
Abstract

We establish a relation between the metric of the Furstenberg
boundary of a symmetric space X = G/K and the geometry of maxi-
mal flats in X . As an application, we prove that asymptotic cones of
symmetric spaces are non-discrete Tits buildings.
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We establish here a relation, an inequality, between the distance function
in the Furstenberg boundary F (X ) of a symmetric space of non-compact
type X = G/K and the intrinsic geometry of the space X . Given B, B′ ∈
F (X ), we denote by F (B, B′) the maximal flat of X closest to a base point
x0 ∈ X and asymptotic simultaneously to both B and B′. We find there are
constants D ≥ 1 and δ > 0, depending only on the symmetric space X , such
that

θ (B, B′) ≤ De
−δd

(
x0,F (B,B

′
)

)

for B and B′ close enough, where θ (·, ·) and d (·, ·) are the Riemannian
distance functions in F (X ) and X , respectively (Theorem 2).

As an application of this result, we will conclude that the asymptotic
cone of a symmetric space is a non-discrete Tits building. A non-discrete
Tits building is a pair consisting of a set and a family of injections which
has as domain a fixed Euclidean space and satisfy a collection of five axioms.
The two last (out of five) axioms are the most difficult to verify. We prove
the fifth using the Baker-Campbell-Hausdorf formula. The hardest one to
prove is the fourth axiom and the proof given here is the one that follows
from Theorem 2.

In the introduction we fix the notation and introduce the concepts needed
to prove Theorem 2. Any of the text books [He], [SM], [Va] or [Wa] may be
a good reference for this section. The second section is devoted to the proof
of this theorem. The last section is devoted to the application, which is
preceded by some explanations about ultra-limits, asymptotic cones and also
Tits buildings (Theorem 3.3).

1



1 Introduction

Let X be a symmetric space of non-compact type. We let G = Isom0 (X ) be
the identity component of the isometry group of X and K the stabilizer (in
G) of a point in X . Then X = G/K, G is a real semi-simple Lie group and
K a maximal compact subgroup of G. We shall denote by x0 the point of X
fixed by K.

Since G is semi-simple the Cartan-Killing form

B (X, Y ) = Tr (adX ◦ adY)

is a non-degenerate bilinear form on g×g, where g is the Lie algebra of G. If
we denote by k the Lie algebra of K and by p its orthogonal complement we
get a Cartan decomposition g = k⊕p (direct sum) , with [k,k] ⊆ k, [p,p] ⊆ k
and [k,p] ⊆ p.

A Cartan involution of g is an automorphism ν : g −→ g such that

ν (Xk + Xp) = Xk −Xp,

where Xk + Xp is the decomposition of X relative to a given Cartan decom-
position of g. The quadratic form

〈X, Y 〉 = −B (X, ν (Y ))

is a positive definite quadratic form on g invariant under the action of Ad (K).
The Hadamard-Cartan Theorem assures that exp : Tx0X → X is a diffeo-

morphism. The subspace p can be identified with the tangent spaces of X by
the map exp−1 ◦π ◦ exp : p → X ( where exp−1 : X → Tx0X is the inverse of
the usual Riemannian exponential, π : G → X = G/K is the projection and
exp : g → G is the usual exponential map). Up to rescaling it by a constant,
the restriction of the quadratic form 〈·, ·〉 to p coincides with any G-invariant
Riemannian metric of X .

We have also an Iwasawa decomposition G = KAN , where A is a max-
imal abelian subgroup and N a maximal nilpotent subgroup. We denote
by a and n the Lie algebras of A and N respectively. A flat in X is an
isometrically embedded Euclidean space. It can be easily proved that flats
in X containing the point x0 are associated (by the exponential map) with
commutative subalgebras of g. So, F = Ax0 is a maximal flat in X . Since
commutative subalgebras in g are all conjugated, every maximal flat in X
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has the form F ′ = gF = gAx0, with g ∈ G. The rank of a symmetric space
is the dimension of a maximal flat and, by the preceding argument, it equals
the dimension of A.

The root space decomposition of g is given by

g = g0 ⊕
∑
λ∈Λ

gλ

where λ ∈ Hom (a, R) , gλ = {Y ∈ g| [H, Y] = λ (H) Y, forallH ∈ g0} and Λ =
{λ ∈ Hom (a, R) |gλ 6= {0}}. The λ’s in Λ are called roots of g and each gλ a
root subspace.

The hyperplanes {H ∈ a|λ (H) = {0}} for λ ∈ Λ, divide a into finitely
many open convex cones, and the closure of each one is called a Weyl chamber.
This same division of a leads (by the exponential map) to a similar division of
A = exp a and hence of F = Ax0 and of every flat F ′ = gF in X . If we denote
by a+ a Weyl chamber of a and by A+ = exp a+ its image in G, we shall call
gA+x0 a Weyl sector, to any g ∈ G. The point gx0 ∈ gA+x0 is called the
base point of the sector. The choice of a Weyl chamber a+ corresponds to the
choice of a set of positive roots Λ+ = {λ ∈ Λ | λ (H) > 0, foreveryH ∈ a+}
and a set of negative roots Λ− = {λ ∈ Λ | λ (H) < 0, foreveryH ∈ a+}. To
a set Λ+ of positive roots we associate a (unique) system of simple roots
Λ̃ = {λ1, λ2, ...λr} where the λi’s are roots and every positive (negative) root
λ may be expressed uniquely in the form

λ = n1λ1 + n2λ2 + ...nrλr

with the ni’s positive (negative) integers. Given a sector A+x0 and its system
of simple roots Λ̃, each k − 1 flat exp (Fλi

) x0, with

Fλi
= {Y ∈ a | λi (Y ) = 0} , λi ∈ Λ̃,

intersects A+ in an k−1 dimensional Euclidean set whose interior (in Fλi
) we

call a wall of A+x0. Similarly, we define a (k − s)-wall (0 ≤ (k − s) ≤ k− 1)

to be the interior (in exp
(
Fλi1

∩ ...Fλis

)
) of the intersection of the closure of

A+x0 with the k − s flat exp
(
Fλi1

∩ ...Fλis

)
.

If we let M ′ be the subgroup of K that leaves a maximal flat F = Ax0

invariant and M the (normal) subgroup of M ′ that fixes F pointwise, we get
the Weyl group W = M ′/M , that acts simply transitively on the set of Weyl
sectors of F .

3



The Furstenberg Boundary F (X ) of X is the homogeneous space G/P ,
where P = MAN , is a minimal parabolic subgroup of G. Since K also acts
transitively on F (X ), we have that F (X ) is diffeomorphic to K/M .

We should also note that an Iwasawa decomposition of G is defined by the
choice of a Weyl sector A+, K being the stabilizer of the base point, A as the

maximal abelian subgroup containing the sector A+ and N as exp

( ∑
λ∈Λ+

gλ

)
.

Let us consider the set of all geodesic rays α : R+ → X . We say two such
rays α and β are asymptotic if there is an a ≥ 0 such that d(α(t), β(t)) ≤ a
for every t ≥ 0. This is an equivalence relation on the set of all geodesic
rays. We denote the equivalence class determined by a geodesic ray α by
α(∞) and the set of all equivalence classes is called the ideal boundary of X ,
denoted by ∂∞X .

A Weyl sector gA+x0 ⊂ X gives rise to a subset

gA+x0 (∞) =
{
γ (∞) | γ (t) ⊂ gA+x0, fort ≥ 0

}
⊂ ∂∞X ,

which we call an ideal Weyl chamber. In a similar way we define an ideal
wall.

