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The number of parameters needed to specify a discrete multivariate
Markov model grows exponentially with the order and dimension of
the chain. For a Markov chain with fixed order o and multivariate
alphabet A = Bk , the number of parameters needed is,

(|B|k − 1)|B|ko.



Example

Consider B = {0, 1},
for k = 2 we have A = {0, 1}2 = {(0, 0); (0, 1); (1, 0); (1, 1)}.

For o = 1 the number of parameters needed to specify the
model will be (4− 1) ∗ 22∗1 = 12.
For o = 2, the number of parameters needed to specify the
model will be (4− 1) ∗ 22∗2 = 48

For k = 3 and o = 3 the number of parameters needed to
specify the model will be (8− 1) ∗ 23∗3 = 3584

The amount of data could be enough to produce good marginal
models and not big enough to produce multivariate models.



We show how a new estimation strategy can help to extend
the memory (length of the past) to be considered in those
series.

The strategy consists on choosing a model for each marginal,
a model for the joint process and then joining those models
using the copula.

In this paper we present the situation on the scope of
Partition Markov Models (PMM).



Notation

Let (Xt) a discrete time, order M Markov chain on a finite
alphabet A = Bk .

Xt = (X (1)t , ...,X (k)t),

X (i)t is the state of the marginal i at time t.

X (i)t ∈ B and

Xt ∈ A = Bk .

Denote the string amam+1 . . . an by anm, where
ai ∈ A, m ≤ i ≤ n.

xn1 will be a size n realization of Xt .



Notation

For each s ∈ S = AM , a ∈ A,

N(s) =
n∑

i=M+1

1{x i−1
i−M=s},

N(s, a) =
n∑

i=M+1

1{x i−1
i−M=s,xi=a},

we denote the conditional joint probability of the process by,

PJ(a|s) = Prob(Xt = a|X t−1
t−M = s).

For each b ∈ B and 1 ≤ i ≤ k, the conditional marginal probability
of the marginal i is,

Pi (b|s) = Prob(X (i)t = b|X t−1
t−M = s).



Equivalence

Definition

(Equivalence relationship based on the joint distribution) For each
s, r ∈ S , s ∼ r if P(a|s) = P(a|r) ∀a ∈ A.

Definition

(Equivalence relationship based on the marginal distributions) For
each i ∈ {1, 2, ...k} and s, r ∈ S ,
s ∼i r if Pi (b|s) = Pi (b|r) ∀b ∈ {0, 1}.

Remark

For each s, r ∈ S , s ∼ r ⇒ s ∼i r ∀i ∈ {1, 2, ...k}.

Remark

If all the sources are independent all the time then, for each
s, r ∈ S ,

s ∼ r ⇐⇒ s ∼i r ∀i ∈ {1, 2, ...k},



Example

Bi-variate case, order 2.

k = 2,

M = 2,

A = {0, 1}2 and S = A2.

For any s, r ∈ S , s ∼ r if and only if,

1) P1(0|s) = P1(0|r),
2) P2(0|s) = P2(0|r) and
3) P((0, 0)|s) = P((0, 0)|r).



Partition Markov Models

Let (Xt) be a discrete time order M Markov chain on a finite
alphabet A. Let us call S = AM the state space. Denote the string
amam+1 . . . an by anm, where ai ∈ A, m ≤ i ≤ n. For each a ∈ A
and s ∈ S, P(a|s) = Prob(Xt = a|X t−1

t−M = s). Let
L = {L1, L2, . . . , LK} be a partition of S, for a ∈ A, L ∈ L,

P(L, a) =
∑
s∈L

Prob(X t−1
t−M = s,Xt = a),

P(L) =
∑
s∈L

Prob(X t−1
t−M = s) andP(a|L) =

P(L, a)

P(L)
.



Definition

Let (Xt) be a discrete time order M Markov chain on a finite
alphabet A. We will say that s, r ∈ S are equivalent (denoted by
s ∼p r) if P(a|s) = P(a|r) ∀a ∈ A. For any s ∈ S, the equivalence
class of s is given by [s] = {r ∈ S|r ∼p s}.

