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Abstract

We construct a Fourier—Mukai transform for smooth complex vector burfdleser a torus
bundler : M — B, the vector bundles being endowed with various structures of increasing
complexity. At a minimum, we consider vector bundewiith a flat partial unitary connection, that
is families or deformations of flat vector bundles (or unitary local systems) on theftoriss leads
to a correspondence between such objectafcend relative skyscraper sheavgsupported on a
spectral coveringc < M, wheres : M — Bis the flat dual fiber bundle. Additional structures on
(E, V) (flatness, anti-self-duality) will be reflected by corresponding data on the tran&forhy.
Several variations of this construction will be presented, emphasizing the aspects of foliation theory
which enter into this picture.
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1. Introduction

The construction nowadays known as trrurier—Mukai transfornfirst appeared in a
seminal work by Muka[11], where it was shown that the derived categories of sheaves on
an abelian variety (e.g. a complex torus) is equivalent to the derived category of coherent
sheaves on thdual abelian variety.
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Since then, the Fourier—Mukai transform has been generalized in different ways, and has
led to a number of interesting results concerning not only the derived categories of coherent
sheaves, but also the moduli spaces of stable sheaves on abelian varieties, K3 surfaces and
elliptic surfaces.

This paper draws on two types of generalization of Mukai’'s original ideas. First, one
can considefamiliesof abelian varieties, and define a transform that takes (complexes of)
sheaves on a family of abelian varieties to (complexes of) sheaves on the correspioadliing
family. This has been applied with great success to the study of stable sheaves on elliptic
surfaces (i.e. holomorphic families of elliptic curves parametrized by an algebraic curve),
see for instanci] and the references there. In particular, given an elliptic sufagecan
be shown that there exists a 1-1 correspondence between vector bundlegtoch are
stable with respect to some suitable polarization, and certain torsion sheaves (spectral data)
on the relative Jacobian surface (§&&] for details).

On the other hand, Mukai's construction can be generalized from complexteailtori.

Such a generalization, first considered by Arinkin and Polishch{i{ iis briefly described
in Section 2

Building on previous work by Arinkin and Polishchyk] and by Bruzzo et al[3,4],
we consider in this paper a Fourier—Mukai transform for vector bundles with (partial)
connections on families of real tori. Rather than restricting ourselves to flat connections
on Lagrangianfamilies of real tori as iff1,4], we study a broader class of connections on
vector bundles over a (not necessarily symplectic) maniféldith the structure of dlat
torus bundle.

After briefly reviewing the Fourier—Mukai transform for real tori, followifg], we start
in Section 3by defining a Fourier—Mukai transform fdoliated bundleswhich in our
context can be viewed damilies of flat bundlesn the fibers of the torus bundlé¢ — B.

This takes foliated Hermitian vector bundles owinto certain torsion sheaves on the dual
fibration — B.We thenintroduce the conceptRdincaré basic connectiofis Section 4

and extend our construction to include vector bundles provided with such connections. We
then conclude irSection 5by applying our techniques to three different examples: flat
connections, that is unitary local systems, instantons on 4-dimensional circle fibrations,
and monopoles on 3-dimensional circle fibrations.

Itis a somewhat surprising fact that certain concepts and techniques from foliation theory
occur quite naturally in the context of the Fourier—Mukai transform. Besides the notions of
foliated bundle and Poincaré basic connection which refer to the torus fibration, that is to
a foliation which is rather trivial from the point of view of foliation theory, there is also a
canonical foliation on the dual fibratialt — B, transverse to the fibers which has a more
complicated structure. For locally trivial families of flat bundles on the fibers of the torus
bundleM — B, it turns out that the suppors < M of the Fourier—Mukai transform are
(finite unions of) leaves of this transverse foliation. This allows us to gi&eittion 5.1an
explicit parametrization of the representation vari®ty (n) of M in terms of leaves with
transversal holonomy of ordérsuch that|n.

The main motivation behinfl] and[3,4] comes from string theory and the Strominger—
Yau—Zaslow approach to mirror symmetry, with the main goal of understanding Kontsevich’s
homological mirror symmetry conjecture. In a sense, the two main results here presented
may also be relevant to the understanding of Kontsevich’'s conjecture. Although it seems
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reasonable to expect that the ideas explored in this paper might provide some interesting
connections with String Theory and mirror symmetry, we do not elaborate on them, leaving
such a task to mathematical physicists.

Notation.We work on the category of red@°-manifolds. By a vector bundle over a
manifold X, we mean aC*° vector bundle oveX. We will also identify a vector bundle
with the corresponding sheaf 6™ sections. By the same token, a sheafdbshould be
understood as a sheaf of modules over the algebé&ofunctions onX.

2. Local systems on tori

Let us begin by briefly recalling the Fourier—Mukai transform for real tori, as defined by
Arinkin and Polishchull] and Bruzzo et a[3]; the interested reader should refer to these
papers for the details of this construction.

Let T be thed-dimensional real torus, that i = R/ A for the rankd integral lattice
A C RY. The associated dual torus is definedas (R9)*/(A)*, where

(A ={ze RDH*: z2(y) € Z,Vy € A}, (2.1)
is the dual lattice. From the exact sequence
0 — Homy(A, U(1)) - HY(T, 03)3 HX(T, Z) — 0, (2.2)

we see that, up to gauge equivalence, pointé parametrize flat unitary connections on
the trivial line bundleC = T x C — T, since we have

N exp

T = HY(T,R)/HNT, Z) = Homy (A, U(1)) = UL (2.3)
Foré e T,x e R, a € A andx e C, consider the equivalence relation

RIxTxC—RIxTxC/~, (x+a,& L) ~ (x, & expE@)r). (2.4)
The quotient space under* defines the Poincaré line bundfe — 7' x T. Let p and
p denote the natural projections ©fx T onto its first and second factors, respectively.
In accordance with{2.4), the bundleP has the property that fay € T, the restriction

Plp~ L = Lg, where the latter denotes the flat line bundle parametrized. By is
straightforward to see that

1 1 ~ 1
Q. =p ot e pal. (2.5)

Corresponding to the definition a@f and its above property, it is shown 8] that there
exists a canonical connecti®p : P — P ® Q:Tl'xf"' whose connection form is given by

d
A=2m) &dz, (2.6)
j=1

where{z/} are (flat) coordinates ofi and{&;} are dual (flat) coordinates dh The con-
nectionVp splits as the surv)y, @ Vi, where

; =(1p®r)oVp, VIP =(1p®1 oVp, (2.7)
with natural maps : 21 . — p*@k andr: 21 . — prel.
TxT TxT T
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For later purposes we shall denote the dual of any complex vector bAnufeE and
in particular the dual line bundle at by PY.
Now consider the categori&ky(T) andLoc(T) defined as follows (s€@]):

e Loc(7) isthe category dfinitary local systemsnT. Its objects are pait&, V) consisting
of a smooth complex vector bundie— T and a flat unitary connectiovi. Morphisms
are simply bundle maps compatible with the connections.

e Sky(T)isthe category of skyscraper sheave§ aifinite length, thatis, dinH(7", §) <
oo, for all § € Ob(Sky(T)).

The Fourier—Mukai transformis the invertible functor
F : Loc(T) — Sky(T), (2.8)

which we now describe. GivetE, V) € Ob(Loc(7)), we have theelative connection
Vi p*E® PY — p*E® PY ® p*$27,
Vi = Qeepy @1 o (VRLlpy + 1 ® Vpv), (2.9)
andthe transversal connection

Vi p'PE®P' — pPEQ PV ® p*Q%,,

Vi =QEery @D o (VR1py + 1 @ Vpv). (2.10)
As a section of Endp*E ® PY) ® ‘Q?xf’ the commutator satisfies (see d1]):
ViVL + VEVE =1 ® V2, (2.11)

Lemma 2.1(Bruzzo et al[3]). If (E, V) € Ob(Loc(D)), then

(1) R/ ps(kervy) =0,for0< j<d—1.
(2) S =R p.(kervi) e ObSky(7)).

Moreover dim HO(7, S) = rankE.

We say thatS = F(E, V) is thg Fourier—Mukai transform of the local systém V).
Conversely, takes € Ob(Sky(7')), and leto be the support of. Clearly, p*S ® P as a
sheaf onl" x T, is supported o’ x ¢. Thus

RIp«(p*S®P)=0, for 0< j<d, (2.12)
while E = R%p,.(p*S ® P) is a locally free sheaf of rank dit%(7", S). In order to get a
connection orE, consider again the relative connection:

1s@Vh:p*'S® P — p*S® P ® p*k. (2.13)
Pushing it down td’, we get a connection

V=Rp.(1s®V}): E > E® 2%, (2.14)
sinceR%p.(p*S® P® p*2%) = E® 2%, by the projection formula. Sina@’,)? = 0, we

conclude 'EhaV is indeed flat, hencéz, V) € Ob(Loc(7)), as desired. We use the notation
(E, V) =F(9).
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In summary, referring once more i8], we have the following proposition.