Let α1(t) and α2(t) be two geodesic rays contained in the interior of Weyl
sectors g1A

+x0 and g2A
+x0 respectively. It is a remarkable known fact that

if α1(∞) = α2(∞), then, for every geodesic ray β1(t) ⊂ g1A
+x0 there is a

geodesic ray β2(t) ⊂ g2A
+x0 such that β1(∞) = β2(∞). In other words,

in the ideal boundary, two Weyl sectors give rise to sets that are either
coincident or with disjoint interior. A similar statement may be applied to
walls at infinity, just taking the necessary care to consider walls of the same
dimension. The asymptotic image of a flat

F (∞) = {γ (∞) | γ (t) ⊂ Ffort ≥ 0} ⊂ ∂∞X ,

is called an apartment of ∂∞ (X ).
Since G acts transitively on the set of all Weyl sectors of X and the

asymptocity relation is preserved by isometries, we find that G also acts
transitively on the set of all ideal Weyl sectors. Moreover, given a Weyl
chamber A+ and a corresponding Iwasawa decomposition G = KAN , the
parabolic subgroup P = MAN is precisely the stabilizer of the ideal Weyl
sector A+x0(∞). So, the Furstenberg Boundary F (X ) may be identified
with the set of all ideal Weyl sectors. We will use this identification in all
following sections.
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Given a Weyl sector a+ and a corresponding set of positive roots Λ+, the
sector a− = {H ∈ a|λ (H) ≤ 0, λ ∈ Λ+} is said to be opposed to a+. Two
Weyl chambers with same base point are opposed if they are the image of op-
posed Weyl sectors. It is not difficult to see that Weyl chambers are opposed
if and only if they nilpotent subgroups determined by the corresponding Iwa-
sawa decompositions have trivial intersection. We denote by n and n− the
nilpotent subalgebras determined by a+ and a−, respectively. Two ideal Weyl
chambers gA+x0 (∞) and g′A+x0 (∞) are opposed if there is a flat F = hAx0

such that hA+x0 (∞) = gA+x0 (∞) and hA−x0 (∞) = g′A+x0 (∞).

2 Metric relation between X and F (X )

From here on, we denote by θ (·, ·) a K-invariant metric in the homogeneous
space F (X ), to which we will refer as the angle between two ideal Weyl
chambers.

Let Ai (∞) = A+
i x0 (∞) and Bi (∞) = B+

i x0 (∞) be two sequences of
ideal Weyl chambers. We will be concerned here with sequences of ideal
Weyl chambers that have the same limit. Since F (X ) is an homogeneous
space, we loose no generality by assuming that sequence Ai (∞) is constant,
defined by a Weyl sector A+ (∞) = A+x0 (∞).

We put θi = θ (A+ (∞) , Bi (∞)) and assume that lim
i→∞

Bi = A+or equiv-

alently, that lim
i→∞

θi = 0. We will prove here that the rate at which the angle

θi between Bi and A+ decreases, depends on the distance between the base
point x0 and Fi, the flat closest to x0 and asymptotic simultaneously to both
A+ and Bi. To be more precise, we are going to prove there are constants
D ≥ 1 and δ > 0, depending just on the symmetric space X , such that

θi ≤ De−δd(x0,Fi)

We start now with some preliminaries to show the angle θi decrease ex-
ponentially.

We consider the adjoint representation Ad (g) of G in his Lie algebra g.
The adjoint representation extends naturally to the j-fold exterior product∧j g for every j > 0, by defining it on indecomposable elements

Ad (g) (X1 ∧X2 ∧ · · · ∧Xj) = Ad (g) X1 ∧ Ad (g) X2 ∧ · · · ∧ Ad (g) Xj

which, for sake of simplicity, we will denote simply by g (X1 ∧X2 ∧ · · · ∧Xj)
when no doubt about the action may rise.
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The quadratic form 〈X, Y 〉 = −B (X, ν (Y )) (as every inner product)
extends also to the j−fold product

∧j g by the formula

〈X1 ∧ · · · ∧Xj, Y1 ∧ · · · ∧ Yj〉 = det (〈Xi, Yk〉)j
i,k=1

for indecomposable elements and extending it by linearity to decomposable
ones.

We let n be, as usual, a maximal nilpotent sub-algebra, d = dim n and
look at the image of nd at

∧d g. To be more precise, we choose any base
{X1X2, . . . , Xd} of n and look at the (1-dimensional) subspace

d∧
n= 〈X1 ∧X2 ∧ · · · ∧Xd〉

of
∧d g generated by X1 ∧X2 ∧ · · · ∧Xd and consider its orbit

{Ad (g) (X1 ∧X2 ∧ · · · ∧Xj) | g ∈ G}

by the action of G.
A maximal nilpotent subgroup determines a Weyl chamber and a corre-

sponding Iwasawa decomposition. The stabilizer of n is thus the minimal
parabolic subgroup P = M ′AN . If we consider only the projective space
P
(∧d g

)
and look at the action of G on it (induced by the action on

∧d g),

we may identify the orbit of the subspace
∧d n with G/P , that is with the

set of Weyl chambers at infinity, or alternatively with the set of Weyl sectors
of X based at x0. This orbit is diffeomorphic to the space G/P , and since it
is compact, this is a bi-Lipschitz diffeomorphism.

In this representation the chambers represented by C+ =
∧d n and C− =∧d n−are opposite chambers.

Let B+ be the Weyl sector contained in Ax0, based at x0 and asymptot-
ically fixed by P . For given sectors B′ and B′′ we find elements g′, g′′ ∈ G
such that g′B+ (∞) = B′ (∞) , g′′B+ (∞) = B′′ (∞). We identify the sectors
B′ and B′′ with

g′B+ = g′
(

d∧
n

)
= g′C+, g′′B+ = g′′

(
d∧

n

)
= g′′C+,

and then, the angle θ(B′, B′′) may be approximated by the projective distance

dP
(
g′C+, g′′C+

)
,
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where dP (·, ·) is the distance in the projective space P
(

d∧
g

)
.

But for B′ and B′′ sufficiently close, we may consider the two-sheet spher-
ical covering , and we find that

θ(B′, B′′) ≈ dP
(
g′C+, g′′C+

)
=

∥∥∥∥∥ g′C+

‖g′C+‖
− g′′C+

‖g′′C+‖

∥∥∥∥∥
where the norm is the one induced on

d∧
g by the Cartan-Killing form.

In the situation we are studying, we have that each Bi is a sector opposed
to the fixed sector A+. We use the following lemma that assures there are
uniquely determined ni ∈ N such that niA

− = Bi where A− is the chamber
opposite to A+contained in the same flat as A+.

A chamber B− (∞) is opposite to A+ (∞) =
∧d n, if and only if there is

an n ∈ N = exp n such that B− (∞) = nA+ (∞)
The group G acts as isomorphism of the Tits building of ∂∞X .Given a

chamber B− (∞) opposite to A+ (∞) there is an (unique) apartment con-
taining both of them. But the apartments containing the chamber A+ (∞)
are all of the kind nF (∞), where n ∈ N = exp n. Since the action of G
preserves the relation of opposition in apartments and nA+ (∞) = A+ (∞),
N acts simply transitively on the set of all chambers opposite to A+ (∞) and
the lemma is proven.

So, if we put C− =
∧d n−, with n− being the subspace of the Lie algebra

g determined by the negative roots of the sector A+, and denote by C+ the
image of B+ in

∧d g, we have that

θi = θ
(
Bi, B

+
)
≈
∥∥∥∥∥ C+

‖C+‖
− niC

−

‖niC−‖

∥∥∥∥∥ .

Since we loose no generality by assuming ‖C+‖ = 1, we may also assume
that

θi ≈
∥∥∥∥∥C+ − niC

−

‖niC−‖

∥∥∥∥∥ .

