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Abstract

We address in this paper the performance analysis of 16 and 64-QAM signal constel-
lations in Euclidean space and the {15, 3} and {63, 3} signal constellations in hyperbolic
space. In order to perform the analysis we derive the probability density function of the
gaussian noise in one and two dimensional hyperbolic spaces. From this, we determine
the probability of error of each one of the previously mentioned signal constellations.
It is shown that the {15, 3} and {63, 3} signal constellations in hyperbolic space have
coding gains of 5.36 and 4.49 dBs when compared to the 16 and 64-QAM signal constel-
lations. These coding gains can be achieved in Euclidean space by use of Ungerboeck
codes with memory µ = 6 and µ = 5, respectively.

1 Introduction

The signal constellations often used in communication systems are the M -PSK and the M -
QAM. It is well known that, under certain conditions, to achieve a given bit error probability
the M -QAM constellation needs less signal tp noise ratio than the M -PSK, for a fixed M .

Signal constellations in R2 having interesting geometric properties are the ones considered
as finite subsets of the Euclidean tessellations {4, 4} and {6, 3} ({6, 3} denotes hexagons
where 3 hexagons meet at each vertex), that is, signal constellations derived from the Z2

and A2 lattices. Unfortunately, these subsets can not be reproduced in the hyperbolic plane.
Since our primary interest is in the performance analysis of a communication system using
signal constellations derived from the Z2 lattice, then for a specified number of signal points
in Z2 we have to choose a subset with the same number of signal points in a hyperbolic
tessellation.. However, this is not a simple selection, for the following reasons: 1) there are
infinite tessellations in the hyperbolic plane; 2) once p and q are fixed, so is the distance
between points in the tessellation in H2, since in this geometry the concept of similarity does
not hold.

This paper is organized as follows. In Section 2, we review briefly the basic concepts and
elements of hyperbolic geometry. In Section 3, we establish the gaussian probability density
function in H2. In Section 4, the performance analysis is realized.
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2 Overview of Hyperbolic Geometry

Historically, hyperbolic geometry was developed first as an axiomatic geometry, with a system
of axiom similar to the one adopted in the Euclidean Geometry, except for the Parallel
Postulate: ”Given a line and a point not on it, there is a unique line passing through the
given point and parallel to the given line ”. In hyperbolic geometry, this axiom is replaced by
the following: ”Given a line and a point not on it, there are at least two lines passingthrough
the given point and parallel to the given line”. It was a long time until the consistence of this
geometry was accepted, i.e., the nonexistence of paradox. This was done by the introduction
of models to this geometry, made by mathematicians as Poincaré, Klein and Lobatchevsky.

In this paper, we avoid the axiomatic discussion and go directly to the models. In this
paper we assume the Poincaré model for the hyperbolic plane. As a point set, it is just the

unit open disk H2 =
{

z = x + iy ∈ C| |z| =
√

x2 + y2 < 1
}

. For those that are acquainted

with differential (or Riemannian) geometry, we say the line element in H2 is defined by

ds2 =
dx2 + dy2

1− x2 − y2
. The meaning of this is that, given a parametrized curve

γ : [a, b] → H2

: t 7→ x (t) + iy (t)

we define its length by the formula

l (γ) =

∫ b

a

√
(x′ (t))2 + (y′ (t))2

1− x2 − y2
dt.

where x′(t) = d
dt

x(t).
Knowing how to calculate the length of curves, we can define a geodesic as the ”shortest

path ” between any two given points. Beside these definitions, the model in consideration is
well behaved and we can find elementary descriptions of all of its important features, namely:

1. A geodesic, the shortest path between any two of its points, is either the arc of a
circumference orthogonal to the unitary circle {z ∈ C| |z| = 1} or the diameter of the
disk H2. In particular, given two points, there is one and only one geodesic connecting
them.

2. The distance between two points z, w ∈ H2 is defined by the function

ρ (z, w) = ln

(
|1− zw|+ |z − w|
|1− zw| − |z − w|

)
.

We should note that the hyperbolic plane is unbounded: take for example z = 0 and
then it is easy to see that

ρ (0, w) = ln

(
|1|+ |w|
|1| − |w|

)
and this goes to ∞ as |w| → 1.
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3. The angle between any two given curves is the same as they look to our Euclidean
eyes, that is, if α (t) = a1 (t) + ia2 (t) and β (t) = b1 (t) + ib2 (t) are curves meeting at

x0 = α (0) = β (0), then cos θ =
〈α′ (0) , β′ (0)〉
‖α′ (0)‖ ‖β′ (0)‖

, where θ is the angle between the

curves, 〈·, ·〉 is the usual inner product in R2 and ‖·‖ the usual norm.