Proposition 2.2. The functord- andF are inverse to each othgaind yield an equivalence
between the categorieoc(7) and Sky(T).

3. The Fourier—-Mukai transform

Let M be a smooth manifold of dimensian which is the total space of&torus bundle
over a(m — d)-dimensional connected manifol] that is

74 < M5B. (3.1)

Givenapoinb € B, we definel}, = 7~ 1(b) to be the fiber ovelr, where the point(b) marks

the origin of T,. Regarded as a bundle of groups; M — B admits a discrete structure
group Au(7) = GL(d, Z), and so the former has the structure of a flat fiber bundle and
admits a O-section : B — M. Since the fibet" is compact, this flat structure is determined
by a holonomy homomorphism: 71(B) — Aut(T) = GL(d, Z) as a twisted product

M=Bx,T (3.2)

Remark 3.1. For the purpose of this paper, we may weaken the structure of the fiber bundle
m . M — B as follows. Let Diff(T, 0) be the group of diffeomorphisms @f which fix

the origin. Then Dif{7) is given as a crossed product Qify = T x,, Diff (T, 0), where

T acts by translations and Diff, o) acts onT in the obvious way. Moreover the canonical
homomorphism DiffT, o) — mo(Diff (T, 0)) to the mapping class group is realized as a
deformation retraction

Diff(T,0) —— Aut(A)

1

Aw(T) —=— GL(d.Z) (3.3)

viagp — @ — ¢ = ¢|A € Aut(A), whereg is the unique equivariant lift ap € Diff (7, o)

to Diff (R?, 0) and@ coincides with the automorphisg induced byy on the fundamental
groupm1(7,0) = A. The statement about the deformation retraction follows from the
fact that any diffeomorphism (actually any homeomorphism) which fixes the lattice
isotopic to the identity, and in fact the connected component, Oiff) is contractible to

the identity; an elementary result which is stated in the 1960’s thesis of John Franks (as
pointed out to us by Keith Burns). This said, we may start with a fiber bundig#/ — B

with structure group DiffT, o). This still guarantees the existence of the seatio®® — M

and the previous holonomy homomorphigm 71 (B) — Aut(7) is now recovered as the
canonical homomorphismy (B) — mo(Diff (7, 0)) associated to the fiber bundte M —

B. Formula(3.4)for r1(M) remains valid, as well as the flat struct(8e7) of the dual fiber
bundles : M — B, the latter property being a consequence of the homotopy invariance
of singular cohomology. In fact, the above deformation retraction implies that the structure
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group of a Diff(7, o)-torus bundle admits a unique reduction to &utc Diff (7, o) and so
. M — Bis still diffeomorphic to a flat fiber bundle of the for(8.2).

The fundamental group @ is determined as a crossed product

0— A =n(D) - m(M) = 11(T) x,, 71(B) > 71(B) — 1, (3.4)

wherep, is given by the induced action afi (B) on A via the isomorphism Gld, Z) =
Aut(A).
We have the exact sequence

0— T(r) > TM— 7n*TB— 0, (3.5)

and the dual sequence of 1-forms
0— 7*Q% - 21, — 9%4/3 — 0. (3.6)

Observe that a flat structure of: M — B defines a splitting of the exact sequen(®$)
and (3.6)

The dual fiber bundleM — B is given by the total space ®'7,R/R7,Z as a
(locally constant) sheaf oA. If # : M — B is the natural projection, it is easy to see that
#71(b) = T,. Note that this projection also has a 0-sectign: B — M. It follows that
71 M — Bis given by the flat bundle of fiber conomologies

M=Bx,T, (3.7)

where p* is the induced action of1(B) on T = HYT,R)/H(T,Z). Furthermore,

R%,R/RY%,Z coincides withM as sheaves oA, and we havell = M.

Let Z = M xp M be the fiber product, with its natural projectiops Z — M and
p: Z — M onto the first and second factors. Clearty, p = 7 o p and( o p)~1(b) =
Tp x Tp.

/\
\/

Itis also easy to see that L (x) = Ty, forallx € M andp=1(y) = Ty, forally € 1.
Deﬁmng.Q;/M = .Q%/p*[?}lf/[, recall that the Gauss—Manin connection yields a splitting
of the short exact sequence

(3.8)

0—p Qleﬂrm 0, (3.9)

—
Z/M
such that we have the decomposition

l_A*l 1
QG =prey e, (3.10)
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From(3.6)it follows that
QE/M = p*Qyy/p: (3.11)

sincep : Z — M is the pull-back fibration of : M — B alongs.

There exists a line bundiBoverZ = M x g M, with the property tha®| (o p)~1(b) is
just the Poincaré line bundf@, overT;, x Ty, for all b € B (see[4]). We callP the relative
Poincaré line bundleJust as in the absolute case, it has the property that &/, the
restrictionP|p~1(¢) = Lg, where the latter denotes the flat line bundle parametrized by
£ e T, C M.

There is a canonical connection @hwhich we denote bywp. Following [4], we can
write its connection matrix\ in a suitable gauge on an open subSex 7' x T C Z as
follows:

d
A=2my Eidi, (3.12)
j=1

where{z/} are (flat) coordinates ot and{¢;} are dual (flat) coordinates dh. In such
coordinates the curvatuiie= V% is then given by

d
F=2m) d&A de/. (3.13)
j=1

In the same coordinate system, we h&ﬁ@ = —F.
3.1. Transforming foliated bundles

Let E — M be a Hermitian vector bundle of rank With reference t¢3.5), we assume
afoliated bundlestructure onE given by aflat partial unitary connectior8]:

Vi E— E® 2y, = E® QY /705, (3.14)

satisfying(%E)2 =0.
The local structure of a foliated bundl€, %E) on M is described next.

Example 3.2. Local structure of foliated bundles ov: intuitively, a foliated bundle on
M 5B is a family of flat bundles (unitary local system&,, Vg,) on the fibersT),
parametrized by € B. Of course, the topology @f has to be taken into account. The local
description is quite similar to that of the Poincaré line bundI€id), which is of course
an example of a foliated bundle. Thus for sufficiently small open Bets B, there are
isomorphisms

Ux (REx,CY) —=— E |7 Y(U)

J,id x7! l7|7r’lU

UxT — 7 '(U), (3.15)

IR
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where the identification on the LHS is given by
(ba X + a, )") ~ (b’ X, exméh(a)))\')v (316)

A A EXp
foré = (£1,...,8,),&;: U — T, T=Homy(A,U(1),b e U,x e R?,a e Aandr € C".
Relative to a (good) open covéfof B, we have coordinate changes otgk = U; N Uy
of the form

(id, Gik, gik) : Uik x R? x C"S Uy x RY x €,
compatible with the identifications ¥{3.16) that is
Adj(gik (b)) o eXpE; (a)) = exXpE, (Pika)).- (3.17)

Here{ypik} is the smooth 1-cocycle dhwith values in Diff(7, o) describing the fiber bundle
7 : M — B, ®is the unique equivariant lift af € Diff (T; o) to Diff (R?, 0) and® = p| A

is the induced automorphism on the lattide {gjk} is a smooth 1-cochain of local gauge
transformationgix : Uk — U(n) onl.

From(3.13)we see that the unitary connectiovis andVpv are flat along the fibers of
the projectionp : Z — M in (3.8)and induce flat partial unitary connectioﬁ& and%Pv
onPandP". Pulling E back toZ and tensoring with the dual Poincaré buritg consider
the flat partial connection:

Vi=pVE®lp +1e®@Vpy i pPERP > pEQP @92 .. (3.18)
Now for eachb € B, the pair(E, % ) restricts to a unitary local syste¢#,, Vg, ) over the
fiber T, while the connectioﬁg restricts to the operatcﬁ‘gb induced by(2.9). Therefore,

R P« (Ker V)| Ty x ) = R by s (kervg, ), (3.19)

wherepy, : T, x T, — T, isthe projection onto the second factor.
On the other hand, let, i, be the inclusions of}, Tj into M and M respectively, and
consider the diagram:

~LpXip

Ty x T, —> A
lljb lﬁ
Ty ——M (3.20)

Then the topological base char@é¢ yields the isomorphism (for & j < d):

R pi(ker Vi) | Ty = R py o (ker Vi) | Ty x Tp). (3.21)
Combining with(3.19) one obtains:

R pi(ker Vi) | Ty, = Ry« (ker Vi, ). (3.22)
It then follows fromLemma 2.1that

R/pu(kervi) =0, j=0,...,d—1 (3.23)
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Now we set

E =R p.(kerVy), (3.24)

with its support denoted b¥ = X (E, %E) = suppE. From(3.22) we have then
E|Ty = Ry (kerVi, ). (3.25)

The following elementary lemma is useful. As it is purely local, it is valid for any foliated
bundleE — M.