The previous definition allows to define a Markov chain with
“minimal partition”, that is the one which respects the equivalence
relationship.



Definition

Let (Xt) be a discrete time, order M Markov chain on A and let
L = {L1, L2, . . . , LK} be a partition of S. We will say that (Xt) is
a Markov chain with partition L, if this partition is the one defined
by the equivalence relationship ∼p introduced by the previous
definition.



Estimation of the minimal partition

There are several algorithms for the estimation of the minimal
patition (Garćıa and González-López (2011)[1] and Garćıa and
González-López (2017)[2]).

Those algorithms are based on the BIC criterion or on a
distance defined on the state space.

Those algorithms are consistent in the sense that the
estimated partition L̂n converges eventually almost surely to
L, where L is the partition of S defined by the equivalence
relationship ∼p .



Let xn1 be a sample of the process
(
Xt

)
, s ∈ S, a ∈ A and n > M.

Nn(s, a) =
∣∣{t : M < t ≤ n, x t−1

t−M = s, xt = a}
∣∣,

Nn(s) =
∣∣{t : M < t ≤ n, x t−1

t−M = s}
∣∣.

The estimator of P(a|s) is defined by

P̂J(a|s) =

∑
r∈L̂Nn(r , a)∑
r∈L̂Nn(r)

.

such that s ∈ L̂ and L̂ is a part of L̂n. J: indicates its
dependence of the joint process.



Notation

Xt = (X (1)t , ...,X (k)t), where X (i)t ∈ B and it is the state
of the i-source at time t for i = 1, ..., k ,

Xt ∈ A, where A = Bk and B is the finite alphabet for the
one-dimensional marginal processes.

We will assume that for 1 ≤ i ≤ k, X (i)t is an order oM
Markov chain, with oM <∞. The marginal state space is
BoM .

For each s ∈ BoM and b ∈ B, we denote

the marginal conditional probability for the i coordinate by
Pi (b|s) = Prob(X (i)t = b|X (i)t−1

t−oM
= s).

the marginal cumulative function by Fi (·|s), i = 1, . . . , k.

Given a sample xn1 of Xt , we assume o = blog|A|(n)c − 1 and
oM = blog|B|(n)c − 1, as a consequence (oM > o).



Order

In practical situations, given a data set, a way to estimate the
maximal order for the posible model is to use the following rule,
Suppose that the alphabet is a finite set D, with cardinal |D| and
suppose also that the data set is of size N, the relation that will be
followed is

|D|l(|D| − 1) log(N) = N,

where l represents the maximum order possible to be used in the
estimation.



The relation means that the number of parameters is N/ log(N).
Then,

l < log|D|(N)− 1,

for N large.
Because l = log(N)

log(|D|) −
log(|D|−1)

log(|D|) −
log(log(N))

log(|D|) .
According to our assumptions,
Joint Case:

ljoint = o <
log(n)

k log(|B|)
− 1.

Marginal Case:

lmarg = oM <
log(n)

log(|B|)
− 1.



The Procedure

Fit a PMM to the process Xt with a maximum order equal to
o on Ao , obtaining Lo = {Lo1 , ..., Lomo

}, then define a partition
on AoM ,

Pα = {Lα1 , ..., Lαmo
}, with Lαj = ∪s∈Loj {w .s : w ∈ A(oM−o)}

1 ≤ j ≤ mo .

Fit a PMM to each marginal process. Call Li = {Li1, ..., Limi
}

the partition of BoM corresponding to the model fitted to the
marginal process X (i)t , i = 1, . . . , k .

Define the following partition of AoM .

Pβ = {L1
j1 × ...× Lkjk : 1 ≤ j1 ≤ m1, ..., 1 ≤ jk ≤ mk}.

Where L1
j1
× ...× Lkjk = {s(1)× . . .× s(k) : s(i) ∈ Liji}, with

s(1)× . . .× s(k) = {s(1)i , . . . , s(k)i}oMi=1.



Definition

s, r ∈ S are equivalent, denoted by s ∼ r if there exist parts
L ∈ Pα and L′ ∈ Pβ such that s, r ∈ L ∩ L′. The partition of S
given by the relation “∼” is denoted by P.