We fix now a base for
d∧

g. For any given point y ∈
d∧

g, we denote
by (y1, ..., yl) its coordinates in this given base, and by [y1, ..., yl] we denote

its equivalence class in P
(

d∧
g

)
. We also fix a base for n and denote by
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(x1, ..., xd) the coordinates in n. Since n is nilpotent, there is an M > 0 such
that

adm (x1, ..., xd) = 0, ∀m ≥ M, ∀ (x1, ..., xd) ∈ n

and for the adjoint action of N = exp n on n we get that

Ad (exp (x1, ..., xd)) =
M∑

j=1

adj (x1, ..., xd)

j!

and find that the linear action of G on
d∧

g and the induced action on P
(

d∧
g

)
also depends polynomially on the coordinates (x1, ..., xd). It follows that
given n = exp (x1, ..., xd) ∈ N , we have that

n
[
C−

]
= [P1 (x1, ..., xd) , ..., Pl (x1, ..., xd)]

where the Pi are polynomials in (x1, ..., xd) with real coefficients.

Consider C− =
d∧

n− and N = exp n+, as defined above. Let n =
exp X, X ∈ n+ and assume that lim

‖X‖→∞
nC− (∞) = C+ (∞). Then, there

are positive constants α ∈ N and c ∈ R such that∥∥∥[C+
]
−
[
nC−

]∥∥∥
P
(

d∧
g

) ≤ c ‖X‖−α
n

There is no loss of generality in assuming that C+ is the last vector of

the chosen base to
d∧

g, so that its coordinates in the projective space are
[0, ..., 0, 1]. Then, if we look at the coordinates of nC−, they are given by
polynomials [P1 (X) , ..., Pl (X)], and we get that

lim
‖X‖→∞

[P1 (X) , ..., Pl (X)] = [0, ..., 0, 1]

Remember we are looking at the convergence on the projective space and
this means exactly that, for ‖X‖ � 1, Pl (X) 6= 0 and that

lim
‖X‖→∞

Pi (X)

Pl (X)
= 0

for every i ∈ {1, ..., l − 1}.
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If we put Z = X‖X‖2 we get that X = Z‖Z‖2 and ‖X‖ = 1‖Z‖, so that
‖X‖ → ∞ if and only if ‖Z‖ → 0. So, we have that

lim
‖Z‖→0

Pi

(
Z

‖Z‖2
)

Pl

(
Z

‖Z‖2
) = 0

for every i ∈ {1, ..., l − 1}.

We note that
Pi

(
Z

‖Z‖2

)
Pl

(
Z

‖Z‖2

) is a rational function on Z such that the denom-

inator is non zero in a neighborhood of 0 (excluding eventually the point
itself) and converging to 0 when Z → 0. So, in order ro conclude the proof
of the proposition, it is enough to prove the following lemma:

Let F (Z) be a rational function on Z = (z1, ..., zd) such that the de-
nominator is non-zero in a neighborhood of 0 (excluding eventually the point
itself). If lim

‖Z‖→0
F (Z) = 0, there are positive constants C ∈ R and 1 ≤ α ∈ N

such that
|F (Z)| ≤ C ‖Z‖α

for ‖Z‖ � 1.
We write F (Z) = P (Z)Q (Z) and we look at two possible situations:

Q (0) = 0 or Q (0) 6= 0. If Q (0) 6= 0, then 1Q (Z)is bounded on a neighbor-
hood of 0, so that |F (Z)| ≤ const · |P (Z)| and since P (0) = 0, looking at
the first non-zero term of the Taylor expansion, we approximate P (Z) by
an homogeneous P1 (Z) polynomial of degree β ≥ 1. We choose r0 > 0 such
that

A = sup {|P1 (Z)| | ‖Z‖ = r0} > 0

Since P1 (Z) is homogeneous, we get that

|P1 (Z)| =
∥∥∥∥Z

ro

∥∥∥∥β

P1

(
r0Z

‖Z‖

)
≤ A

‖Z‖β

rβ
0

= B ‖Z‖β .

So, it is left to prove the case when Q (0) = 0. First of all, we should notice
that 0 must be either a point of local maximum or a minimum of Q (Z).
Indeed, if it was not so, we would find open sets A+ and A−, as close as
wanted to Z = 0, such that Q (Z) > 0 for Z ∈ A+ and Q (Z) < 0 for
Z ∈ A−. Given Z+

i ∈ A+ and Z−
i ∈ A−, the segment (1− s) Z+

i +sZ−
i must

contain a point Zi = (1− si) Z+
i + siZ

−
i such that Q (Zi) = 0. By taking a
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small perturbation of Z+
i (if needed), we find that Zi 6= 0. So, when Z+

i and
Z−

i converges to 0, we would find a sequence of points Zi, with Q (Zi) = 0
and limi→∞ Zi = 0, contradicting the hypothesis that Z = 0 is an isolated
zero of Q (Z).

We loose no generality by assuming that Q (Z) ≥ 0 in a neighborhood
of Z = 0. Then, the minimal degree monomials have all coefficients of the
same sign (positive) and each variable appear with even power. Let Q+ (Z)
be the monomials of Q (Z) where all variable appear with even power and
Q− (Z) = Q (Z)−Q+ (Z) the monomials where some variable appears with
odd power. We can express

Q+ (Z) = Q+
1 (Z) + Q+

2 (Z) + ... + Q+
r (Z)

where Q+
i (Z) is homogeneous of degree 2αi, with 0 < α1 < α2 < ... < αr.

Since all the coefficients of Q+
1 (Z) are positive we find that, in an eventually

smaller neighborhood of Z = 0,

Q+ (Z) ≥ dQ+
1 (Z) , 0 < d < 1

since (1− d) Q+
1 (Z), the homogeneous part of lower degree of

Q+ (Z)− dQ+
1 (Z) = (1− d) Q+

1 (Z) + Q+
2 (Z) + ... + Q+

r (Z) ,

has only positive coefficients.. In the same way we can see that, in an even-
tually smaller neighborhood of Z = 0,

Q (Z) ≥ d′Q+ (Z) , 0 < d′ < 1.

Then, taking D = d · d′, and restricting Z to the intersection of those two
neighborhoods, we find that

|Q (Z)| ≥ |d′Q (Z)| ≥
∣∣∣d · d′Q+

1 (Z)
∣∣∣ ≥ D ·D′ ‖Z‖α

where α = 2α1 and D′ is the minimal coefficient of Q+
1 (Z). Writing B′ =

D ·D′ we have that ∣∣∣∣∣ P1 (Z)

Q+
1 (Z)

∣∣∣∣∣ ≤ B

B′ ‖Z‖
β−γ = C ‖Z‖β−γ

and it is left to prove only that β − γ > 0. To do so, we choose a point
Z0 for which P1 (Z0) 6= 0 and Q+

1 (Z0) 6= 0. Since those are homogeneous
polynomials, we have that∣∣∣∣∣ P1 (tZ0)

Q+
1 (tZ0)

∣∣∣∣∣ = tβ−γ

∣∣∣∣∣ P1 (Z0)

Q+
1 (Z0)

∣∣∣∣∣
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hence

lim
t→0

tβ−γ

∣∣∣∣∣ P1 (Z0)

Q+
1 (Z0)

∣∣∣∣∣ = lim
t→0

∣∣∣∣∣ P1 (tZ0)

Q+
1 (tZ0)

∣∣∣∣∣ = 0

so that indeed, β − γ > 0
Before we continue, we make an important remark:
The orbit of a maximal nilpotent subgroup N ⊂ G is exponentially dis-

torted in X = G/K ([B-G-S]). Indeed, let (ni)
∞
i=1 be a sequence in N with

ni = exp Xi, Xi ∈ n and assume ‖Xi‖ grows less then exponential, i.e.,

lim
i→∞

‖Xi‖
eci

= 0, ∀c > 0.

