Lista 6 - Mecânica Clássica

Ricardo Antonio Mosna, outubro de 2017

1. Seja G o subconjunto das matrizes $2n \times 2n$ reais M que satisfazem

$$M^t J M = J$$
,

onde $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$ e I_n é a matriz identidade $n \times n$.

- (a) Mostre que se $M \in G$ então $\det(M) = \pm 1$, $M^{-1} = -JM^tJ$ e $MJM^t = J$.
- (b) Mostre que G é um grupo (o chamado grupo simplético).
- (c) Determine a álgebra de Lie de G.
- 2. Seja M uma variedade de dimensão n e sejam $\omega \in \Omega^p(M), \eta \in \Omega^q(M)$. Mostre que:
 - (a) $\omega \wedge \eta = (-1)^{pq} \eta \wedge \omega$;
 - (b) $d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^p \omega \wedge d\eta$.
- 3. (*) Seja $F: M \to N$ uma aplicação diferenciável entre as variedades M e N com dim(M) = m e dim(N) = n. Sejam $\{x^1, \ldots, x^m\}$ e $\{y^1, \ldots, y^n\}$ coordenadas locais em M e N em torno dos pontos $p \in M$ e $F(p) \in N$. Mostre que:
 - (a) $F^*(\omega \wedge \eta) = F^*(\omega) \wedge F^*(\eta)$, onde $\omega, \eta \in \Omega(N)$;
 - (b) $F^*(\omega_{i_1\cdots i_k} dy^{i_1} \wedge \cdots \wedge dy^{i_k}) = (\omega_{i_1\cdots i_k} \circ F) d(y^{i_1} \circ F) \wedge \cdots \wedge d(y^{i_k} \circ F);$
 - (c) Se m = n, então $F^* \left(dy^{i_1} \wedge \cdots \wedge dy^{i_n} \right) = \det \left(\frac{\partial y^i}{\partial x^j} \right) dx^{i_1} \wedge \cdots \wedge dx^{i_n}$ (note que $\left(\frac{\partial y^i}{\partial x^j} \right)$ é a matriz jacobiana de F nas coordenadas acima).
- 4. Mostre que toda forma exata é fechada.
- 5. (*) Seja ω uma p-forma fechada definida em uma bola aberta de R^n . Mostre que é possível encontrar uma (p-1)-forma η tal que $\omega = d\eta$ (isto é, ω neste caso é exata). Esse resultado vale se retirarmos a hipótese de que ω é bem definida na bola aberta inteira?
- 6. (*) Seja Muma variedade n-dimensional com coordenadas (x^1, \ldots, x^n) . Seja $\omega = f dx^1 \wedge \cdots \wedge dx^n$ uma n-forma em M. Definamos

$$\int_{V} \omega = \int \cdots \int_{R} f \, dx^{1} \cdots dx^{n},$$

onde o lado direito é a integral múltipla usual de cálculo e V é uma região bem comportada de M mapeada em $R \subset \mathbb{R}^n$. Mostre que essa definição independe do sistema de coordenadas.

7. (*) Seja N uma subvariedade p-dimensional da variedade do exercício anterior, $p \leq n$, com coordenadas (u^1, \ldots, u^p) . Seja $\eta = \eta_{i_1 \cdots i_p} du^{i_1} \wedge \cdots \wedge du^{i_p}$ uma p-forma em N.¹ Dada uma região bem comportada S em N definamos

$$\int_{S} \eta = \int_{S} \eta_{i_1 \cdots i_p} \, du^{i_1} \wedge \cdots \wedge du^{i_p},$$

onde cada termo da soma do lado direito é definido no exercício anterior. Se $\sigma: R \subset \mathbb{R}^p \to N$ é uma parametrização de $N \subset M$, mostre que

$$\int_S \eta = \int_R \sigma^* \eta.$$

¹Tal η pode ser pensada como uma forma $\bar{\eta}$ de M restrita a N por $\eta=i^*\bar{\eta}$, onde $i:N\to M$ é a inclusão de N em M.