Lemma 3.3. For sufficiently small open sets ¢ M, the foliated Hermitian vector bundle
E|V admits%E-paralleI unitary frames = (s1, ..., sp), thatis %Esi =0,i=1,...,n.

It follows that%E is linear over the sheaf*Op of basic functions and the shdafr%E of
%E-parallel sections is locally free as a module ovetOp, of the same rank as.E

Proof. This can be shown easily by working in a sufficiently small Frobenius dhat
U x U’ c U x T over whichE trivializes, choosing any unitary frame alobigx a,a € U’

and then using parallel transport relative to the flat partial unitary conneiozﬁdn the fiber
directionU’. O

In our context, this means thﬁg is linear with respect tp* O, . In particular, the sheaf
ker@jE of @g-parallel sections ip*E ® P" is a locally free module ovep*O,. Further,
the derived direct imageé is a torsion module oved .

For X = suppﬁj, we shall also consider the fiber produtt = M xp X, with py :
Zy — M,andpy : Zy — X, denoting the natural projections:

7z,
S
Py
M )y
B

There is also the restriction @y of the relative Poincaré line bundie we denote this by
Py =P|Zx.Letj: ¥ — M be the inclusion map, and Iét: Zs < Z be the induced
inclusion.

Next we setC = j*(ker V), and consider the sheaf

(3.26)

L=E=Rps.K). (3.27)

Proposition 3.4. For E given by(3.24)and X = suppE, we have

(1) E|T, € Ob(Sky, (1)) for b € B and the support of £ is closed and transversal to
all fibersTp,.
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(2) For =, = ¥ N T, = supp E|T}), the counting functionX,| satisfiesl < |X}| < n,
Vb € B.Thesetd/, C B,¢ =1,...,n,forwhich|X,| > ¢ are open in Bpossibly
empty for¢ > 1,and satisfyU,, € --- C Upy1 C Uy, C--- C U1 = B.

(3) For everyb € B, there is an open neighborhodd c B of b, such that the connected
componentﬁgl(U)g of frz_l(U) C X containingé € X, separate the elemergss X,
and# ! (U)¢ can be exhausted by afinite number of smooth seations — 75 (U)e,
such thab; (b) = &. For U sufficiently smallthe number of sections needed is bounded
by the rank ofL at& € X,.

(4) Therank off — X at& € X, is equal to the multiplicity of the irreducible represen-
tation exp(€) in the unitary local systert&,, Vi, ) on Ty, that is the multiplicity of the
trivial representation in the flat bundlg;, ® Lg — Tp.

We say thatr < M, satisfying (1)—(3) in Lemma 3.4, is&fold ramified covering of B
of dimensionn — d = dim(B). A point& € X' is calledregular or smoothif the connected
componenﬁgl(U)g is given by a single section: U = frgl(U)g for a sufficiently small
open neighborhood of b = 77(§). TheregularsetXeg C X is the set of regular points in
X, Xregis an open, dense subset®df Xyeg — M is a smooth submanifold and the rank of
Lis locally constant otEeg, thatis£ is a locally free module on the connected components
of Xreq. The closed, residual complemeBging = X' \ Xyeqis called thebranch locusof
7y . X — B.We saythal — M is smoothif the branch locusZsingis empty. In this case
we haveXieg = X and X — M is a closed smooth submanifold, the rank(ois locally
constant on¥ and the semicontinuous counting functipgj| is locally constant, hence
constant orB. In particular,X is smooth ifU,, = B, that is|X,| = n on B, in which case
L is a complex line bundle o' If X is in addition connected, thel is a smooth:-fold
covering space oB in the usual sense and we say that: ¥ — B isnon-degenerate

Proof. Lemma 2.1and the identificatio§3.22)imply that
E|Ty = R Py« (ker Vi, ) € Ob(Sky, (7). (3.28)

SinceX), = supfE|7}), and dimH(T}, E|T;) = n, part(1) follows easily.

Foré € ¥, we havep—1(&) = T}, and from(3.25) we see that the rank dfat£ is given
by the rank of the cohomology groug? (7, ker@gb). This proves (4).

From (1), we have ¥k |X,| < n. From (4), we see that the second condition in (2) is
really the semicontinuity of the number of distinct holonomy representationsY), in
the bundlest;,. Thus forb € B, there is a neighborhodd;, c B, such thatX,/| > | 2],

b’ € Up. Thenb € U, implies thatlU, C U, and (2) follows.

Finally, (3) is proved by using the local description of a foliated bundIExample 3.2
and (4). In fact, the number of sections needed is equal to the number of distinct germs at
b among the functions; passing through in (3.16)and therefore is bounded by the rank
of Laté € X, O

In view of the above result, we say th&tis arelative skyscrapefthat is, a sheaf whose
restriction E|T, to each fiberT, is a skyscraper sheaf of constant finite length)s the
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sheaf of multiplicitiesind X' is thespectral coveringf (E, %E). Note that these structures
are completely determined by the flat partial connectign

3.2. The inverse transform for relative skyscrapers

The inverse construction is considerably simpler. Our starting point is thefalr),
whereS is a relative skyscraper of constant lengthn 7 supported on a-fold ramified
coveringy «— M of B of dimensionn — d = dim(B).

Using the same notation as before, recall that the fiber pradgct M x g ¥, is of di-
mensionn, andpy : Zx — M isann-fold ramified covering map. Thusitis easyto see that

S=pr.(p5S® Py), (3.29)

is a locally free sheaf of rankon M. Furthermore, the construction reveals tRaarries a
canonical flat partial connectloms In fact, p%.S carries a canonical flat partial connection

relative topy : Zy — M and so doe®s..
3.3. The main result

Motivated by the results above, let us introduce the following categories of sheaves with
connections o/ and M.

Definition 3.5. Vect (M) is the category of foliated Hermitian vector bundlesMren-

dowed with a flat partial unitary connection. Objectd/ect) (M) are pairs(E, % E) con-
sisting of a Hermitian vector bundIE of rank» and a flat partial unitary connectiong.
Morphisms are bundle maps compatible with such connections.

Definition 3.6. RelSky, (M) is the category ofelative skyscraper®n M. Objects in
ReISkyn(M) are pairgS, X) consisting of a relative skyscrapg&of constant length on
M, supported on a-fold ramified coveringZ <> M of B of dimensionn — d = dim(B).
Morphisms are sheaf maps Of;,-modules.

The constructions isections 3.1 and 3.@efine additive covariant functors
F: Vect% (M) — RelSky,, (M), F : RelSky, (M) — Vectf (M). (3.30)
For limits in the appropriate sense, let
Vect (M) = lim Vect] (M) and RelSky(i1) = lim RelSky, (i1). (3.31)

With these definitions in place, we can state our main result.

Theorem 3.7. The Fourier—Mukai transfornfr defines an additive natural equivalence of
categories

F : Vect’ (M) RelSky(iir). (3.32)
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Proof. We claim that= andF are adjoint functors which in fact define an equivalence of
categories. From the constructionfoindF, there exist natural transformations

$s:S— FoF(S), S e Ob(RelSky, (M)), (3.33)
and

Ve EoF(E) > E, E e Ob(Vect (M)). (3.34)
These natural transformations define adjunction maps

@ : Morphy, (F(S), E) — Morphg(S, F(E)),
¥ : Morphg (S, F(E)) — Morphy, (F(S), E), (3.35)

where Morply and Morplg denote morphisms Mecti (M) andRelSky, (81), respectively.
Explicitly, for 7 : F(S) — E, we have by naturality

D(f) = F(f) o ¢s, (3.36)
so thatps determinesp. Likewise, forg : S — F(E), we have by naturality
W(g) = Y o F(g). (3.37)

so thaty g determine® as well. The natural transformatiof&33) (3.34)correspond then
to s = @(1,3(8)) andy g = ¥(1r(g)), respectively. The fact that the adjunction maps
andv are inverses of each other, is equivalent to the compositions

PF(E) F(YE)

F(E) = FoF o (F(E)) = Fo (FoF(E) —> F(E),

F(S) F(gs) o

—> Fo(Fo F(S)) =FoFo (F(S)) S), (3.38)
resulting in the identities df(F) andF(S), respectively.

The construction has the further property that it is compatible with localization relative to
open subsets C B, that is, the restrictions to~1(U) and#~1(U). Moreover, we observe
that the restriction of andF to the fibers ofM and i atb € B respectively, coincides
with the functors

Fp : Loc(T,) — Sky(T3), Fp 1 Sky(T) — Loc(Tp), (3.39)

for eachb < B. It follows from [3,10] that¢s, : 1;, = Fj o Fp andyg, : FpoFp = 17,
From this we conclude thais andy g are indeed iIsomorphisms. O

Let V € Vect,(B), whereVect, (B) is the category of complex vector bundles of rank
over B. Thenz*Y carries a canonlcal flat partial connectigR«y, so that(z*V, vn*v) is
an object invecty, (M), while 7%V = nzoV is an object irRelSky, (M), supported on the

0-sectionXy = oo(B) C M. The construction oF is compatible with these pull-backs,
that is we have a commutative diagram
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VectY (M) —=— RelSky,, (M)

| %]

Vect,(B) —— Vect,(B). (3.40)

Moreover, the Fourier—Mukai transforfhas a module property with respeciect” (B).