This means that two states s and r belong to the same part of P if
and only if, they belong to the same part of both Pα and Pβ.
As we see, the longest memory possible in this context is oM .
Now we introduce how to compute the transition probability from
each string in AoM to a ∈ A.



Given s ∈ AoM and a ∈ A :

Let w be the size o suffix of s, that means s = q.w for an
appropriated string q. Consider the estimator

P̂J(a|w) =
∑

r∈L̂ N(r ,a)∑
r∈L̂ N(r) , for w ∈ L̂ such that L̂ is a part of Lo .

For 1 ≤ i ≤ k , let s(i) be the sequence in BoM , that is the
sequence consisting of the concatenation of elements of s in
the coordinate i .
Denote by

P̂i (a(i)|s(i)) the estimate of the marginal probability,
F̂i (a(i)|s(i)) the estimate of the cumulative function,

from the i process of order oM , where a(i) is the i-coordinate
of a.



Incorporating Copula Function

The two set of probabilities are combined in the following way.

We define a k-dimensional copula distribution Ĉ (u1, ...uk |w)
from the joint probabilities P̂J(a|w).

With ui ∈ [0, 1], 1 ≤ i ≤ k. The copula distribution is
evaluated on the marginal distributions, and the estimator is
given by

P̂(Xt ≤ a|s) = Ĉ
(
F̂1(a(1)|s(1)), ..., F̂k(a(k)|s(k))|w

)
.



Theorem

For any L ∈ P if s, r ∈ L then P̂(Xt ≤ a|s) = P̂(Xt ≤ a|r), ∀a ∈ A.

For details about the properties and behavior of this procedure see
Fernández, Garćıa & González-López (2017) [3].



General Form of a K-Discrete Copula

(Z1, . . . ,ZK ) is a vector of discrete random variables, Zk takes
values in the domain Dk = {zk1, zk2, . . . , zkmk

} , for
k = 1, . . . ,K ,

Prob(Z1 = z1i1 , . . . ,ZK = zKiK ) = pz1i1
...zKiK

,

The univariate marginal distribution of Z1 :
pz1i1

•...• =
∑

i2
. . .
∑

iK
pz1i1

z2i2
...zKiK

, for each z1i1 ∈ D1.

The cumulative marginal distribution F1, applied to an
arbitrary point z : F1(z) =

∑
z1i1
≤z pz1i1

•...•.



The k-variate copula density is given by

c(u1, . . . , uK ) =


pz1i1

...zKiK
pz1i1

•...•×...×p•...•zKiK
,

if(u1, . . . , uK ) ∈ ⊗K
k=1[Fk(zkik−1),Fk(zkik ))

0, otherwise,

with Fk(zk1−1) = Fk(zk0) = 0, for k = 1, . . . ,K .
The function c(u1, . . . , uK ) satisfies the following characteristics

(i) it is a probability mass function, displayed in [0, 1]K ,

(ii) the univariate marginal distributions are U(0, 1) and

(iii) the cumulative distribution C of c verifies

Prob(Z1 ≤ z1i1 , . . . ,ZK ≤ zKiK ) = C
(
F1(z1i1), . . . ,FK (zKiK )

)
,

for all (z1i1 , . . . , zKiK ) ∈ ⊗K
k=1Dk .

see Fernández, Garćıa & González-López (2015) [4].



Conjecture and Evidences

According to the linguistic conjecture (Lloyd (1940) [5], Pike
(1945) [6] and Abercrombie (1967) [7]), the languages are
divided into three classes by their rhythmic properties, those
are: stress-timed, syllable-timed and mora-timed.

Examples in each class are, English and Dutch (stress-timed),
French, Spanish and Italian (syllable-timed), Japanese
(mora-timed).

Was reported the existence of intermediate languages, Catalan
and Polish are examples. Polish shows a high syllable
complexity but without the expected vowel reduction for a
stress-timed language. Catalan has the same syllabic system
as Spanish but it has vowel reduction.

Ramus et al. (1999) [8], Garćıa, González-López & Viola
(2012) [1], Garćıa & González-López (2014) [2].



