

Ementa

Matrizes. Sistemas Lineares. Fatoração LU. Fatoração de Choleski. Normas. Condicionamento. Fatorações Ortogonais. Métodos Iterativos. Quadrados Mínimos Lineares. Autovalores e Autovetores. Valores Singulares. Sistemas Não Lineares.

Aulas

Segundas e quartas-feiras, das 10h às 12h na sala PB14.

Avaliação

Prova $1 |P_1| \overline{\bf 30/04}$

Prova 2 |P₂| **25/06**

Exame $|E_X|$ **14/07**

Seja
$$M_P=\frac{P_1+P_2}{2}$$
. Se $M_P\geq 5,0$ então $M_F=M_P$; senão $M_F=$ Máximo $\Big\{M_P,\frac{M_P+2E_X}{3}\Big\}.$

Referências

- D.S. Watkins, Fundamentals of Matrix Computations.
- B. Noble & J.W. Daniel, Applied Linear Algebra.
- A. Greenbaum & T.P. Chartier, Numerical Methods.
- G. Strang, Linear Algebra and Its Applications.
- G.H. Golub & C.F. Van Loan, Matrix Computations.
- L.N. Trefethen e D. Bau, Numerical Linear Algebra.

Matrizes

- 1. Indique quais das seguintes afirmações são equivalentes a afirmação "Se beber, não dirija.":
 - (a) Se não dirigir, beba.
 - (b) Não beba nem dirija.
 - (c) Não beba ou não dirija.
 - (d) Beba e não dirija.
 - (e) Se não beber, dirija.
 - (f) Se dirigir, não beba.

- (g) Beba somente se não dirigir.
- (h) Dirija somente se não beber.
- (i) É suficiente não dirigir para beber.
- (j) É suficiente beber para não dirigir.
- (k) É necessário não dirigir ao beber.
- (I) É necessário beber para não dirigir.
- 2. Seja $A \in \mathbb{R}^{m \times n}$ e considere $\mathcal{N}(A) = \{x \in \mathbb{R}^n \mid Ax = 0\}$ e $\mathcal{I}(A) = \{Ax \in \mathbb{R}^m \mid x \in \mathbb{R}^n\}$, denominados **Núcleo** e **Imagem** de A, respectivamente. Prove que:
 - (a) $\mathcal{N}(A)$ é um subespaço de \mathbb{R}^n .
- (b) $\mathcal{I}(A)$ é um subespaço de \mathbb{R}^m .
- (c) $\mathcal{N}(A)$ é ortogonal a $\mathcal{I}(A^T)$.
- (d) $\mathbb{R}^n = \mathcal{N}(A) \oplus \mathcal{I}(A^T)$.
- 3. Prove que toda matriz quadrada pode ser escrita como a soma de uma matriz simétrica com uma matriz anti-simétrica.
- 4. Sejam A e B matrizes quadradas. Sob que condições $(A+B)(A-B)=A^2-B^2$? Prove que traco(AB - BA) = 0.
- 5. Sejam $u, v \in \mathbb{R}^n$ não nulos e $A = uv^T$. Prove que posto(A) = 1.
- 6. Prove que toda matriz de posto $p \ge 1$ é a soma de p matrizes de posto 1.
- 7. Seja $A \in \mathbb{R}^{m \times n}$ e posto(A) = n. Prove que $A^T A$ é não singular.
- 8. Sejam A e B matrizes invertíveis. Determine a matriz X tal que:
 - (a) AX = B.
- (b) AXB = I.
- (c) $ABX = B^T$. (d) $ABA^{-1}X = A^T$.
- 9. Sejam A e B matrizes não singulares. Prove que:

$$(a)(A^T)^{-1} = (A^{-1})^T \equiv A^{-T}$$

(b)
$$(AB)^{-1} = B^{-1}A^{-1}$$

(a)
$$(A^T)^{-1} = (A^{-1})^T \equiv A^{-T}$$
. (b) $(AB)^{-1} = B^{-1}A^{-1}$. (c) $B^{-1} - A^{-1} = B^{-1}(A - B)A^{-1}$.