Corollary 3.8. For (E, %E) € Vect8 (M) andV € Vect(B), the Fourier—Mukai transform
F satisfies

F((T'V, Vaey) ® (E, Vi) = 75V @ F(E, V), (3.41)

whereX is the support ofF (E, %E).

4. The Fourier—-Mukai transform for vector bundles with Poincaré basic connections
4.1. Transforming bundles with Poincaré basic connections

Let E — M be afoliated Hermitian vector bundle of ramkand letVg : E — E® Q}W
be a unitary connection oB. We say thatVg is adaptedto the foliated structure o,

if Vg induces the flat partial connecticﬁng E - EQ® 9%4/3 via the canonical map

b — 9111/1/3 in (3.6). The existence of adapted connections follows from an elementary
partition of unity argument.

At this point, it is also useful to introduce the bigrading on the DeRham algelya
determined by a splitting of the exact seque(&:8), respectively(3.6).

2y =20 ® 2 =12 ® 2y . (4.1)
u is called thetransversal or basidegree and is called thefiber degree.
Consider now the adapted connection
Ve=p'VE®@1p + 1@ Vo 1 p'E® P’ > p'E®@ P @ 2L, (4.2)
on p*E ® P". With respect to a corresponding splitting(8f9), we haveVy = V. & VL,
where

Vi =(Lggp ®1N o Ve pPE®QPY — p'EQP'® Qém, (4.3)

is the relative connection, and

Vi = (pgp ®D o Ve P EQPY > p E®P' @ p*$2%, (4.4)
is the transversal connection, that is the components of(§d and(1, 0) of Vg respec-
tively.

In the sequel, we always view the curvattlﬁ‘% of Vg as a 2-form with values in the
adjoint bundle Eng E) of skew-hermitian endomorphisms Bf
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Lemma 4.1. The type-decomposition of the curvat® is given by

(V32 = p*((V))*H) ® 1pv =0, (4.5)

(VH)?° = p*(VD*O) ® 1pv = (VD)2 (4.6)
and

VM = p* (VA" @ lp — 1, ®F = &, (4.7)

where the operatoE is given by the commutator

E=VhoVL—VioV, p'EQP' - p'EQP' @ 25t (4.8)

Henceforth we adopt the usual sign rule which equips the extension of the transversal
operatorV, to forms of higher degree with a sigr-1)” on forms of type(u, v).

Proof. Firstly from (4.2)and the decompositio@.3), (4.4) we have
ﬁE = p*vE X 1Pv +1r® va = V% + V%_ (4.9)

Computing the curvature operaﬁ% in two ways, we obtain

Vi =(p"'VE)®lpy + 15 ® V5, = p*(VE) ® 1ps — 1x ® F = (Vi + V)?
= (Vi) + (V)2 + & (4.10)

SinceV; is adapted to the foliated structuta: on E, we have(V2)%2 = 0. SinceVg is
adapted to the foliated structure phE ® PV relative top : Z — M, we have(V2)%2 =

(Vi )2 = 0. The curvaturé of the relative Poincaré bundf is of type (1, 1) by (3.13)
and(Vy, )2 andZ are of type(2, 0) and(1, 1) respectively by definition. Thus the assertions
(4.5)—(4.7)follow from (4.10) We use(3.11) to conclude that the pull-bagk® preserves
the curvature types. O

We need to recall a few facts abdwdisicconnections in the foliated Hermitian vector
o
bundle(E, V) [8]. Note that all the statements below are of local nature.

Lemma 4.2. For any adapted connectiovig, the following conditions are equivalent

(1) The contractionxv = 0, for all vector fields X inT(x);

(2) The mixed compone(sz)l 1 of Vg vanishes

(3) The curvaturev coincides with the basic componeitz)?9, that isva = (V2)20;
(4) For any z-projectable transversal vector field, the operatorVy preserves the sheaf

kerv and depends only of = .. 7.
The following condition is a consequence of the above properties
(5) For m-projectable transversal vector fields Y’, the curvatureV%(Y ,Y’) preserves

kerv and depends only ofi = 7,7, Y/ = 7, 7",
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Proof. Since (V}%)Q2 = (%E)2 = 0, the equivalence of (1)—(3) is immediate, so we
elaborate only on conditions (4) and (5). The mixed compo(i@ﬁ)lvl is characterized by
the formula

(VHLUX, 1)) = VE(X, )(s) = Vx(Vs) = Vi (Vxs) = Viy iy (4.11)

for vector fieldsX in T(;r) andz-projectable transversal vector fieldsThus fors € ker%,
we have from (2)

(V2)LH(X, V)(s) = Vx(Vys) = Vx(Vys) =0, (4.12)

sincer,[X, Y] = [m.X, m.Y] = [0, Y] = 0. The implication (4} (2) follows from(4.12),
usingLemma 3.3 o o L
Likewise, the vector field¥, Y’ satisfyz,[Y, Y'] = [#.Y, 7.Y'] = [Y, Y'] and we have

from (4) fors € ker%:

(VRO Y)(s) = VE, Y)(s) = V§(Vyus) = Vi (Vips) = Vi 318
= Vy(VY/S) - Vy/(VYS) - V[Ky/]s. (4.13)
Thus (4) implies (5). O

We say thaW is abasicconnection, if any of the equivalent conditionsliemma 4.2
holds. In general, a foliated vector bundle, v ) does not admit basic connections. In our
context, the following example describes essentially the class of foliated bundles which do
admit basic connections.

Example 4.3. Locally trivial families of flat bundles: as iBxample 3.2we view a foliated
vector bundlg E, V) as a family of flat bundles on the fibefs, parametrized by € B.
We say that this family i¢ocally trivial if there exists a flat bundl€Eg, Vp) on the torus
T, determined by a holonomy homomorphigm= (¢4, ..., &,) € Homgz(A, U(n)), and
a (good) open covér of B such that for every/ € U, there are isomorphisms of foliated
vector bundles as indicated in the following diagram, similgi3td5)

Ux (RExyC) ——— Ux Ey —— E |7 Y(U)

lexr/ lidxm lT‘W i

UxT =L UXxT —=- a~1(U) . (4.14)

On overlapgJik in U, the coordinate changes on the LHS are giver§3¥7) except that
now the holonomy homomorphisngsare independent df € U;.

In the case of locally trivial families, much more can be said about the spectral covering
X of (E, V). In short, we claim tha¥ is a finite union oleavesthat is maximal integral
manifolds, of the transverse foliatigFion# : M — B determined by3.7), the leaves of
F being holonomy coverings ove®. Locally overU, Xy = frEl(U) is given by a finite
number of constant sections of the corresponding trivialization 7 — U of M — B
and we haveXieg = X, that is all points ofX' are regular and the branch locus is empty.
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ThereforeX <> M is a smooth submanifold and the rank of the multiplicity sh&af
is locally constant o>, hence constant on the connected components.dfhe above
local properties ofy imply that the connected components of the spectral coveXing
are integral manifolds of the transverse foliatidn The structure off; shows also that
7y . ¥ — B satisfies the unique path-lifting property. Therefore any path in theﬁfgaf
through¢ € X, starting a& must already be in the connected component'afontaining
&. Thus the connected componentssbare maximal integral manifolds OF. These leaves
are closed in¥, since they intersect the complete transvergglin < n points. More
precisely, the set&;, C 7, are invariant under the action of (B, b) on 7}, determined by
p*m(B) — Aut(T) = Aut(A), with the orbits and their multiplicities corresponding to
the component leaves af and the rank of on these components respectively. This allows
us to decomposel, X)), respectivelyE, V g) according to its leaf ‘components.

We abbreviate the above properties®fy saying thats < M is locally constant
From the local formulg3.13)for the curvaturdr of the Poincaré bundI®, we see that
F|Zx, = 0. Obviously,Vg extends to a basic, in fact a flat connectdsn onU x Eg and
these connections can be patched together to a basic conn&gtion E via a partition
of unity on B subordinate to the covét. A special case of locally trivial families of flat
bundles onthe fibersis of course given by flat bundigsvr) on the total spac& (compare
Section 5.}, in which case the bundle is determined by a global holonomy homomorphism
o m1(M) — U(n), so that the representation dnis determined by restriction, that is by
the diagram

A=m(T) —— TQ)"

m(M) —2— Un). (4.15)

In order to understand the interplay between the obstruction for the existence of a basic
connection and the behavior of the curvature t8f#iy, we next look at the case of foliated
complex line bundles.