Let H ∈ a belong to the Weyl sector determined by n be a unit vector and
consider the sequence of geodesics

γi (t) = ni exp (tH) x0

in our symmetric space X . We have that , for every c > 0

d (ni exp (icH) x0, exp (icH) x0) = d (exp (−icH) ni exp (icH) x0, x0)

= d
(
exp

(
e−ad(icH)Xi

)
x0, x0

)
If we consider the decomposition

Xi =
∑

λ∈Λ+
i

Xi,λ

we get that

d
(
exp

(
e−ad(c·iH)Xi

)
x0, x0

)
= d

exp

 ∑
λ∈Λ+

i

e−c·iλ(H)Xi,λ

x0, x0


and since limi→∞ ‖Xi‖eci = 0 and for every component ‖Xi,λ‖ ≤ ‖Xi‖, we
find that

lim
i→∞

∥∥∥e−c·iλ(H)Xi,λ

∥∥∥ = 0

for every root λ, so that

lim
i→∞

1

i
d

exp

 ∑
λ∈Λ+

i

e−c·iλ(H)Xi,λ

x0, x0

 = 0
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and by continuity follows that the orbit nix0 is bounded.
We are able now to prove our main theorem:
Let G = KAN be a semi-simple Lie group of non-compact type and

consider the symmetric space X = G/K. Let ni = exp Xi, Xi ∈ n be a
sequence with ‖Xi‖ → ∞. We let B− be a sector in X based at x0, Bi the
sector based at x0 asymptotic to niB

− and B+ the sector based at x0 such
that

θi = θ
(
Bi, B

+
)

converges to zero. Then, there are constants D ≥ 1 and δ > 0, depending
only on the symmetric space X , such that

θi ≤ De−δd(x0,Fi)

where Fi is the flat of X asymptotic to both Bi and B+ closest to the base
point x0.

As we did before , we identify the sectors Bi and B+with elements niC
−

and C+ of the projective orbit of the linear action of G on
∧d g, so that we

can approximate

θi ≈
∥∥∥∥∥C+ − niC

−

‖niC−‖

∥∥∥∥∥
P
(∧d

g

) ≤ D ‖Xi‖−α

where the inequality was proved in proposition 2.
But

d (x0, Fi) ≤ d (x0, nix0)

and it is known that the orbits of N are exponentially distorted in X , i.e.,

‖Xi‖ ≤ e−ηd(x0,nix0)

for some constant η > 0.
Gathering those three inequalities we find that

θi ≤ D ‖Xi‖−α ≤ De−αηd(x0,nix0) ≤ De−δd(x0,Fi)

where δ = αη.

3 Application

Before we state the application we made of our main theorem, we must
introduce some definitions and notations.
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3.1 Ultra-filters and Asymptotic Cones

A non-principal ultra-filter ([Si]) over the natural numbers is a finitely addi-
tive measure $ defined on all subsets A ⊆ N enjoying the following proper-
ties:

1. $ assumes values in {0, 1} .

2. $(A) = 0 for every finite A ⊂ N .

Ultra-filters has the property that for every A ⊂ N , either $ (A) = 1
or $ (Ac) = 1, hence it may be viewed as a family of subsets of P (N)
that contains either A or Ac, so that we may use indistinguishably both the
notations $ (A) = 1 or A ∈ $.

Given such an ultra-filter we define the concept of ultra-limit of a se-
quence:

Definition 3.1 Let X be a topological space and (xi)
∞
i=1a sequence in X. We

say that x0 ∈ X is the ultra-limit of (xi)
∞
i=1, and denote it by $− lim xi = x0

if, for every neighborhood V of x0, the set {i ∈ N | xi ∈ V } is in $. We say
a sequence (xi)

∞
i=1 is ultra-convergent if its ultra-limit exists.

The ultra-limit of a sequence (whenever it exist) is unique and has the
following essential properties:

1. Whenever (xi)
∞
i=1 is convergent it is also ultra-convergent and lim

i→∞
xi =

$ − limi→∞ xi.

2. If X is a compact Hausdorff space, then every sequence (xi)
∞
i=1 in X is

ultra-convergent.

3. Ultra-limits are linear operators on sequences in vector spaces:

$ − lim
i→∞

(xi + yi) = $ − lim
i→∞

xi + $ − lim
i→∞

yi

The above cited properties of ultra-limits enable us to define the ultra-
limit of a sequence of metric spaces and the asymptotic cone of a given one.

Consider a sequence (Xi, di, pi) of pointed metric spaces and let

X =

{
(xi)

∞
i=1 ∈

∏
i∈N

Xi | di(pi, xi)isbounded

}
.

13



The function d ((xi) , (yi)) = $ − lim di(xi, yi) is a semi-metric, and by
considering the equivalence relation defined by (xi)

∞
i=1 ∼ (yi)

∞
i=1 if and only

if d ((xi) , (yi)) = 0, this semi-metric induces a metric d$ (·, ·) in the quotient
space X = X/ ∼. We shall say that this metric space is the ultra-limit of
the sequence (Xi, di, pi) of pointed metric spaces.

We should note that whenever the given sequence os spaces converges in
the Hausdorff topology on subsets ([G-L-P]), this convergence coincides with
the ultra-convergence defined above. Criteria for the late convergence, can
be found in ([Pa]).

The asymptotic cone of a metric (X, d) space is a special instance of the
ultra-limit of spaces when we put Xi = X, di (x, y) = 1

i
d (x, y) and xi = x0.

Since this definition is crucial in what follows, we will repeat it explicitly.
Let (X, d) be a metric space, x0 a fixed point in it and consider the set of

all sequences x = (xi)
∞
i=1 in X that distance away from x0 at most linearly,

i.e., sequences for which there is a constant cx ∈ R+ such that d (x0, xi) ≤ cx·i
for every i ∈ N . For any pair of such sequences (xi)

∞
i=1 and (yi)

∞
i=1, we have

that 1
i
d (xi, yi) ≤ cx + cy so that it has an ultra-limit. The ultra-limit defines

a semi-metric on the space of all such sequences, and, by identifying those
sequences for which $− lim 1

i
d (xi, yi) = 0, we get a metric space. Following

M. Gromov ([Gr]), we call this metric space the asymptotic cone of X over
$ and denote it by cone∞X. We denote the equivalence class of x = (xi)

∞
i=1

by [xi] and the metric on cone∞X by d$ (·, ·).

3.2 Non-discrete Buildings

The concept of a non discrete Tits building appears first at [Ti]. The defini-
tion we adopt here is the one used in [Ro] and differs from that of Tits only
in the fifth axiom (that was changed later by Tits himself).

Let V be a (finite dimensional) vector space with an inner product and
W ⊂ Gl (V ) a finite group generated by reflections in hyperplanes (hence
a Coxeter group) {W1,W2, ...Wr}. Let W be the maximal (affine) group of
isometries of V which linear part is W , i.e., W = WV . For each p ∈ V
the coset W × {p} divides V into finitely many open subsets (with p being

the intersection of the closure of them all)̇. Each connected component of
V \ ⋃

i=1,...,r
(p + Wi) is called a sector (based at p). Given a sector A+ based

at p and a hyperplane p + Wi such that A
+ ⋂

(p + Wi) has codimension 1 in

V ( A
+

being the topological closure of A+ ), we call the interior (in p + Wi)
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of A
+ ⋂

(p + Wi) a wall of the sector A+. In a similar way we define lower
dimensional walls of a sector. The hyperplanes p + Wi divides V into two
half spaces, each one we call an half-apartment.

Let now (∆,F) be a pair where ∆ is a set and F a collection of injections
of V into ∆. We define an apartment, half apartment, sector and wall in ∆
to be the image under an element of F of V itself, an half apartment, sector
or wall in V respectively. Given two sectors A1, A2, we say A2 is a sub-sector
of A1 if A2 ⊆ A1. We are now able to give the desired definition:

Definition 3.2 A pair (∆,F) defined as above is called a non-discrete build-
ing (or affine building) if it satisfies the following axioms:

1. If w ∈ W and f ∈ F then f ◦ w ∈ F .

2. Given f, f ′ ∈ F , Y = f−1 (f ′ (V )) is closed and convex in V and there
is an w ∈ W such that f |Y = f ′ ◦ w |Y .

3. Given any two points in ∆, there is an apartment containing both of
them.

4. Given any two sectors A1, A2 of ∆, there are sub-sectors A′
i ⊆ Ai, i =

1, 2 and an apartment F ⊂ ∆ containing both A′
1 and A′

2.

