le 2$ or $p \in [3,4)$ and

$$c > \left(\frac{4-p+\sqrt{8-2p}}{16-p^2}\right)p,$$

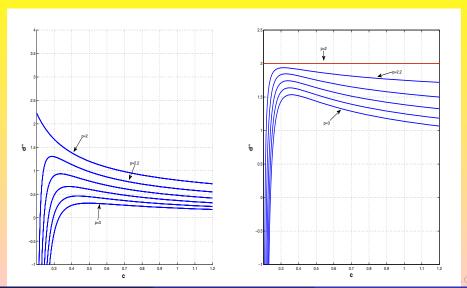
and unstable otherwise.

The gBBM-ZK (left) and 2D-gBBM (right) equations with p=1-2 and $\varepsilon=0.2$

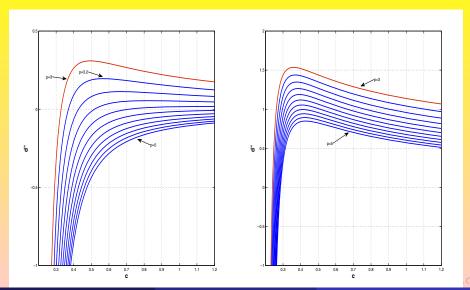




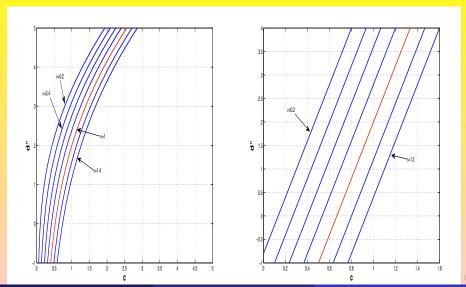
The gBBM-ZK (left) and 2D-gBBM (right) equations with p=2-3 and $\varepsilon=0.2$



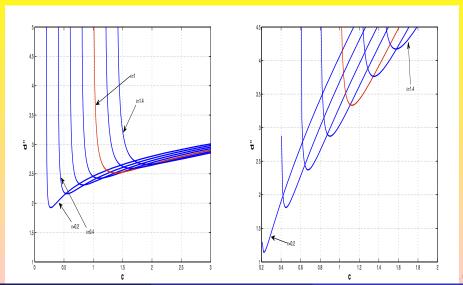
The gBBM-ZK (left) and 2D-gBBM (right) equations with p=3-5 and $\varepsilon=0.2$



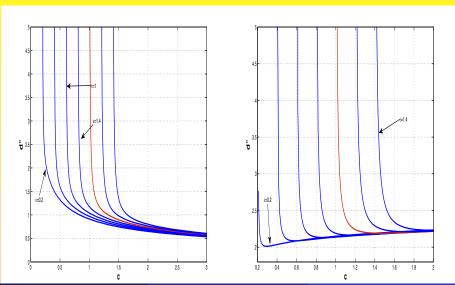
The gBBM-ZK (left) and 2D-gBBM (right) equations with p=1



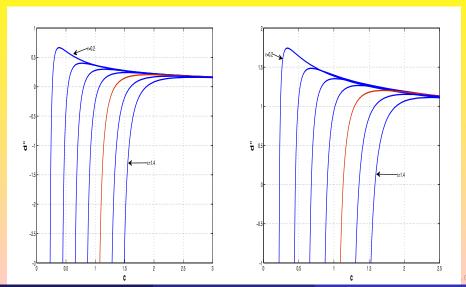
The gBBM-ZK (left) and 2D-gBBM (right) equations with $p=1.2\,$



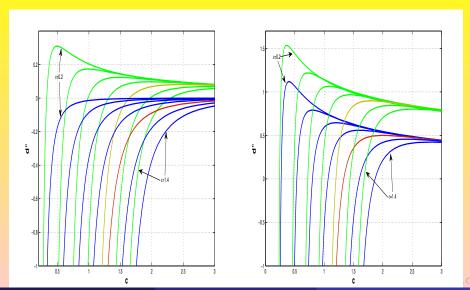
The gBBM-ZK (left) and 2D-gBBM (right) equations with p=1.9



The gBBM-ZK (left) and 2D-gBBM (right) equations with p=2.6



The gBBM-ZK (left) and 2D-gBBM (right) equations with p=3,4



Contents

- 1 Introduction
- 2 Scattering
- 3 Stability
- Power-law nonlinearity $f(u) = u^{p+1}/p + 1$
- 5 References

- P. Biler, J. Dziubanski, W. Hebisch, Scattering of small solutions to generalized benjamin-bonamahony equation in several space dimensions, *Commun. Partial Differential Equations 17 (1992) 1737–1758.*
- J.L. Bona, Y. Liu, M.M. Tom, The Cauchy problem and stability of solitary-wave solutions for RLW-KP-type equations, *J. Differential Equations* 185 (2002) 437–482.
- A. de Bouard, Stability and instability of some nonlinear dispersive solitary waves in higher dimension, *Proc. Roy. Soc. Edinburgh Sect. A 126 (1996) 89–112.*
- A. E., Remarks on a two dimensional BBM type equation, *Commun. Pure Appl. Anal.* 11 (2012) 1111–1127.
- A. E., Scattering of solutions and stability of solitary waves for the generalized BBM-ZK equation, *Commun. Math. Sci. 12 (2014) 293–315.*
- M.A. Johnson, The transverse instability of periodic waves in Zakharov-Kuznetsov type equations, *Studies in Applied Mathematics* 124 (2010) 323–345.

- Y. Mammeri, On the decay in time of solutions of some generalized regularized long waves equations, *Commun. Pure Appl. Anal. 7* (2008) 513–532.
- Y. Mammeri, Unique continuation property for the KP-BBM-II equation, Differential Integral Equations 22 (2009) 393–399.
- F. Rousset, N. Tzvetkov, Transverse nonlinear instability of solitary waves for some Hamiltonian PDE's, *J. Math. Pures Appl. 90 (2008) 550–590.*
- J.-C. Saut, N. Tzvetkov, Global well-posedness for the KP-BBM equations, AMRX Appl. Math. Res. Express (2004) no. 1, 1–16.
- A.M. Wazwaz, Compact and noncompact physical structures for the ZK-BBM equation, *Appl. Math. Comput.* 169 (2005) 713–725.

Thank you