Example 4.4. Suppose thatk, VE) is a foliated complex line bundle ai1. In this case,
the spectral covering < M is a sections of # — B, the multiplicity sheafC on X is
a sheafofrank 1 andy : Zyx — M is a diffeomorphism. Thus byheorem 3.%ve have
the following.

PSE = pyL R Ps. (4.16)

It follows that the connectioW» and any connectio¥ on £ induce an adapted connection
Vi on E, such thatp}.((V4):1) = F|Zx (compareSection 4.2 This connectiorVp: is
basic, if (and only if) the spectral sectienis locally constant, that i6E, V) is a locally
trivial family of flat line bundles. This follows fronExample 4.3

Forfoliated line bundles, the functbr: E — L hasthe following multiplicative property.
GivenE = E1 ® E>, the spectral sections are relateddy= o1 + o2 and we denote by
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pi - ¥ — X; the canonical projection. Then a direct calculation frefnE = p3.L ® Py,
P, Ei = p, Li ® Py, yields the product formula o', respectivelyZ s

L= piLy1® p5Lo, Prx = (A% p1)*Ps, ® (1 x p2)*Px,. (4.17)

These examples motivate the following definition.

Qefinition 4.5. The adapted connectidry is Poincaré basidf the p s-adapted connection
Ve on pi.E ® Py. on Zy is basic, that is fronf4.7)in Lemma 4.1

FHL = pLvEHI _Fizs =0. (4.18)

Here we view the scalar forifi as a form with values in the center pf. End,(E), using
the canonical isomorphism of foliated bundles Epd E ® PY) = p* End,(E).

For our purposes, it is actually sufficient that the curvaffite/2)1! vanishes on the
subsheak = j*(ker V) defined earlier, that is we hay&(V2)L1|K = 0 or equivalently

PE(VHIK =F|Zs. (4.19)

This corresponds to the equivalent condition (4).emma 4.2applied to the connection
VE.

We now proceed to construct a connectén : £ — £ ® 21, given a Poincaré basic
connectionvVg on E — M. From(4.7)we see that

= . 11
E|Zy =0:psE® Py — p5EQ Py ® 25, (4.20)
Therefore the diagram below with exact rows is commutative (up to sign)

iV

. " ~ 7* Vs
0 K PLE ®PY PEEQPY @O, o prE e PY @ 0

[ Ji*vg li*vg li*%
-

N R J N X j‘*VT] % -
00— K @50k —= pi B @ PY @ prQh —> phE @ PY @ Oyl —> pt B @ PY @ Oy

L j;*vg lj*vg LWE
-

~ A~ 9 J Y * j*vrfj
0—> K@ peOd — ph B @ PY @ pr% —> phE @ PY ® O3 —> ptE @ Py @ Q7

(4.21)
and the restriction of* V. to the subsheaf induces a connection
VKT K - K ® pit. (4.22)

Alternatively, we may use the conditigd.19)to arrive at the same conclusion. Recalling
thatL = Rdﬁ);,*(IC) and using the projection formula, this leads to a connection

Ve=Rps (VY L - L@ 02L. (4.23)

For later reference, we compute the curvature of the transformed conn®&gtion
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Lemma 4.6. The curvature of the connectidfy is given by
V2 = R pr(VEN? = RO pr . (pi(VEOIK). (4.24)

Proof. Since j*(V2)%2 = 7*(VZ)L1 = 0 by assumption, the curvature tefftVvz =
7¥(V2)20 = pt(v2)20 leaves the sheaf — Zyx invariant byLemma 4.2 (5) and we
have from(4.6)
Vi =Rps.(VEN = Rps.(*VEIKD? = R Py . (G5 (Vi) K)
=R PGP (VPO = R pr . (P (VEZOIK).

In this calculation we also used diagrém21) O

Recall that the pai¢E, Vi) is said to beeducibleif there are bundles with connections
(E1, VE,) and(E, Vg,) such thatE = E1 @ E2 andVg = Vg, @ Vg,. The pair(E, Vi)
is said to barreducibleif it is not reducible.
Lemma 4.7. If (E, Vg) = (E1, VE;) @ (E2, VE,), then
(L, Ve, X) = (L1, Vi, 1) @ (L2, Ve,, X2), (4.25)
whereX = X1 U Xb.

Proof. The statement is clear from the definitions. Indeed, we hav®& ke kerVg, @
kerVg,, so thatf = E1 @ E, by (3.24)and thereforel = £1 @ L,. SinceVE® also splits
as a direct sum, it follows fror#.23)thatV, = V¢, @ V,. As for supports, we note that

= 3(E, V) = 51U 55, whereX; = S(E;, %E,-)- 0

Definition 4.8. The triple (L, V., X) is called theFourier—Mukai transformof (E, Vi),
andX = X(E, %E) = suppk is called thespectral coveringssociated with the underlying
foliated structure E, %E).

4.2. The inverse transform for connections

GAiven(S,VE) asinSection 3.2IetV§ bea connectig)n o8. In order to obtain a connection
onF(S) = &, recall from(3.29)thatS is defined byS = px «(p%.S ® Px). Consider the
connection

Vs = psVs®lpy + 1s® Vp,  peS® Py — prS®Pr ® 25 . (4.26)
Since} . = p%.82},, it follows from the projection formula that
Pr(PES®OPr® 2} ) =8® 2} (4.27)

Thus we define the connectiov; on S, adapted to the flat partial connectiooxg in
Section 3.2by

Vs=pr:Vs:8—> 8@ 2} (4.28)
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The curvatureV?S of Vg is computed next, from the formula

V2= psVi®lp, + 1s®F|Z5. (4.29)
Lemma 4.9. The curvaturevg of the connectiolVy is determined by

2,0,2 2,2,0 _ % 2

(Vs-) <=0, (Vs) = PZ,*(F*EVS)» (4.30)
and

(VO = pru(V3,) = ps«(FIZ5). (4.31)
Thisimplies that the connectidry is Poincare basicsince the pull-back’: Vsis p »-basic

The triple (S, Vs, X) is reducible if there are triple§S1, Vs;, X1) and(Sz, Vs,, X2),

suchthatwe hav® = ¥1UX5and(S, Vs, X) = (S1, Vs;. Z1)®(S2, Vs,. o). Thetriple
(S, Vs, X) is said to be irreglucible if itis not reducible. Moreover,(@n— d)-dimensional
smooth submanifold — M, which is arm-fold covering of B transversal to all fibers, is
said to beproperif the trivial local system(C, d, ), consisting of the trivial line bundle on
X with the trivial flat connection, is irreducible. Clearly,3fis proper, then it is connected.
Lemma 4.10. If (S, Vs, X) = (S1, Vs;. 21) @ (S2, Vs,, X2), then

(8. Vo) = (31, Vs,) @ (Sa, Vs,)- (4.32)
Moreover if (S, Vg, X) is irreducible with smooth suppoiX, then X = suppsS is proper.
Proof. The first statement follows easily from the definitions of the previous paragraph.

Now if ¥ = suppS is not proper, thenC, d, X) splits as the sumSy, Vs,, 1) @
(82, Vs,, X2), whereX = ¥1 U X5, X; = suppS;. Thus

(8.Vs,X) =(5, Vs, ) ® (C,d, X)
= (S, Vs, ) ® (81, Vs, £1) © (S, Vs, X) ® (S2, Vs,, X2)
= (S® 81, Vsgs;, 1) @ (S® S2, Vsgs,, X2),
and(S, Vg, X) is reducible. O

4.3. The main theorem for bundles with Poincaré basic connections

Definition 4.11. Vec;Y(A/D is the category of foliated Hermitian vector bundles &n
endowed with a Poincaré basic unitary connection. Objedt’edmf(m are paird E, Vg)
consisting of a foliated Hermitian vector bundieof rank» and a Poincaré basic unitary
connectionVg. Morphisms are bundle maps compatible with the connections.

Definition 4.12. Speg (M) is the category oépectral dateon M. Objects inSpe¢’ (M)
are triples(S, Vs, X), such that the pai(S, X) is an object inReISkyn(M) and Vg is
a connection orsS| 5. Morphisms are sheaf maps 6f;,-modules compatible with the
connections.
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Theorem 4.13. The Fourier—Mukai transforn defines an additive natural equivalence
of categories

F : Vect™ (M) Sped (i1). (4.33)

Proof. In view of the natural isomorphismgss : S SF o F(S), ¥ : Fo F(E) 3 E in the
proof of Theorem 3.7it suffices to show that we have gauge equivalem;@cs = Vs
andyz Ve = V;. We comment only on the proof for the second gauge equivalence. In
fact, our constructions d¥ in Section 4.1andF in Section 4.2how thatVz corresponds

to px .« (P5Ve). O

LetVectY (B) be the category of complex vector bundiésf rankn over B with unitary
connectionVy and fix a painV, Vy) € Veth(B). Thena*(V, Vy) = (#*V, 7*Vy) is an
object inVecty (M), while 73(V, Vy) is an object irSpeg, (M) supported on the 0-section
Yo = o0(B) C M. The construction of is again compatible with these pull-backs, that is
we have the commutative diagram similar to

Vecty (M) F, SpecY(]\//f)

VectY (B) —— Vecty (B). (4.34)
Moreover,Corollary 3.8remains valid foiF on Vect" (M).