5. If F, G and H are three apartments such that the intersection of any
two of them is an half-apartment, then F

⋂
G
⋂

H 6= ∅.

3.3 Asymptotic Cones and Buildings

We use our main result (Theorem 2) to show that the asymptotic cone of
a symmetric space X = G/K has a structure of a non-discrete Tits Build-
ing. This fact was first proved in [K-L], but the approach given here is quite
different: We define explicitly the set of sectors and apartments of the build-
ing and show what are the apartments containing a given sector or pair of
sectors.

The sectors and apartments of ∆ are respectively the equivalence class
[Ai] and [Fi] of sequences (giA

+x0)
∞
i=1 and (giAx0)

∞
i=1 where A+x0 and Ax0

are respectively a sector and a flat of X, gi ∈ G and ω − lim
i→∞

1id (x0, gix0)

exist.
As we already noticed, the first three axioms are relatively simple to

prove. The fifth is proved by mean of a detailed examination of the root
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decomposition, an application of the Hausdorff-Campbell formula, and a re-
duction of its application to a subalgebra isomorphic to sl (2, R), where the
convergence of the series is global. The fourth axiom is the one that makes
use of Theorem 2.

We shall prove the axioms in the same order they where stated.
The pair (cone∞X ,F) satisfies axiom (A1), i.e., given w ∈ W and an

apartment [giF ], [giwF ] is also an apartment.
This is obvious, we just need to take an representative of w in G.
The pair (cone∞X ,F) satisfies axiom (A2): given f, f ′ ∈ F , Y = f−1 (f ′ (V ))

is closed and convex in V and there is an w ∈ W such that f |Y = f ′ ◦w |Y .
The closeness and convexity of the intersection of the apartments follows

from the fact they are embedded isometrically in cone∞X and each apartment
is closed and convex and so is their intersection.

It is left to prove that if Y = f−1 (f ′ (V )) there is an w ∈ W such that
f |Y = f ′ ◦ w |Y .

We remember that each f ∈ F is actually a family of isometric embedding
gi : A 7→ giAx0. Let f and f ′ be defined by the sequences (gi)

∞
i=1 and

(g′i)
∞
i=1 respectively. We denote by F = [giAx0] and F ′ = [g′iAx0] the flats in

cone∞X defined by those apartments. We loose no generality by assuming
that [x0] ∈ [giAx0]∩ [Ax0]. Moreover, we may assume that [gix0] = [x0]. If it
was not the case, there would be a sequence bi ∈ A such that [gibix0] = [x0]
and since biA = A, we could substitute each gi by bigi. We consider the polar
decomposition gi = ki,1hiki,2, with ki,1, ki,2 ∈ K and hi ∈ A+. We claim that
[ki,1hiki,2Ax0] = [ki,1ki,2Ax0]. Indeed, since the metric on X is left invariant,
it is sufficient to prove that [hiki,2Ax0] = [ki,2Ax0].

Since we are assuming that [gix0] = [x0], from the fact that

d (ki,1hiki,2x0, x0) = d (ki,1hix0, x0)

= d
(
hix0, k

−1
i,1 x0

)
= d (hix0, x0)

we find that ω − lim 1id (hix0, x0) = 0. Given xi ∈ X , it is uniquely de-
scribed as ainix0, for some ai ∈ A and ni ∈ N , the nilpotent subgroup of G
determined by the Weyl sector A+ and we have that

d (hiainix0, ainix0) = d
(
a−1

i hiainix0, nix0

)
= d (hinix0, nix0)

≤ d (hinix0, hix0) + d (hix0, x0) + d (x0, nix0)
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= d (nix0, x0) + d (hix0, x0) + d (x0, nix0)

= 2d (nix0, x0) + d (hix0, x0) .

Since we have that ω−lim 1id (hix0, x0) = 0, we find that ω− lim
i→∞

1id (hixi, xi) =

ω − lim
i→∞

1id (hiainix0, ainix0) = 0 whenever ω − lim
i→∞

1id (nix0, x0) = 0. But

this is the case for [xi] ∈ [Ax0], since we can represent xi just as xi = aix0.
So, for xi ∈ Ax0 we find that

[gixi] = [ki,1hiki,2xi]

= [ki,1ki,2xi] .

Since ki,1, ki.2 ∈ K, a compact and closed subgroup of G, there exist
the ultra limit ω − lim

i→∞
(ki,1ki,2) = k ∈ K. It follows that, for xi ∈ A,

ω − lim
i→∞

1id (gixi, kxi) = ω − lim
i→∞

1id (ki,1ki,2xi, kxi) = 0, or, in other words,

for xi ∈ Ax0, we have that [gixi] = [kxi].

Now, we finally reach our problem: If we assume that [gixi] ∈ [giAx0] ∩
[Ax0], we get that [kxi] ∈ [Ax0]. But, if [kxi] belongs to the interior of a
sector, this happens if and only if k ∈ M ′, the normalizer of A in K. We
define w = k, the class of k in W = M ′/M and we find that [gixi] = [wxi],
for every [xi] ∈ Y . In case there is no [kxi] ∈ [giAx0] ∩ [Ax0] belonging to
interior of a sector of cone∞X , we have that is contained in a wall of a sector.
In this case we find that k may belongs to a subgroup gM ′g−1conjugated to
M ′. But this causes now problem, since, restricted to such a wall, the action
of k will coincide with the action of k′ := g−1kg ∈ M ′. For the particular
case when [giAx0] ∩ [Ax0] consist of the single point [x0], we can just define
k′ = e, the identity element of G.

The pair (cone∞X,F) satisfies axiom (A3), i.e. given two points [xi],[yi] ∈
cone∞X there is an apartment containing both of them.

This is also obvious, just take Fi to be a flat in X containing both xi and
yi and we get that [Fi] is the desired apartment, because the boundedness of
1id (xi, x0) implies that of 1id (Fi, x0).

In order to prove the fourth axiom, namely, that given to sectors in
cone∞X , there is an apartment containing subsectors of both of them, we
need a preliminary result:

Let Bi and B′
i be sequences of sectors in the symmetric space X , based

at x0. Let Fi := F (Bi, B
′
i) be the flat in X closest to the base point x0 and
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asymptotic simultaneously to Bi and B′
i. If

1

i
d (x0, Fi)

is unbounded, then, in the asymptotic cone, we have that

[Bi] = [B′
i]

Since X is an homogeneous space, it has bounded curvature (the ho-
mogeneity condition assures the curvature is defined on a Grassmannian,
hence compact, space). We lose no generality by assuming it has curvature
bounded from below by −1. This condition implies that geodesic rays in the
hyperbolic plane H2 distance one from the other faster then in X . To be
more precise, if γ (t) and γ′ (t) are unit speed geodesic (the prime is just a
superscript, not the derivative) in X with γ (0) = γ′ (0) and angle θ and γ̃ (t)
and γ̃′ (t) are unit speed geodesic rays in H2 having the same angle θ at their
intersection point γ̃ (0) = γ̃′ (0) then

d (γ (t) , γ′ (t)) ≤ dH2

(
γ̃ (t) , γ̃′ (t)

)
, foreveryt ≥ 0

For each i ∈ N , we choose a regular geodesic ray γi contained in Bi with
γi(0) = x0. If B′

i = giBi with gi ∈ K, we put γ′i = giγi. Then, the remark
above assures that, for every c ≥ 0.