Linguistic Data

The data set consists of 576 recorded sentences belonging to 3
languages and it is described in the next table,

Table: Sentences from English (EN), Japanese (JA), Spanish (SP). From
a corpus belonging to the Laboratoire de Sciences Cognitives et
Psycholinguistique (EHESS/CNRS).

Language EN JA SP

Number of sentences 152 212 212

The sentences have lengths going from 2 to 3.5 seconds, digitalized
at 16.000 samples per second, i.e. sample rate of 16 kHz.



Fixed a language l we consider the sentence j of length Tl ,j . Given

a frequency f we denote by ϑl ,jt (f ) the power spectral density at
time t for that sentence j and language l where t = 1, · · · ,Tl ,j .
For each time t we consider the stochastic processes (energies)

χl ,j
1 (t) =

∑
f =80,100,...,800

ϑl ,jt (f ),

χl ,j
2 (t) =

∑
f =820,1520,...,1480

ϑl ,jt (f ),

χl ,j
3 (t) =

∑
f =1500,1520,...,5000

ϑl ,jt (f ).

The definition of the energies bands, including the frequencies for
the bands, where chosen based on previous works about automatic
segmentations of speech signal in vowels and consonants, see for
example Garćıa et al. (2002) [3].



For each sentence j from language l and an energy band k , where
k = 1 represents the inferior band of energy χl ,j

1 (t), k = 2

represents the midband of energy χl ,j
2 (t) and k = 3 represents the

superior band of energy χl ,j
3 (t) we define Y l ,j ,k

t = 1 if

χl ,j
k (t + 1) > χl ,j

k (t), and Y l ,j ,k
t = 0 otherwise.

From the above description the size of the data set for each
language is given by the next table.

Table: Sample size available, for each language.

Language EN JA SP

Size 17010 22035 26528



According to the rules established to define o and oM , we have

Table: Orders for each language.

Language EN JA SP

oM 13 13 13
o 3 3 3



The next table shows a brief description of the Partition Markov
Models: marginals and joint, estimated for each language.

Table: Cardinal of partitions. Marginals: Li , i = 1 - inferior band, i = 2 -
midband, i = 3 - superior band.

Language |L1| |L2| |L3| |Lo | (Joint)

EN 7 8 7 11
JAP 8 8 8 14
SP 7 9 8 12



Profiles

We say that the profile of the language has been well charted if
comparing the predictive ability of this model (PMM’s+Copula) to
others, it brings an improvement. For this, we use to compare two
settings (1) the joint PMM model of order o and (2) the model of
independence, between the marginal processes.

Table: Predictive ability: proportion of correct predictions.

Language Independence joint PMM (order o) PMM’s+Copula

EN 0.4120 0.3454 0.4564
JAP 0.3795 0.3743 0.4422
SP 0.3618 0.3909 0.4455



Applying equation (??) and from P̂J with memory o = 2 we obtain

P̂J
(
xt−1xt = (0, 0)(2, 0)|x t−2

t−3 = (1, 0)(2, 0)
)

= P̂J
(
xt−1 = (0, 0)|x t−2

t−3

)
P̂
(
xt = (2, 0)|x t−1

t−2

)
= 0.00083.

But if we compare with the estimation made with P̂

P̂
(
xt−1xt = (0, 0)(2, 0)|x t−2

t−7

)
= P̂

(
xt−1 = (0, 0)|x t−2

t−7

)
P̂
(
xt = (2, 0)|x t−1

t−6

)
= 0.23862.

We obtain a probability (0.23862) which could be meaningful for a
financial decision.



Final Remarks

In this paper we show how it can be relevant to consider a
longer past, to make predictions of events of interest.

We show how this issue is a challenge in the Markov models
and for this reason it makes sense to use models built from an
economic conception, as in the case of Partition Markov
Models.

The incorporation of the concept of copula brings great
benefit to those models, allowing to extend the memory to be
considered in the statistical estimation of the process.

With the procedure described in this article, we see that it is
possible to produce an improvement in the predictive power of
the model, and this is because we incorporate through a
copula the marginal estimates, which will require a smaller
sample size than required by a traditional joint estimate.
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Thanks for your attention!,
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