Corollary 4.14. For (E, Vi) € Vect¥ (M) and (V, Vy) € Vect¥ (B), the Fourier—-Mukai
transformF satisfies

F(*(V. Vv) ® (E, VE)) = 7%(V, Vv) ® F(E, Vi), (4.35)

whereY is the support of (E, VE).

Corollary 4.15. (E, V) € Vect,Y(M) is of the form(E, Vi) = *(V, Vy), for (V, Vy) €
VectY (B), if and only if the support of the Fourier—-Mukai transforf(E, V) is the
0-sectionXy = oo(B) of p : M — B.

As a consequence aeémmas 4.7 and 4.18ndTheorem 4.13we have the following.

Corollary 4.16. The pair(E, Vg) is irreducible if and only if its transforn(E, Vg) is
irreducible

For complex vector bundlgs, V) with unitary connectiotVg, there is a well-known
reduction theorerf®, Chapter Il, Theorem 7.Hased on the decomposition of the holonomy
group in Un) into irreducible components. Our construction shows that this defines a
decomposition of E, Vi) € Vect¥ (M) into irreducible components. Froftheorem 4.13
andCorollary 4.16 we obtain a similar decomposition BfE, V) in Spec’ (M). In the
smooth case, the irreducible pais, Vi) € Vect,Y(M) are characterized as follows.
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Proposition 4.17. Suppose that the spectral coverib@f (E, Vi) € Vect! (M) is smooth.
Then the pairE, V) is irreducible if and only if its transform(L, V¢, ) = F(E, Vg)
satisfies the following condition&’ is connected X,| = ¢ on B for somé|n, and(L, V)
is a vector bundle of rank = n/¢ with irreducible holonomy. The coverirdgs : ¥ — B
is non-degenerate exactly fér= n, k = 1. In addition, any smoothconnected spectral
manifold X < A is proper

Proof. This is a consequence @forollary 4.16and the remarks followingroposition
3.4 O

From Example 4.3 we have the following characterization of locally trivial families
(E, %E) of flat bundles along the fibers.

Corollary 4.18. The Fourier—Mukai transfornf- defines an equivalence between pairs
(E,VE) € Vect,Y (M), such that(E, %E) is a locally trivial family of flat bundles along the
fibers andVg is basig and spectral datdS, Vs, X) € Spe(;Y (M), such that the spectral
coveringX C M is locally constant and has locally constant rank oi.

Combining this withProposition 4.17we obtain in addition the following.

Corollary 4.19. (E, Vg) € Vect,Y(A/D as inCorollary 4.18is irreducible if and only if
the spectral coverind is a leaf of the transversal foliatiof in (3.17) | X»| = £ on B for
somel|n, 1(B, b) acts transitively onz, = XN 7T, and(L, V) is a vector bundle of rank
k = n/¢ with irreducible holonomy.

FromExample 4.4in particular formulg4.17), we have the following characterization
of foliated line bundles oM.

Corollary 4.20. The Fourier—-Mukai transforr defines a multiplicative equivalence be-
tween pairs(E, Vg) € VectY(M) and spectral datdS, Vg, X) € Specf(M), whereS is
a complex line bundle with connecti®fy on the spectral sectio®' = o(B).

5. Applications and examples

Let us now apply our theorems to a few interesting examples. We are particularly inter-
ested in seeing how differential conditions on the connecligrare transformed.

5.1. Local systems and the representation variety

As a first example, we now look at the action of the Fourier—Mukai transform in the
subcategornyjLoc, (M) of unitary local systems of rank on M. So letE — M be a
complex Hermitian vector bundle of ramkand takeVg to be a flat unitary connection
onkE.
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Lemmab5.1. If Vg isflat then the spectral covering — M of (E, %E) is locally constant
the rank off is locally constant or® and the transformv is also flat

Proof. This follows from (4.24) observing that a flat connection is basic with locally
constant spectral covering — M and henc&'|Zx = 0 (compareéExample 4.3. O

Next, we argue that the inverse transform also preserves flatness, provided the spectral
coveringX < M is locally constant.

Lemma 5.2. If the spectral covering® < M is locally constant andv is flat, then its
transformVy is also flat

Proof. Firstly, the assumption on the spectral covering implies ‘ﬂf;uz; =F|Zy =0.
SinceVs is flat, the Lemma follows froni4.29)or Lemma 4.9 O

With these facts in mind, we introduce the following definition.

Definition 5.3. SpecLog(M) is the full subcategory oSpe(;Y(Zf/I) consisting of those
objects(S, Vs, X) such that the spectral coverig < M and the rank ofS on X are
locally constant, an¥ is flat.

As a consequence dtheorem 4.13andLemmas 5.1 and 5,2ve obtain the following
theorem.

Theorem 5.4. The Fourier—Mukai transforr defines a natural equivalence of categories

F : Loc, (M)= SpecLoc, (#1).

For unitary local systems oM, the decomposition into irreducible components in
Section 4.3applies mutatis mutandis and we may shargamollary 4.19accordingly,
usingTheorem 5.4

Corollary 5.5. (E, Vi) € Loc”(M)Ais irreduciblg if and only if the spectral covering
is a leaf of the transversal foliatiof in (3.7), | X| = ¢ on B for somée|n, 71(B, b) acts
transitively onX, and (£, V) is an irreducible flat vector bundle of rarikk= n/¢, that is
an irreducibleU (k)-local system ork.

Now let Ry, (n) denote the moduli space of irreducible unitary local systems of rank
n > 1 on M. Recall thatR;(n) coincides with theepresentation varietpf 71(M), that
is, the set of all irreducible representationg M) — U(n) modulo conjugation. Let also
S(n) denote the set of all connected, locally consi@nt— d)-dimensional submanifolds
¥ <> M (modulo isomorphisms), such that the trivial local sysi€nd, ¥) is a relative
skyscraper of length for £|n, that is

(C.d, X) € SpecLog (M). (5.1)



382 J.F. Glazebrook et al./ Journal of Geometry and Physics 50 (2004) 360-392

Then(5.1) implies that|X,| = ¢ on B, since the muItipIicity of this system is 1. From
Example 4.3and Corollary 5.5 we see thatl — M is a (proper)-sheeted leaf of the
transverse foliatio¥ on# : # — B determined by(3.7), with transitive transversal
holonomy of orde¥. For givent|n, we denote the corresponding subse§of) by S(n)°.
We will see that thegenericelements ofS(n) are those irS(n)" and we proceed with an
explicit parametrization of these moduli spaces.

The transverse foliatioF on# : M — B provides the link between our geometric
setup and the representation theory and we refer agdixample 4.3andCorollary 5.5
for the discussion to follow. Recall that the leaves/ofire the imagesF: of the level
setsB x {£} in (3.7) and are therefore covering spaces oBesf the formﬁ-‘g = B/Fp,g,
wherel, ¢ C m1(B,b) is the isotropy group & < T, under the action corresponding
to p* : m(B) — Aut(T). Here we fix a basepoirit € B once and for all. It is now
clear that the structure of the spac®®), respectivelyS(n)* may be described in terms
of the transversal holonomy groupoid on the complete transvéraal the leaf space of
F. The leaf space of is the quotientr1(B) \ T, which may behave quite badly. But for
our purposes, we need only consider the invariant subshace 7 defined by the € 7
satisfying [, ¢ : m1(B)] < oo, that is the leaves with finite transversal holonomy, on which
thenl(B) -orbits are finite by definitionTsi, has an invariant relatively closetratification
T,-1 Cc T, C ---, given by the pointg e Ty satisfying ﬂ‘pg : nl(B)] < n. The main
stratum in7;, is then given by the invariant relatively open $&tc 7;, of those pointg for
which [I, ¢ : 71(B)] = n. Here we have tacitly used the ‘semicontinuity’ for the isotropy
groups of a smooth group action, thati3 | : w1(B)] > n is an open condition and hence
[Ipe : m1(B)] < nis aclosed condition.

For the generic € S(n)", we haveX = fg B/Fp ¢, Where the isotropy group
Iy C m1(B, b) hasindexs and X, = X' N 7 corresponds to an orbit (of orde) in the
main stratund™. For¢ < n, ¢jn and X € S(n)¢, we haveX = ]-'5 = B/Fp g, where the
isotropy groupl ), £ C w1(B, b) has index and X, corresponds to the orbit (of ordéy of
alimit element off™ in 7¢ c 7,1 = T, \ 7".