$ − lim
1

i
d (γi (c · i) , γ′i (c · i)) ≤ $ − lim

1

i
dH2

(
γ̃i (c · i) , γ̃′i (c · i)

)
By the hyperbolic cosines law we know that

cosh dH2

(
γ̃i (c · i) , γ̃′i (c · i)

)
= cosh2 (c · i)− sinh2 (c · i) cos θi

= (1− cos θi) cosh2 (c · i)− cos θi

=
e2ci + e−2ci + 2

4
(1− cos θi)− cos θi

and since arccosh (x) = ln
(
x +

√
x2 + 1

)
we can approximate

dH2

(
γ̃i (c · i) , γ̃′i (c · i)

)
∼ ln

e2ci (1− cos θi)

2
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so that

$ − lim
i→∞

1

i
d (γi (c · i) , γ′i (c · i)) ≤ $ − lim

i→∞

1

i
dH2

(
γ̃i (c · i) , γ̃′i (c · i)

)
= $ − lim

i→∞

1

i
ln

e2ci (1− cos θi)

2

and, by Theorem 2 we find that

$ − lim
i→∞

1

i
ln

e2ci (1− cos θi)

2
= 0.

Hence [γi (c · i)] = [γ′i (c · i)] for every c ≥ 0 and this means [γi] = [γ′i].
Given a point [xi] ∈ [Bi], we choose for each i ∈ N a geodesic ray βi ⊂ Bi

containing xi and put β′i = giβ
′
i. As we just saw, [βi] = [β′i]. Since [β′i] ⊂ [B′

i],
we find that [Bi] ⊆ [B′

i]. The same argument, starting with a point [x′i] ∈ [B′
i]

shows the inverse inclusion, so that [Bi] = [B′
i]

The pair (cone∞X,F) satisfies axiom (A4), i.e., given sectors [Ai] , [Bi] ⊂
cone∞X , there is an apartment containing subsectors [A′

i] ⊆ [Ai] , [B
′
i] ⊆ [Bi]

of both [Ai] and [Bi].
Let (giA

+x0)
∞
i=1 and (hiA

+x0)
∞
i=1 be representatives of sectors [Ai] and

[Bi], respectively.
There is a natural candidate to be the apartment containing both of them:

For each i ∈ N , we let Fi = kiAx0 be a flat asymptotic to both giA
+x0 and

hiA
+x0. Such a flat always exist and, whenever ω− lim

i→∞
1id (kix0, x0) exist, it

determines an apartment in cone∞X . By construction, for each i ∈ N there
are sectors A∗

i , B
∗
i ⊂ Fi asymptotic respectively to [Ai] and [Bi]. We define

[A′
i] := [A∗

i ] ∩ [Ai] , [B′
i] := [B∗

i ] ∩ [Bi]

and, in this case, it is left to prove that [A′
i] and [B′

i] are indeed subsectors
of [Ai] and [Bi] respectively.

As we did in the proof of Proposition 3.3, we lose no generality if we
assume that Aix0 = Ax0 for every i ∈ N . In this situation we have that for
ω-all i ∈ N , A∗

i x0 = niA
+x0 with A+x0 a Weyl sector in Ax0 and ni ∈ N , the

positive nilpotent subgroup determined by A+. Moreover, we are assuming
that ω − lim

i→∞
1id (nix0, x0) exists. If we write ni = exp (

∑
λ∈Λ+ Xi,λ) with

Xi,λ ∈ gλ, and put Xi :=
∑

λ∈Λ+ Xi,λ, we find, as in Remark 2, there is a
nonnegative constant c such that

lim
i→∞

‖Xi‖
eci

= 0.
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Let us consider a geodesic ray γ(t) = exp(tH)x0 contained in the Weyl
sector A+x0, with H ∈ a+ and define γa(i) = γ(ai). We find that

d(niγa(i), γa(i)) = d(exp

 ∑
λ∈Λ+

Xi,λ

 exp(aiH)x0, exp(aiH)x0)

= d(exp(−aiH) exp

 ∑
λ∈Λ+

Xi,λ

 exp(aiH)x0, x0)

= d(exp(
∑

λ∈Λ+

e−aiλ(H)Xi,λ)x0, x0). (1)

By the remark above, since λ(H) > 0, we find that, for a sufficiently large,
[γa(i)] = [niγa(i)]. We note that, a-priori, a depends on H. However, since
we are considering H to be a unit vector in the Weyl chamber a+ and this
choice is continuous, there is an a0 such that equality (1) above holds for
every H ∈ a+ and every a ≥ a0. So we proved that [A′

i] = [A∗
i ] ∩ [Ai] is

indeed a subsector of [Ai], by construction contained in the apartment [Fi].
Obviously, the same demonstration works for [B′

i] = [B∗
i ] ∩ [Bi], and the

proposition is proved if ω − lim
i→∞

1id (kix0, x0) does exist.

It is left to treat the case when ω − lim
i→∞

1id (kix0, x0) does not exist. In

this case, we let A∗
i and B∗

i be the sectors based at x0 asymptotic to Ai and
Bi respectively. Then, lemma 3.3 implies that [A∗

i ] = [B∗
i ]

We put

[A′
i] : = [A∗

i ] ∩ [Ai] ∩ [Bi]

= [B∗
i ] ∩ [Ai] ∩ [Bi]

= [B′
i] .

This is a subsector of both [Ai] and [Bi] and hence, we may consider any
sequence of flats Fi containing A′

i (or B′
i) and this defines an apartment [Fi]

as required.
In order to prove Axiom 5 we need some intermediate results. We start

proving that it is possible to choose special representatives for apartments
intersecting in half apartments.

Let
[
H̃i

]
, [Fi] ⊂ cone∞X be two apartments such that

[
H̃i

]
∩[Fi] is an half

apartment. Then we can find a sequence of flats (Hi)
∞
i=1such that [Hi] =

[
H̃i

]
with the following property: If

[
A+

i

]
⊂ [Fi] ,

[
B+

i

]
⊂ [Hi] are sectors (with
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A+
i ⊂ Fi, B

+
i ⊂ Hi) such that

[
A+

i

]
=
[
B+

i

]
, then, A+

i is $-always asymptotic

to B+
i i.e.,

$
({

i ∈ N |A+
i isasymptotictoB+

i

})
= 1

We loose no generality by assuming all the B+
i are based at x0. We

can also assume that the base point of
[
A+

i

]
(and hence the base point of[

B+
i

]
, since they are the same sector in the cone) belongs to the border

of the half apartment
[
H̃i

]
∩ [Fi]. If it was not the case, we could take a

convenient displacement A∗
i of A+

i along Fi and also displacement B∗
i of B+

i

along H̃i such that [A∗
i ] = [B∗

i ] and this sector would be based at the border

of the half apartment
[
H̃i

]
∩ [Fi]. We loose also no generality by assuming

H̃i ≡ H = exp Ax, and we consider the Iwasawa decomposition G = KAN ,

where N = exp

( ∑
λ∈Λ+

gλ

)
is the nilpotent group determined by the half

apartment
[
H̃i

]
∩ [Fi], i.e., if X ∈ a = Lie (A) is such that

[exp (c · i ·X) x0] ∈
[
H̃i

]
∩ [Fi] , ∀c ≥ 0

then λ (X) > 0. Every flat in X is of the form nkH, where n ∈ N and k ∈ K,
in particular Fi = nikiH . We take now X ∈ a=Lie (A) such that

[exp (c · i ·X) x0] ∈
[
H̃i

]
∩ [Fi] , ∀c ≥ 0

To shorten the notation, we denote γ (ci) = exp (c · i ·X) x0. Then we have
that

[γ (ci)] = [nikiγ (ci)] , ∀c ≥ 0

(if this is not the case, we can change the choice of ki up to an element of
the Weyl group). But this means, by definition, that