4. An isometry of the hyperbolic Poincaré disc is a bijection T : H2 → H2 such that
ρ (z, w) = ρ (T (z) , T (w)) for every z, w ∈ H2. We have a simple description of all the
(orientation preserving) isometries of H2: they are just the maps

h (z) =
az + c

cz + a

where a, c ∈ C are any complex numbers such that |a|2 − |c|2 = 1. We observe that
the group of isometries of the hyperbolic plane is as large as the group of isometries
of the Euclidean plane: both are 3-dimensional, the largest possible dimension for a
2-dimensional geometric manifold. Moreover, given any two triangles with equal sizes,
there is an isometry carrying one into the other (and these determines uniquely the
isometry).

Although all these common properties, the existence of more then one parallel (in fact,
infinitely many) is a strong difference between hyperbolic and Euclidean spaces. Another
(equivalent) way to state this difference is to say that the sum of the internal angles of any
triangle in H2 is strictly less than π. This is the fact that will enable us to construct many
essentially different regular tessellations of H2.

A regular n-gon is a region bounded by n geodesic segments with the same length, having
equal angle between any two subsequent line segments. Contrary to the Euclidean case, the
angle between subsequent line segments is not determined by the number of sides of the
polygon: these equal angles can be as small as we wish. This surprising fact will permit
us to tessellate H2 in an infinitude of ways: Given two positive integers p and q such that
(p− 2) (q − 2) > 4, we can construct (algorithmically) a polygon with p equal sides and

having equal internal angles measuring
2π

q
. Hence, when gluing them side by side, all of the

angles meeting at a given vertex sum up to 2π, and so, H2 can be tesselated by isometric
copies of the given fundamental polygon, also known as Voronoi region (an illustration of
such tessellation is shown in the picture ??). To each of these tessellations we may associate a
group of isometries, namely the group generated by the isometries that identify the polygons
of the tessellation.

itbpFU2.3929in2.3929in0inAn

{8, 3} tesselation of the hyperbolic plane.figuraisit1.eps
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3 Establishing the Gaussian Probability Density Func-

tion in H2

In this section we develop a systematic approach to derive the gaussian probability density
function (pdf) in H2.

This problem at first seems to be simple to solve. However, the difficulty lies in the
fact that there is no isometry between H2 and R2. Therefore, we have to start by exploring
judiciously some of the properties inherited by the gaussian pdf in the Euclidean plane. Our
first assumption is that both random variables have the same variance σ2. Thus,

p(x, y) =
1

2πσ2
exp

(
− 1

2σ2
(x2 + y2)

)
.

This function may be written as p(P ) = k1 exp(k2d
2
E(P, 0)) where P = (x, y) and dE is the

Euclidean distance.
Thus, the problem is to determine the constants A and B such that

f(z) = B exp(−Aρ2(z, 0)), z = x + iy ∈ H

is in fact a gaussian probability density function in H2. After some algebraic manipulations
and computer calculations we end up with the following relationship between A and B,

B =

√
A√
π3

e−
1

4A

[
erf

(
1

2
√

A

)]−1

.

Finally,

f(z) =

√
A√
π3

e−
1

4A

[
erf

(
1

2
√

A

)]−1

exp

(
−A ln2

(
1 + |z|
1− |z|

))
.

Note that it is also possible to define the marginal pdf in the hyperbolic plane by use
of line integral. We also show that the resulting gaussian pdf in H2 satisfies the following
properties:

• the intersections of f (z) with z = k are hyperbolic circles;

• the intersections of f (z) with x = k or y = k reproduces the pdf in H;

• the projection of the intersection of two gaussian pdf in the hyperbolic plane, f1(z)∩
f2 (z) , is a geodesic. This is a crucial fact that allows us to define the Voronoi region
in the hyperbolic plane similarly as it is defined in the Euclidean plane, having the
same essential property: Convexity.

From the previous statements and concepts we are able to establish the model of the
communication channel in consideration. Similar to the Euclidean channel model case, that
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is, let x(t) be the transmitted signal, and n(t) the additive gaussian noise. The received
signal is y(t) = x(t) + n(t). Since the hyperbolic space does not possess the structure of
a vector space, an interpretation of this addition has to be made. Our interpretation is as
follows: let x(t) and n(t) be defined as x(t) : R+ → R2, and n(t) : R+ → R2. Hence, the
noise n(t) acts on the signal yielding the received signal given by y(t) = x(t)+n(t). We may
consider this function y(t) as a one parameter family of Euclidean translations Tt : R2 → R2

given by

Tt(x(t)) = x(t) + n(t),

that is, additive gaussian noise is a family of Euclidean isometries (translations) acting on
the signal x(t).