- 10. Seja A uma matriz triangular inferior (superior) invertível. Prove que A^{-1} é uma matriz triangular inferior (superior).
- 11. Seja $A \in \mathbb{R}^{n \times n}$. Prove que I + A é não singular se:

 - (a) $x^T A x \ge 0$ para todo $x \in \mathbb{R}^n$. (b) A é anti-simétrica, isto é, $A^T = -A$.
- 12. Sejam $B \in \mathbb{R}^{n \times n}$ não singular, $u, v \in \mathbb{R}^n$ e $a \in \mathbb{R}$. Sob que condições a matriz $A = \begin{pmatrix} B & u \\ v^T & a \end{pmatrix}$ é não singular? Assumindo a condição estabelecida, determine A^{-1} .
- 13. Sejam $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ e $c \in \mathbb{R}^n$ tais que Ac = b. Prove que Ax = b se e somente se existe $u \in \mathcal{N}(A)$ tal que x = u + c.

Fatorações

- 1. Seja A uma matriz triangular inferior (superior) invertível. Prove que A^{-1} é uma matriz triangular inferior (superior).
- 2. Invente um sistema linear com 6 equações e 4 variáveis em cada um dos seguintes casos, justificando a sua escolha: sem solução; com solução única; com infinitas soluções.
- 3. Sejam $A = \begin{pmatrix} 1 & 4 & 5 \\ 4 & 18 & 26 \\ 3 & 10 & 30 \end{pmatrix}$, $b = \begin{pmatrix} 6 \\ 0 \\ -6 \end{pmatrix}$ e $c = \begin{pmatrix} 6 \\ 6 \\ 12 \end{pmatrix}$.
 - (a) Determine a decomposição PA = LU.
 - (b) Resolva os sistemas lineares Ax = b e Ay = c.
 - (c) Determine A^{-1} .
- 4. Sejam $A = \begin{pmatrix} 1 & -3 & 2 \\ 1 & -4 & 3 \\ 1 & -5 & 4 \end{pmatrix}$, $b = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$ e $c = \begin{pmatrix} -4 \\ -5 \\ -6 \end{pmatrix}$. Usando a fatoração LU de A, mostre que
 - Ax = b nao tem solução e que Ax = c tem infinitas soluções.
- 5. Determine a fatoração LU, com e sem pivoteamento parcial, das matrizes abaixo, usando duas casas decimais de precisão:
 - (a) $\begin{pmatrix} 2 & 4 \\ 2 & 1 \end{pmatrix}$. (b) $\begin{pmatrix} 0.001 & 1 \\ 1 & 0.01 \end{pmatrix}$. (c) $\begin{pmatrix} 0 & 4 \\ 2 & 1 \end{pmatrix}$.
- 6. Seja $u \in \mathbb{R}^n$ e considere a matriz $A = I + uu^T$. Prove que A é simétrica definida positiva.
- 7. Seja $\begin{pmatrix} a & b \\ b & c \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ definida positiva.
 - (a) Prove que $ac > b^2$.
 - (b) Use o item (a) para provar que se $A \in \mathbb{R}^{n \times n}$ é simétrica e definida positiva, então $|a_{ij}| < \sqrt{a_{ii}a_{jj}}$, para todo $i, j = 1, \dots, n$.
- 8. Encontre a fatoração de Choleski das matrizes:

(a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 8 & 12 \\ 3 & 12 & 27 \end{pmatrix}$$
. (b) $\begin{pmatrix} 4 & 6 & 2 \\ 6 & 10 & 3 \\ 2 & 3 & 5 \end{pmatrix}$.

Normas

- $\text{1. Sejam } u = [3,4,5]^T \text{ e } A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 3 & 1 \end{pmatrix} \text{. Determine } \|u\|_1\text{, } \|u\|_2\text{, } \|u\|_\infty\text{, } \|A\|_1\text{, } \|A\|_\infty\text{ e } \|A\|_F\text{.}$
- 2. Seja $x \in \mathbb{R}^n$. Prove que:
 - (a) $||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2$.
 - (b) $||x||_{\infty} \le ||x||_2 \le \sqrt{n} \, ||x||_{\infty}$.
 - (c) $||x||_{\infty} \le ||x||_1 \le n||x||_{\infty}$.
 - (d) $||x||_2^2 \le ||x||_1 \cdot ||x||_{\infty}$.
- 3. Sejam $\|\cdot\|$ uma norma em \mathbb{R}^m e $A\in\mathbb{R}^{m\times n}$. Prove que se $\operatorname{posto}(A)=n$ então $\|x\|_A=\|Ax\|$ é uma norma em \mathbb{R}^n . Analise o caso particular m=1.
- 4. Seja $v \in \mathbb{R}^n$. Prove que $\|v^T\|_1 = \|v\|_{\infty}$, $\|v^T\|_2 = \|v\|_2$ e $\|v^T\|_{\infty} = \|v\|_1$.
- 5. Sejam $A \in \mathbb{R}^{n \times n}$ e $\|\cdot\|$ uma norma de matriz induzida tais que $\|A\| < 1$. Prove que I + A é invertível.
- 6. Sejam $A, B \in \mathbb{R}^{n \times n}$ invertiveis. Prove que:
 - (a) $\kappa(I) = 1$.
 - (b) $\kappa(A) \geq 1$.
 - (c) $\kappa(A) = \kappa(A^{-1})$.
 - (d) $\kappa(rA) = \kappa(A), r \in \mathbb{R} \{0\}.$
 - (e) $\kappa(AB) \leq \kappa(A) \kappa(B)$.
 - (f) $\kappa_{\infty}(A) = \kappa_1(A^T)$.
 - (g) $\kappa(A) = \max_{\|x\|=1} \|Ax\| / \min_{\|x\|=1} \|Ax\|.$