$ − lim
i→∞

1

i
d (nikiγ (ci) , γ (ci)) = 0 ∀c ≥ 0

and if we put ni = exp Xi, we get

1

i
d (nikiγ (ci) , γ (ci)) =

1

i
d (exp (−ciX) niki exp (ciX) x0, x0)

=
1

i
d

exp(
∑

λ∈Λ+

e−ciλ(X)Xi,λ) exp(−ciX)kiγ(ci), x0


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where Xi=
∑

λ∈Λ Xi,λ is the root space decomposition of Xi. But since λ (X) >

0, the term exp
(∑

λ∈Λ+ e−ciλ(X)Xi,λ

)
converges exponentially to the identity

and we get that

$ − lim
i→∞

1

i
d (nikiγ (ci) , γ (ci)) = $ − lim

i→∞

1

i
d (exp (−ciX) kiγ (ci) , x0)

= $ − lim
i→∞

1

i
d (kiγ (ci) , γ (ci)) = 0

and this would imply also that $− limi→∞
1
i
d (kiγ (−ci) , γ (−ci)) = 0. Since

X was chosen arbitrarily within the condition that λ (X) > 0, we get that in
fact the flats H̃i ≡ H and Hi = kiH̃i gives rise to the same apartment, that
is, [Hi] =

[
H̃i

]
and the sequence (Hi)

∞
i=1 is the sequence we were looking for.

We need one more lemma before we prove that cone∞X satisfies the fifth
axiom of the definition of a non-discrete Tits building:

Let F = Ax0 be an flat in X , let λ be a root and V a unitary vector in
the Lie algebra a of A such that λ (V ) > 0 and V is orthogonal to the wall
{U ∈ A|λ (U) = 0} determined by the root λ. Consider the flats nF and mF
where n = exp Z and m = exp Y with Z ∈ gλ and Y ∈ g−λ. Suppose W
∈ a is a (unitary) vector such that the geodesic ray α (t) = n exp(−tW )x0

is asymptotic to the geodesic ray β (t) = m exp (tV ) x0. Then we have that
V = W.

We consider the apartments F (∞), mF (∞) and nF (∞) in ∂∞X. The
intersection

F (∞) ∩mF (∞)

is a half apartment in ∂∞X consisting of

{γ (∞) |γ (t) = exp tU, withU ∈ aand− λ (U) ≥ 0}

whose boundary

{γ (∞) |γ (t) = exp tU, withU ∈ aand− λ (U) = 0}

we denote as usual by ∂ (F (∞) ∩mF (∞)).
If we remember that we are denoting by dT (·, ·) the Tits metric on ∂∞X,

since V is orthogonal to the wall determined by λ we have that

dT (β (∞) , γ (∞)) =
π

2
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for all γ (∞) ∈ ∂ (F (∞) ∩mF (∞)). We note that the same holds for β̃ (∞),
where β̃ (t) = exp (tV ) x0, i.e.,

dT

(
β̃ (∞) , γ (∞)

)
= π2

whenever γ (∞) ∈ ∂ (F (∞) ∩mF (∞)). Now if we define

F+ (∞) = {γ (∞) |γ (t) = exp tU, withU ∈ aandλ (U) ≥ 0}

we get that
∂
(
F+ (∞)

)
= ∂ (F (∞) ∩mF (∞))

so that
F+ (∞) ∪ (F (∞) ∩mF (∞))

is an apartment in ∂∞X and we see in this apartment that

dT

(
β (∞) , β̃ (∞)

)
= π

If we define

mF+ (∞) = {mγ (∞) |γ (t) = exp tU, withU ∈ aandλ (U) ≥ 0}

we see immediately that mF+ (∞)∩(F (∞) ∩mF (∞)) = F+ (∞)∩(F (∞) ∩mF (∞))
= {γ (∞) |γ (t) = exp tU, withU ∈ aandλ (U) = 0} and this implies that the
union of the two half apartments mF+ (∞) ∪ F+ (∞) is an apartment in
∂∞X .

The hypothesis that α (∞) = β (∞) implies α (∞) ∈ mF+ (∞) while
β̃ (∞) ∈ F+ (∞) by definition. Since

dT

(
β̃ (∞) , γ (∞)

)
= dT (α (∞) , γ (∞)) =

π

2

for all γ (∞) ∈ mF+ (∞) ∩ F+ (∞) we get

dT

(
β̃ (∞) , α (∞)

)
= π

But we also have, by definition, that dT (α (∞) , α (−∞)) = π and since
nF+ (∞) = F+ (∞) (because n = exp Z with Z ∈ gλ and λ (V ) > 0)
and by definition β̃ (∞) ∈ nF+ (∞) we have two points in the apartment
mF+ (∞) ∪ F+ (∞) (namely α (−∞) and β̃ (∞) ) opposed to α (∞). Be-
cause every apartment is isometric to a unit sphere we get α (−∞) = β̃ (∞)
and consequently V = W.

23



The pair (cone∞X ,F) satisfies axiom (A5), i.e. if F, H and L are three
apartments such that the intersection of any two of them is an half-apartment,
then F ∩ L ∩H 6= ∅.

First of all we take representatives for our apartments: F = [Fi] , L = [Li]
and H = [Hi]. Again, with no loss of generality, we may assume x0 ∈ Fi and
that [x0] is in the (topological) border ∂ (F ∩ L) of F ∩ L. We also loose no
generality by assuming Fi ≡ Ax0. The half-apartment F ∩ L is determined
by a sequence (λi)

∞
i=1 of roots of the corresponding root-space decomposition:

if a is the Lie algebra of A and 0 6= Xi ∈ a are such that [exp Xi] ∈ F ∩ L
then λi (Xi) > 0. In other words, for each i ∈ N we may consider all the Weyl
sectors contained in F that give rise to sectors in the intersection F ∩L. For
each such sector there is a set of corresponding positive roots and then {λi}
is the intersection of all such sets of positive roots. Such a sequence is well
defined up to a subset of indexes with zero $-measure.

By lemma 3.3, we may assume that an half apartment of Li is asymptotic
to an half apartment of Fi for $-almost every i ∈ N so that we have Li =
niFi, with ni = exp Zi, Zi ∈ gλi

. The same holds for the intersection F ∩H,
hence Hi = miFi where mi = exp Yi with Yi ∈ g−λ

′
i
.

If λi 6= λ
′
i the half apartments in F determined by λi and any translation

(in F ) of the apartment determined by −λ
′
i intersect one the other and

contains a Weyl sector, hence, if

$
({

i ∈ N | λi 6= λ
′

i

})
= 1

we will have a hole sector contained in F ∩ L ∩H.

So, we may look now at the case when $-always λi = λ
′
i.

Let Vi ∈ A be a sequence of unit vectors with λi (Vi) > 0. Then we have
that

[γi (c · i)] = exp (c · iVi) x0 ∈ F ∩ L,

for all c > 0. From here on, we will assume Vi to be orthogonal to the wall

{V ∈ a|λi (V ) = 0}

Since F ∩ H is determined by sequence of parallel walls (up to a subset on
indexes not contained in $), there is a sequence si ∈ R such that, if we put

γ̃i (t) = γi (− (si + t))
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we get that [γ̃i (0)] ∈ ∂ (F ∩H) and [γ̃i (c · i)] ∈ F ∩ H for all c > 0. If we
put

αi (t) = miγ̃i (t)

we find that

[αi (c · i)] = [γ̃i (c · i)] foreveryc > 0

because mi ∈ g−λi
, −λi (−Vi) > 0 and

d (αi (t) , γ̃i (t)) = d (mi exp ((−si − t) Vi) x0, exp ((−si − t) Vi) x0)

= d (exp (Yi) exp ((−si − t) Vi) x0, exp ((−si − t) Vi) x0)

= d (exp ((si + t) Vi) exp (Yi) exp ((−si − t) Vi) x0, x0)

= d
(
exp

((
e−(si+t)λi(Vi)

)
Yi

)
x0, x0

)
and the only instance in which e−(si+t)λi(Vi) would not converge to zero is
when Vi → 0 but, in this case, we have that [mix0] = [x0] ∈ F ∩ L ∩H and
there is nothing left to prove.