Let x(t) : R+ → H2 be a signal in H2. We say that hyperbolic gaussian noise acting on
x(t), is a one parameter family Nt(z) : H2 → H2 of hyperbolic isometries such that Nt(x(t))
is a random process characterized by the probability density function as defined in (3).

This definition establishes that the received signal y(t) is of the form y(t) = Nt(x(t)).

4 Performance Analysis

From the infinite number of possible tessellations {p, q}, we consider the tessellation {p, 3},
where p > 6. For a fixed value of p, let P0 be a p-sided polygon, called the fundamental
polygon of the tessellation.. The first level of {p, 3} consists of the set whose elements are
the reflections of P0 in each one of its p sides. Let us denote this set by L1. In this first
level there are two sets of points which we can use as signal points of a signal constellation,
namely, the set whose elements are the vertices of the polygons in the set L1, and the set
whose elements are the centers of the polygons in the set L1. The number of elements in
the first set is 2p + p(p− 4) whereas the number of elements in the second set is p + 1. The
latter is more interesting due to the fact that for a given value of n, n > 6, it is always
possible to find a hyperbolic constellation with n signal points. For that, it is sufficient
to consider the first level of the tessellation {p, 3} with p = n − 1 signal points. Since we
are interested in comparing the performance of the 16 and 64-QAM with the corresponding
signal constellations in the hyperbolic plane, then the first level of the tessellations {15, 3}
and {63, 3} have to be used, respectively.

In order to calculate the error probabilities, we consider the unity open disk model and
the fundamental polygon of the tessellation {15, 3} has its center at the origin and fifteen
signal points in a hyperbolic circle with radius rh. We assume the noise in the Euclidean
plane is gaussian with zero mean and variance 1, whereas the noise in the hyperbolic plane is
also gaussian with zero mean, however, with pseudo-variance 1. We show that the hyperbolic
gaussian pdf with center in each one of the signal points in H2 is given by

fj(z) = 0.184164 exp

(
−1

2
ln2

(
|1− zwj|+ |z − wj|
|1− zwj| − |z − wj|

))
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No. of Points P h
C = P e

C Eh
M = r2

h Ee
M = r2

e dh de G (dB)
16 0.81799 8.71317 22.80 1.00704 3.02 5.36

64 0.99975 35.3507 457.38 1.09363 6.6 4.49

Table 1: Coding gain.

where z = x + yi, and wj = (aj,bj), 0 ≤ j ≤ m where m = 15, 63, are the coordinate of the
signal points.

From the characterization of fj(x, y), the Voronoi region of each one of the signal points
in the corresponding constellations are determined. As a consequence of the symmetry of the
fifteen regions in the first level, the correct probability associated with each one of these re-
gions will be denoted by p1. Let p0 be the correct probability associated with the fundamental
region. Therefore, the average correct probability is given by P h

C = mp1+p0

m+1
, m = 15, 63 . To

calculate p0 we compute the integral
∫

L0
f0(z)

[
2

1−x2−y2

]2

dydx where L0 is the fundamental

polygon and we use the same procedure to calculate p1.
On the other hand, the average energy of a signal constellation with equally likely signal

points P1 . . . Pk, both Euclidean and hyperbolic, with mass center in Q is given by Es
M =

1
k

∑k
i=1 d2

s(Pi, Q), k = 16, 64, where d2
s is the hyperbolic (s = h) or Euclidean (s = e)

distances between Pi and Q, and Es
M is the hyperbolic (s = h) or the Euclidean (s = e)

average energies.
To calculate the correct probability associated with each signal point in the QAM con-

stellations in the Euclidean space, we used the Euclidean gaussian pdf given by

gj(x, y) =
1

2π
exp(−1

2
(x− xi)

2 − 1

2
(y − yi)

2),

where Pi = (xi, yi) are the coordinates of the signal points associated with the 16 and 64-
QAM constellations. We have used the classical procedures both to determine the Voronoi
regions as well as the correct probabilities, and so they will not be presented.

Table 1, illustrates the results obtained from the comparison of the signal constellations
in the Euclidean and hyperbolic planes. Note that for a fixed value of the average correct
probability (error) (first column) the performance of the communication system using signal
constellations in the hyperbolic plane have a coding gain of 5.36 dB e 4.49 dB when compared
with the 16 and 64-QAM constellations, respectively, where the figure of merit used is G =

10 log
[

d2
h

Eh
M

Ee
M

d2
e

]
.

Table 2, illustrates the correct probabilities both in the hyperbolic and in the Euclidean
planes for a fixed value of the average energy.
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