Ortogonalidade

- 1. Prove que uma matriz triangular ortogonal é diagonal.
- 2. Sejam $A \in \mathbb{R}^{m \times n}$, $Q_m \in \mathbb{R}^{m \times m}$ e $Q_n \in \mathbb{R}^{n \times n}$ ortogonais, e $x \in \mathbb{R}^n$. Prove que:
 - (a) $||Q_n x||_2 = ||x||_2$.
 - (b) $||Q_n||_2 = 1$.
 - (c) $\kappa_2(Q_n) = 1$.
 - (d) $||Q_m A||_2 = ||AQ_n||_2 = ||A||_2$.
 - (e) $||Q_m A||_F = ||AQ_n||_F = ||A||_F$.
- 3. Sejam $A, B \in \mathbb{R}^{n \times n}$ e $A^T = A$. Prove que:
 - (a) Se $x^TAx = x^Tx$ para todo $x \in \mathbb{R}^n$, então A = I.
 - (b) Se $||Bx||_2 = ||x||_2$ para todo $x \in \mathbb{R}^n$, então B é ortogonal.
- 4. Analise a fatoração QR de uma matriz ortogonal.
- 5. Usando os métodos de Householder e de Givens, determine a fatoração QR da matriz

$$A = \begin{pmatrix} 1 & 19 & 34 \\ -2 & -5 & 20 \\ 2 & 8 & 37 \end{pmatrix}.$$

6. Para cada uma das matrizes abaixo determine uma fatoração QR reduzida usando os métodos de Householder e de Givens:

(a)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$
. (b) $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Quadrados Mínimos Lineares

1. Seja $b=(1,2,3,4)^T$. Para cada uma das seguintes matrizes A encontre as soluções de quadrados mínimos de Ax=b, interpretando geometricamente. Em caso de mais de uma solução, determine a de norma 2 mínima.

(a)
$$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
. (b) $\begin{pmatrix} 1&1\\1&0\\1&1\\1&0 \end{pmatrix}$. (c) $\begin{pmatrix} 1&1&0\\1&0&1\\1&1&0\\1&0&1 \end{pmatrix}$. (d) $\begin{pmatrix} 1&1&0&1\\1&0&1&1\\1&1&0&1\\1&0&1&1 \end{pmatrix}$.

- 2. Sejam dados $d_{ij} \in \mathbb{R}$, $1 \le i < j \le n$, e considere o problema de encontrar $a \in \mathbb{R}^n$ tal que $a_1 = 0$ e $a_i a_j \approx d_{ij}$. Formule esse problema como um problema de quadrados mínimos e encontre a sua solução.
- 3. Sejam $A \in \mathbb{R}^{m \times n}$ com posto n, $I \in \mathbb{R}^{n \times n}$ a matriz identidade, $b \in \mathbb{R}^m$ e considere o sistema linear

$$\begin{pmatrix} A & I \\ 0 & A^T \end{pmatrix} \begin{pmatrix} x \\ r \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}.$$

Prove que esse sistema tem solução única \bar{x} e \bar{r} e interprete esse resultado.

- 4. Use a fatoração QR para encontrar a solução de quadrados mínimos do sistema linear Ax = onde A é a matriz do exercício 6(b) da lista anterior e $b = (1, 2, 3)^T$.
- 5. Seja $A \in \mathbb{R}^{m \times n}$ com posto n e defina $A^+ = (A^TA)^{-1}A^T$, denominada pseudo-inversa de A. Interprete A^+ geometricamente e prove que:
 - (a) $(AA^+)^T = AA^+$.
 - (b) $(A^+A)^T = A^+A$.
 - (c) $AA^{+}A = A$.
 - (d) $A^+AA^+ = A^+$.
- 6. Sejam $B \in \mathbb{R}^{n \times n}$, $u, c \in \mathbb{R}^n$, $v, d \in \mathbb{R}^m$, $A = \begin{pmatrix} B & u \\ 0 & v \end{pmatrix}$ e $b = \begin{pmatrix} c \\ d \end{pmatrix}$. Prove que se A tem posto completo, então $\min_{x \in \mathbb{R}^{n+1}} \|Ax b\|_2 = \|d\| \mathrm{sen}\theta$, onde θ é o ângulo agudo entre v e d.