By the same reasoning we did before, for a suitable choice of a sequence
ti ∈ R and by putting

α̃i(t) = αi (− (ti + t))

we get that [α̃i(0)] ∈ ∂ (L ∩H) while [α̃i(c · i)] ∈ L ∩H for every c > 0.
Now, for a suitable choice of unitary Wi ∈ a we will have the geodesic ray

ni exp(tWi)x0 asymptotic to the ray α̃i(t), for t > 0. Since we have chosen
Vi to be orthogonal to the wall, lemma 3.3 assures that actually Wi = Vi.

Independently on the fact of Vi being orthogonal to the wall, for a suitable
translation along the wall determined by λi, i.e., for a suitable choice of
ai = exp Ai, with Ai ∈ a and λi (Ai) = 0 and a shift determined by ri, if we
put

βi (t) = ni exp ((ri + t) Vi) aix0

we have that [βi (c · i)] = [α̃i(c · i)].
We note here that we have only decomposed the displacements along the

flats niAx0 into components, one belonging to the wall λi and the other in a
transversal direction determined by the geodesic ray ni exp (tVi). Since

a = RVi ⊕ {V ∈ a | λi (V ) = 0}

this decomposition is possible and unique.
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The distances between the initial points of our geodesic rays are given by
d ([γi (0)] , [γ̃i (0)]) = d ([γi (0)] , [αi (0)]) = $ − lim sii
d ([γ̃i (0)] , [α̃i (0)])=d ([γ̃i (0)] , [βi (0)])=d ([αi (0)] , [α̃i (0)])=$ − lim tii
d ([α̃i (0)] , [aix0]) = d ([βi (0)] , [aix0]) = $ − lim rii
d ([γi (0)] , [aix0]) = $ − lim ‖Ai‖i

and to make more clear the place we are standing on we stress that

[γi (0)] , [aix0] ∈ F ∩ L
[αi (0)] = [γ̃i (0)] ∈ F ∩H
[α̃i (0)] = [βi (0)] ∈ L ∩H

and we will prove one of those point belongs also to the third apartment.
Let us note that if we prove that either $− lim sii = 0 or $− lim tii = 0 or
$ − lim rii = 0 the proposition will follow at once.

Since Wi = Vi we have that

d (βi (0) , α̃i(0)) = d (ni exp (riVi) aix0, mi exp ((ti − si) Vi) x0)
= d (exp Zi exp (riVi) aix0, exp Yi exp ((ti − si) Vi) x0)

= d
(
exp

(
−e(ti−si)λi(Vi)Yi

)
exp ((ti − si + ri) Vi) exp

(
e−riλi(Vi)Zi

)
aix0, x0

)
If the sequence (ri)

∞
i=1 is bounded, we have that

d ([α̃i (0)] , [aix0]) = $ − lim rii = 0

and hence [α̃i (0)] ∈ F ∩ L ∩ H and we proved the intersection is not
empty. Hence we may suppose the sequence (ri)

∞
i=1 is unbounded, so that

exp
(
e−riλi(Vi)Zi

)
converges exponentially to the identity isometry and since

we are interested only in linear factors, we can approximate

d (βi (0) , α̃i(0)) ≈ d
(
exp

(
−e(ti−si)λi(Vi)Yi

)
exp ((ti − si + ri) Vi) aix0, x0

)
.

If we substitute ai = exp Ai and consider the fact that Ai commute with Vi

we get that

d (βi (0) , α̃i(0)) = d(exp(−e(ti−si)λi(Vi)Yi) exp ((ti − si + ri) Vi) exp Aix0, x0)

= d(exp(−e(ti−si)λi(Vi)Yi) exp((ti−si + ri)Vi + Ai)x0, x0)

At this point we would like to use any result to relate exp X exp Y =
exp Z, or to be more precise, we want to find Ui such that

exp Ui = exp
(
−e−(si−ti)λi(Vi)Yi

)
exp ((ti − si + ri) Vi + Ai)
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We could use for instance the Baker-Campbell-Hausdorf formula:

exp X exp Y = exp

( ∞∑
n=1

Cn (X : Y )

)

where C1 (X : Y ) = X + Y and

(n + 1) Cn+1 (X : Y ) =
1

2
[X − Y,Cn (X : Y )]

+
∑
p≥1

2p ≤ nK2p

∑
k1,···,k2p>0

k1 + . . . + k2p = n
[
Ck1 ,

[
. . .
[
Ck2p , X + Y

]]]

where the K2p are rational numbers and Cn stands for Cn (X : Y ).
The problem in the use of this formula is that the convergence of the

series is generally only local and we need global convergence. However, we
note that

[Ai, Vi] = 0
[Yi, Ai] , [Yi, Vi] ∈ g−λi

and this implies that Yi and (ti − si + ti) Vi + Ai generates, for each i ∈ N ,
a two dimensional semi-simple subalgebra of g, hence we are in fact in a
subalgebra isomorphic to sl (2) and the convergence of the Baker-Hausdorf-
Campbell serie is in fact global and we may apply it to our case globally.

Without calculating it explicitly, we know that Cn (X : Y ) is a sum of
brackets of order n involving X and Y . In our specific case, this brackets
involves Yi and (ti − si + ri) Vi + Ai and hence, for every n ≥ 2 and every
i ∈ N

Cn (Yi : (ti − si + ri) Vi + Ai) ∈ g−λi

and we get that

exp
(
−e−(si−ti)λi(Vi)Yi

)
exp ((ti − si + ri) Vi + Ai)

= exp (((ti − si + ri) Vi + Ai) + fiYi)

where fi is defined by

fiYi = −e−(si−ti)λi(Vi)Yi +
∞∑

n=2

Cn

(
(ti − si + ri) Vi + Ai : −e−(si−ti)λi(Vi)Yi

)
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By definition of the vectors, since Ai and Vi are contained in the subalge-
bra a and Yi ∈ g−λi

, we have that (ti − si + ri) Vi + Ai and fiYi are linearly
independent.

But,

$ − lim
i→∞

1

i
d (βi (0) , α̃i(0))

= $ − lim
i→∞

1

i
d (exp ((ti − si + ri) Vi + Ai + fiYi) x0, x0)

so that we must have

$ − lim
i→∞

1

i
((ti − si + ri) Vi + Ai + fiYi) = 0

and from the linear independence we cited above we get that

$ − lim
i→∞

1

i
((ti − si + ri) Vi + Ai) = 0.

But Vi and Ai are also linearly independent so, we must have

$ − lim
i→∞

1

i
(ti − si + ri) = 0.

From the linearity of the ultra-limit (property 3, page 13), we find that

d ([x0] , [α̃i (0)]) + d ([α̃i (0)] , [αi (0)]) = $ − lim
i→∞

1

i
ri + $ − lim

i→∞

1

i
ti

= $ − lim
i→∞

1

i
si = d ([x0] , [αi (0)])

so that the triangle 4 ([x0] , [αi (0)] , [α̃i (0)]) is a degenerated triangle, and
[αi (0)] is actually contained in the side determined by [x0] and [α̃i (0)]. But
this side of the triangle is contained in the flat L = [Li] and [αi (0)] is con-
tained in the intersection of F = [Fi] and H = [Hi] so that

[αi (0)] ∈ F ∩ L ∩H

as desired.
The pair (cone∞X ,F) is a non-discrete Tits building.
We proved the axioms are satisfied in propositions 3.3, 3.3, 3.3, 3.3 and

3.3.
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