Theorem 5.6. The spaceS(n) of spectral manifolds associated to irreducilién)-rep-
resentations imk y;(n) is of the form

£n

Smy=8m"u || Jsm"]. (5.2)

l<n

and is parametrizeup to automorphismdyy

£n
mB\{T"u || JT ]} c B\ T, (5.3)

l<n

that is the space of leaves BFwith finite transversal holonomy of ordérwith ¢|n. The
mapping
¥(n) : Ry@n) - Sn), (5.4)
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defined by (n)(E, Vi) = suppF(E, Vi) = X, has the following properties

(1) The generic partv(n)" = ¥Ym)|Ry®)" : Rym)" — Sr)" is surjective where
Ru(m)* = ¥(n)~1S(n)" is the space of irreducible representations for which the
induced fiber holonomy representatioffs, ..., £,},&; € T Homy (A, U(1)) of A
consistof n distinct elements. The fildgn) ~1(X) over the generic elements € S(n)"
corresponds exactly to tHeé(1)-local systems o’ under the functoF.

(2) The fiberw(n)~1(X) for £ € Sn)¢, ¢ < n, corresponds tdequivalence classes)of
irreducible U (k)-local systems ol for k = n/¢ under the functofF.

An extreme situation occurs in the contexiGirollary 4.15 In this case, the irreducible
flat vector bundl€E, V) is the pull-back of an irreducible flat vector bundhé Vy) on
the baseB, determined by an irreducible (W)-representation of1(B). We havet = 1,

k = n, X is the O-sectiorZg = oo(B) of # : M — B and the corresponding orbit is given
by the origin 0e 7.

Proof. The structure ofS(n) follows from the description preceding the theorem. From
Corollary 5.5ve see tha?¥(n) (E, Vi) = SUppF(E, Vi) belongs taS(n). To see thaw(n)"

is surjective oriRy;(n)", take ¥ € S(n)" and let(C, d) be the trivial U1)-local system
on X. SinceX is proper,(C, d, X) is irreducible andC, d, X)) € SpecLog(M) implies
that X € S(n)" satisfieg X,| = n. Then it follows fromCorollary 4.16and Theorem 5.4
thatﬁ(@, d, X) is an irreducible Wn)-local system o/ and defines a point ifR 3 (n)"
mapping toX under¥(n)". The statements about the fibersugf:) in (1) and (2) also
follow from Corollary 5.5 that is(E, Vi) € ¥(n)~1(), if and only if F(E, Vg) is an
irreducible Uk)-local system or® € S(n)t, for £|n, k = n/¢. O

For the corresponding irreducible(t)-representations, we recall that the induced fiber
holonomy representatiofg,, . .., §,},£; € T = Homy, (A, U(1)) of A consist generically
of n distinct elements, that is they are orbits of ordeof the actionp* : 71(B) —
Aut(T) = Aut(A). How does one then describe the irreducible: ) Jrepresentation of
71(M) in ¥(n)~1(X) ¢ Ru(n)"* associated to a (1)-local system(S, Vs, X) for ¥ €
S(n)", or more generally to any irreducible(k)-local system(S, Vs, X) for £ € S(n)*
via F? We claim that the irreducible (@)-representations of the crossed prodidct) for
m1(M) are obtained by thimduced representatidinom irreducible Uk)-representations on
a subgroup of indegwith £|n in 1 (M) to the full group. Infactfok = n/¢, any Uk)-local
systemsS on X is determined by a homomorphism: 71(X, §) = I, ¢ — U(k), which
together with the above datuine 7¢ defines an irreducible unitary representation

(exp®),n) 1 A x,, Ipe— Uk), (5.5)

that is a Uk)-representation on a subgroup of indéin the crossed produet; (M) =
A x,, w1(B). We need to verify ex) (o«(y)(@)) = n(y) exp@)(@)n(y)~ = expé)(a),
a e A,y € I'y ¢, which is obvious, since (1) is identified with the center of ) and I, ¢
fixes& underp*.

Looking at the construction of the inverse Fourier—Mukai transfBrrim particular the
push-down operatiop s . for the ¢-fold covering mappys : Zx — M, we see that the
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irreducible Un)-representation af1(M) in Theorem 5.6given byIA:(S,], Vs,, X) of the
U(k)-local system(S;, Vs,) on X' defined byn, is in fact the induced representation of
(exp(é), n). A

For the generic casé = n, k = 1, that is(C, d, ¥) € SpecLog, (M), the index of
I, ¢ C m1(B) isn andthe unitary local systems anare 1-dimensional. It then follows also
that the irreducible (z)-representation at1(M) associated t¢E s, Ve,) = IE(Q, d, >
corresponds to the induced representatioeaf(&), 1), that is the trivial representation
n=10fI,¢.

In summary, the following theorem is the algebraic versiomltgorem 5.6given purely
in terms of representation theory.

Theorem 5.7. For the torus bundler : M — B in (3.1), the representation varietit y; (n)
of the fundamental group1 (M), given by the crossed produ?.4) with respect to the
actionp : r1(B) — Aut(T) = GL(d, Z), is parametrized by the following data

(1) Elementg¢] e 71(B) \ T, for ¢|n, that is orbits of order in the dual torusl” under
the induced actiop* : 71(B) — Aut(7).

(2) Irreducible unitary representationg : I, — U(k) of the isotropy groupgl, ¢ C
71(B) of indext at& € T*, for k = n/¢.

These data determine an irreducililen)-representation ofr1 (M) by the induced repre-
sentation oflexp(é), n) : A x,, I, ¢ — U(k) from the subgroup of indekin the crossed
productm1(M).

This induction corresponds to the funcfarThe generic case occurs fore 71(B) \ 17,
that is¢ = n, k = 1 and the induction process yields the elementR jp(n)" in this case

So far, we have not made any assumptions which guarantee non-trivial examples, but there
is no doubt that there are many such situations, e.g. when (B) — Aut(7) = GL(d, Z)
is surjectivep : w1(Bg) — Aut(T?) = GL(2, Z), whereB, is an oriented surface of genus
g > 1, orm1(B) finite, etc.

Remark 5.8. Degeneracy properties for the variefyn) and the representation variety
Ru(n):

(1) The parametrizatiof5.3)of S(n) is not closed inry(B) \ 7;,. At the limit points in(5.3)
corresponding t&(n)¢, ¢ < n, the action ofr1(B) is still transitive, even though the
orbit degenerates and the corresponding representationg & are still irreducible.
We denote byS(n) the set of allm — d)-dimensional submanifolds < A which are
a finite union of leaves of the foliatia#, whose transversal holonomy is of orden
(modulo transversal automorphisms#f In a precise sensé(n) corresponds to the
closure ofr1(B)\ 7" inthe orbit space1 (B)\ 7, of leaves with finite holonomy of order
< n. The generic element$(n)" correspond to the open, dense subs&B) \ ™ c
T(B\T" Cra(B)\ Ty . o

(2) At a limit point of r1(B) \ 1" in w1(B) \ T,—-1 = m1(B) \ (T, \ T"), the action of
the holonomy group will generally fail to be transitive, the orbit structure degenerates,
the index drops and we end up with a finite number of orbits,isaimes an orbit
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of order¢;, such thady_; k;¢; = n. Geometrically, this means that thefold covering
(leaf) 7y : ¥ — B collapses under this limiting process#gefold coverings (leaves)
7y, © X; — B of multiplicity k;, satisfying the above relation. The ‘degeneracy’
condition forX € S(n) c S(n) at the limit is then of the form

€. d 2~ ekCd ),

ki(C.d. %) = (CY. d. %)) e SpeclLog, (M), Y kit; =n. (5.6)
i

(3) Thelimitdegeneracy of the spectral coverxigorresponds of course to the degeneracy
ofthe representatiorg, . . ., &,} of A. Infact, with multiple holonomy representations
in the limit, the action of the holonomy group will generally fail to be transitive, the
orbit structure will degenerate, the index will fall and the representation will decompose
into sums ofk; times an irreducible representations of r@aksuch thad ", k;¢; = n.

(4) The spacéR y(n) of irreducible Un)-representations may be completed as well by
adding (sums of) irreducible representations of lower rank, as described above. This is
similar to the completion of stable bundles to include semistable bundles.dgn
extends by continuity to a surjective mapping

Y(n) : Ry(n) - Sn). (5.7)

Theorem 5.41) remains valid on the generic (open dense) suRsgtn)”, but on the
boundary ofS(n) the structure of the fibers @f(n) is more complicated, in accordance
with Theorem 5.62) and the previous remarks.

Remark 5.9. Structure of the representation varid®y, (n): Theorem 5.61) means that

the representation variety of a torus bundleM — B resembles generically amegrable
systemthat is a fibration by abelian groups. It would be very interesting to determine
the conditions under whicR ,;(n) is a symplectic manifold, with the fibers @f(n) :

Ry (n) — S(n) being Lagrangian ove$(n)".