Métodos Iterativos

1. Considere o sistema linear Ax = b onde

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \quad \mathbf{e} \quad b = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Exiba o esquema de iterações para os métodos de Gauss-Jacobi, Gauss-Seidel e Kaczmarz e analise a convergência em cada caso.

- 2. Seja $a \in \mathbb{R}$ e considere $A = \begin{pmatrix} 1 & a \\ -a & 1 \end{pmatrix}$. Determine os valores de a para os quais os métodos de Gauss-Jacobi e Gauss-Seidel convergem a partir de qualquer aproximação inicial.
- 3. Sejam $S \in \mathbb{R}^{n \times n}$, $I \in \mathbb{R}^{n \times n}$ a matriz identidade e considere $A = \begin{pmatrix} I & S \\ -S^T & I \end{pmatrix}$. Sob que condições sobre S os métodos de Gauss-Jacobi e Gauss-Seidel convergem a partir de qualquer aproximação inicial?

Autovalores e Autovetores

1. Para cada uma das matrizes abaixo encontre todos os autovalores e autovetores associados:

(a)
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
. (b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. (d) $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. (d) $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

- 2. Explique porque a matriz $\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 12 & 0 & 4 \\ 1 & 0 & 1 & 0 \end{pmatrix}$ tem pelo menos dois autovalores reais.
- 3. Sejam A uma matriz, λ um autovalor de $A, c \in \mathbb{C}$ e $k \in \mathbb{N}$. Prove que:

 - (a) λ é um autovalor de A^T . (b) $c\lambda$ é um autovalor de cA.

 - (c) λ^r é um autovalor de A^r . (d) $\lambda + c$ é um autovalor de A + cI.
 - (e) Se A é não singular então $1/\lambda$ é um autovalor de A^{-1} .
- 4. Sejam A uma matriz quadrada e $\alpha \in \mathbb{C}$. Prove que v é um autovetor de A se e somente se v é um autovetor de $A - \alpha I$.
- 5. Seja $A \in \mathbb{R}^{n \times n}$ com elementos $a_{ii} = n$ e $a_{ij} = 1$ para $i \neq j$. Prove que A não tem autovalores nulos e, portanto, é não singular.
- 6. Sejam $A \in \mathbb{R}^{m \times m}$, $B \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{n \times n}$ e defina $T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$. Prove que $\Lambda(T) = \Lambda(A) \cup \Lambda(C)$.
- 7. Seja $A \in \mathbb{R}^{n \times n}$ simétrica e defina $r(x) = \frac{x^T A x}{x^T x}$ para todo $0 \neq x \in \mathbb{R}^n$. Prove que $\max_{x \in \mathbb{R}^n} r(x) = \max_{x \in \mathbb{R}^n} r(x)$ $\max \Lambda(A) \in \min_{x \in \mathbb{R}^n} r(x) = \min \Lambda(A).$
- 8. Prove ou dê um contra-exemplo para a seguinte afirmação: A tem todos os seus autovalores iguais se e somente se A é uma matriz escalar, isto é, A = aI para algum $a \in \mathbb{C}$.

8

- 9. Seja $A \in \mathbb{R}^{n \times n}$ diagonalizável. Prove que $\rho(A) < 1$ se e somente se $\lim_{k \to \infty} A^k = 0$.
- 10. Seja $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$ e $x^0 = (1,0)^T$.
 - (a) Determine os autovalores/autovetores de A.
 - (b) Aplique o Método das Potências.
 - (c) Aplique o Método das Potências Inverso.
 - (d) Aplique o Método de Rayleigh.
 - (e) Analise os resultados obtidos.

SVD

- 1. Seja $C \in \mathbb{C}^{n \times n}$ uma matriz hermitiana, isto é, $C^H = C$. Prove que:
 - (a) Se C=A+iB com $A,B\in\mathbb{R}^{n\times n}$ então A é simétrica e B é antissimétrica.
 - (b) $C \pm iI$ é invertível.
 - (c) $(C \pm iI)^{-1}(C \mp iI)$ é unitária.
- 2. Seja $A \in \mathbb{R}^{2 \times 2}$ normal.
 - (a) Prove que $a_{11} = a_{22}$ e $a_{12} = -a_{21}$.
 - (b) Encontre os autovalores de A.
 - (c) Sob que condições A é ortogonal?
- 3. Seja $A \in \mathbb{R}^{m \times n}$ com posto(A) = p e SVD dada por $A = U \Sigma V^T$, onde $U = [u_1, \dots, u_m] \in \mathbb{R}^{m \times m}$, $V = [v_1, \dots, v_n] \in \mathbb{R}^{n \times n}$ e $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_q) \in \mathbb{R}^{m \times n}$ com $q = \min\{m, n\}$. Prove que:
 - (a) $Av_i = \sigma_i u_i, i = 1, ..., q.$
 - (b) $A^T u_i = \sigma_i v_i, i = 1, ..., q$.
 - (c) $A^T A v_i = \sigma_i^2 v_i$, i = 1, ..., q.
 - (d) $AA^{T}u_{i} = \sigma_{i}^{2}u_{i}, i = 1, ..., q$
 - (e) p é igual ao número de valores singulares positivos.
 - (f) $A = \sum_{i=1}^{p} \sigma_i u_i v_i^T$.
 - (g) $||A||_2^{i=1} = \sigma_1 = \sqrt{\max \Lambda(A^T A)} = \sqrt{\max \Lambda(AA^T)}$.
 - (h) $||A||_F^2 = \sum_{i=1}^p \sigma_i^2$.
 - (i) Se m=n então $\kappa_2(A)=\sigma_1/\sigma_n$.
 - (j) u_1, \ldots, u_p é uma base ortonormal de $\mathcal{R}(A)$.
 - (k) v_{p+1}, \ldots, v_n é uma base ortonormal de $\mathcal{N}(A)$.
- 4. Seja $A^+ \in \mathbb{R}^{n \times m}$ a pseudoinversa de $A \in \mathbb{R}^{m \times n}$. Prove que:
 - (a) $(A^+)^+ = A$.
 - (b) $0^+ = 0^T$.
 - (c) $(A^T)^+ = (A^+)^T$.
 - (d) $(\alpha A)^+ = \alpha^{-1} A^+, \ \alpha \in \mathbb{R} \{0\}.$
 - (e) $AA^{+}A = A$, $A^{+}AA^{+} = A^{+}$, $(A^{+}A)^{T} = A^{+}A$ e $(AA^{+})^{T} = AA^{+}$
 - (e) Se posto(A) = n então $A^{+} = (A^{T}A)^{-1}A^{T}$.
 - (f) Se posto(A) = m então $A^+ = A^T (AA^T)^{-1}$.
 - (g) $||AA^+||_2 = ||A^+A||_2 = 1$.
- 5. Seja $a \in \mathbb{R}$ e considere a matriz $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$. Determine a matriz de posto um mais próxima de A na norma 2 e na norma de Frobenius.

- 6. Determine a SVD das seguintes matrizes:
 - (a) $\begin{pmatrix} 3 & 4 \end{pmatrix}$. (b) $\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$. (c) $\begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$. (d) $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$.
 - (e) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. (f) $\begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$. (g) $\begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix}$.
- 7. O que você pode dizer sobre a SVD de uma matriz simétrica? E de uma matriz ortogonal?
- 8. Determine os autovalores, o determinante e os valores singulares de uma matriz de Householder de ordem n.
- 9. Sejam $0 \neq u \in \mathbb{R}^m$ e $0 \neq v \in \mathbb{R}^n$. Encontre a SVD e a pseudoinversa da matriz $A = uv^T$.

Sistemas Não Lineares

1. Seaja
$$F:\mathbb{R}^2 \to \mathbb{R}^2$$
 definida por $F(x)=egin{bmatrix} x_1^2+x_2^2-4 \\ x_2-x_1^3+1 \end{bmatrix}$.

- (a) Através de um gráfico identifique toda as soluções de F(x)=0.
- (b) Aplique o Método de Newton para encontrar aproximações das soluções.
- (c) O que acontece se tomamos $x^0 = (\varepsilon, 0)^T$ com $|\varepsilon| \ll 1$?
- 2. No método de Newton Estacionário o Jacobiano do ponto inicial é usado em cada iteração, isto é, para $k=0,1,\ldots$ temos que $x^{k+1}=x^k+s^k$ onde $F'(x^0)s^k=-F(x^k)$. Use esse método para estimar as soluções do sistema do exercício anterior e analise os resultados obtidos.