5.2. Instantons off!-fibered 4-manifolds

Here we consider the case= 4,d = 1, and takgy = g7 " gp to be a bundle-like
Riemannian metric oM with respect to the fiber spa¢g.1) and the exact sequen(®5).
AssumingM to be orientedg,, induces a splitting of the bundle of 2-forms a4 into
self-dual (SD) and anti-self-dual (ASD) 2-forms under the Hodge opesator

2% =25 02y, (5.8)
From(4.1)we also have the decomposition
Q=P e =BTy ® 2y (5.9)

Sincegy is bundle-like, the Hodge operator exchanges the summai@®jand therefore
a 2-formw = (0?0, w1) satisfieskw = +w if and only if

*w = (xo’l, ¥0?% = £(0?°, ') = to, (5.10)
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that isxw®! = +0?0 or equivalentlyxw?® = +w’1, so that the projectiong?, — 220
and2, — .le‘f induce isomorphisms

+ = 520 + = 511
20— 24, 20— 2y

Given a Hermitian vector bundl€ with unitary connectiorivg over M, recall thatVg
is said to be SD (respectively ASD) if its curvatu@ is SD (respectively ASD) as a
End,(E)-valued 2-form, that is

*V2 = +V2, (5.11)
which by (5.10)is equivalent to
(V2)20 = + 4 (v2)L1, (5.12)

Now Z 5 is 4-dimensional and the metrig. g, prescribes a Riemannian ramified cov-
ering (Zs, px.gm) — (M, gu). The pull-backps. defines decompositions liK@.8) and
(5.9)on Z; relative to the pull-back fiber bundfes : Zx, — M. Using(4.6), we see that
the (A)SDEg. (5.12)on Zx can be written as

F(VE20 = ph(vE)20 = £t (x(VEEY) = £ x5 ph(VEIHL (5.13)

Suppose now that the adapted unitary connecligns in addition Poincaré basic. Then
we have from(5.13) and (4.18)

VR0 = p5(VE?0 = £ x5 (F|Z). (5.14)
In the following lemma we use the functbr: Vect,Y(M) — Spe(;Y(M) to transform an
instanton(E, Vg) on M to the corresponding spectral daia V., X).
Lemma 5.10. Suppose that the Poincaré basic unitary connectignis (A)SD. Then we
have
% (92120 _
Px(Vp)© = x5 (F|Zx). (5.15)

Further, the scalar(2, 0)-form @ = *x(IF|Zyx) is harmonic and in particulap s-basig
thatis® = pS.w. The curvatureV% of the transformed connectidv, is then given by

Vi = +RY)5 (@) = o. (5.16)
Proof. We need to show that is harmonic. Sincg*(V2)%2 = j*(V2)+1 = 0 by assump-

tion, we havej*Va = j*(V2)20 = p.(v2)20. Computing traces and usir(§.14) we
obtain

FTrV2 = tn sy (F|Zs). (5.17)
Since the first Chern polynomial W2 is closed, we see froifs.17)that
dé):d*z (F|Z§;) =0. (5.18)

AsdF = dV% = 0from(3.13) it follows thatlF| Z 5 must be darmonic2-form with respect
to the bundle-like metrigx = p%.gm on Zx. Sinced = xx(F|Zy) is of type(2, 0), we
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have alsaxw = 0, for any vector fieldX in T(px) and therefordlxw = ix do = 0;
in other words is in addition aps-basic form and s& = p%.w, for a unique closed
2-forme on X. Eq. (5.16)follows then from(4.24) In fact, we havev2 = £Rpx . (@) =

R} 5 (Phw) = to. O

Note that the curvature terpi.(V2)2% must be independent of the choice of the con-

nection Vg, sincelF|Zx depends only on the foliated structuig, %E). Moreover, the
curvature termp’s-(V2)2% must also be scalar-valued (i.e. assume values in the center of
Py Endi(E)), for IF is scalar-valued.

Theorem 5.11. Assume that there exists a bundle-like metficwith respect to which the
formo = *x(IF|Zyx) is harmonic. The functor and F induce an equivalence between
the following objects

(1) Foliated Hermitian vector bundle&, Vi) € Vect,Y (M) with Poincaré basic unitary
connectionsvg, satisfying th A)SD-Eq. (5.12)

(2) Relative skyscraperss, Vs, X) in Speg (M), such that the curvatur&? of the con-
nectionVg satisfies

V2 = 4. 5.19
S

The harmonicity conditiorf5.18)for the curvaturet|Z 5 of the connectiorvp on Py
depends only on the foliated structyfe v £) and the bundle-like metrig, and is therefore
an a priori obstruction for the existence of Poincaré basic instantons, that is solutions of
Eqg. (5.12) respectively5.15)

Proof. This follows from combinind.emma 5.10wnith Theorem 4.13 O

Finally, we analyze the properties of the parameter spaces for the various structures for
a fixed foliated vector bundl€E, V). For two adapted connectiongg, V., we have
Vi = Ve + ¢, wherep € C*(M, Endy(E) ® SZ ) that is the adapted connections form
an affine space modeled on the linear spa&& M, End,(E) ® Q ) ForV, = Vg + ¢,
we have also

(VAL = (v2)L1 4 Vi (g). (5.20)

Therefore ifV is basig then the curvature tertv2)11 vanishes an@, = Vg + ¢ is
basic if and only ifV £ () = 0. Thus the space of basic connections is elther empty or else
an affine space modeled on the linear spac‘e-pbrallel sections in EndE) ® !2

Now if V is Poincaré basicthen the curvature terjt (V2):! = 0 andp%.(V2 )1 lis
fixed by(4.18) ThenV} = Vg + ¢ is Poincaré basic, if and only ji5Ve(¢) =0onZx

which is equivalent to%E(w) 0. Thus the space of Poincaré basic connections isran
affine space modeled also on the linear space—pfarallel sections in EndF) ® Ql 0
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For the instantons in thiSection 5.2the curvature termi* (V2)2C is also fixed by(5.14)
andV} = Vg + ¢ satisfies the instantdeq. (5.14) if and only if in addition to the previous
condition, the parameter satisfies the quadratic PDE

VEe(p) + 3[e. ¢] = 0. (5.21)

Here the Lie bracket is taken in the adjoint bundle E&g. Note that the expressions in
(5.21)are of type(2, 0), since we already ha\’%E((p) = 0 from (2).

5.3. Monopoles ot !-fibered 3-manifolds

We keep the assumptions and notation of the previ®estion 5.2 but now we take
m = 3,d = 1. The Hodge operator given by the bundle-like meggctransforms now

. ~20= 40,1 .~oL1=E 510
* 1820 —> 82,0, * 18y —> 8.

Given a Hermitian vector bundIg with unitary connectiorVg over M, we consider the
corresponding connection foreon the unitary frame bundIgy (E) with curvature form
Fy.

The (A)SD equation is now replaced by t@nopolesquation relative to a Higgs field
¢ in Endi(E).

*Fp = Da¢p =do +[A, ¢], (5.22)
or in terms of the corresponding unitary connectign

*V2 = V(). (5.23)
The type-decomposition ¢6.22) respectively5.23)is then given by

P30 =Dl = d®¢+[A% ¢l #Fy'= D% =d"% 4[4 ¢],

(5.24)

or in terms of the corresponding unitary connectign

«(VB20=ve@@).  *(VH = Vy%9). (5.25)

Now Zx is 3-dimensional and the metrj€;. gy prescribes a Riemannian ramified cov-
erng(Zx, p5-gm) — (M, gu). From(5.25)it follows that the monopolequations (5.25)
for the pair(A, ¢), respectivel( Vg, ¢) on M are now expressed dfis by

sxps(VE?0 = phVe@).  *spu(VH = Vi(phe) = piVE°(@). (5.26)

In order to proceed with the reduction 0, we need to assume that the Higgs figlis

parallel along the fibers, that . (¢) = 0. By (5.25) this is equivalent tqv2)20 = 0.
Therefore we restrict attention to special solutions of the monaggplations (5.25namely

(V320 -0, Vi@ =0,  x(VHLI=vi04). (5.27)
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Suppose again that the adapted unitary connegtiors in addition Poincaré basic. Then
we havej*(V2)11 = pi (v2)L1 —F|Z5s = 0 and therefore the connectighV must be
flat by Lemma 4.10n Z 5, the monopolequations (5.27are now given by

(v2)20=0, Vi) =0,  VL(pid) = piVi%(p) = +x(F|Zs). (5.28)

Observe that the second equation is of type0). From (5.28) and the vanishing of the
commutatorZ in (4.20) it follows that the scalafl, 0)-form @ = xx(F|Zy) is closed
along the fibers, that is

d%&) = d% (*2(F|Z§)) =0. (5.29)

From the first equation i(5.27) and (4.6)we see thathE)2 = 0 and thereforg5.28)
implies that

Vi@ = Vi(xx(F|Zx)) = 0. (5.30)
As @ is scalar-valued5.29) and (5.30are equivalent to
dxx (F|Zx)) =do = Vg =0. (5.31)

It follows that the(1, 1)-form F|Z 5 is harmonig since & = 0 from (3.13)
As was the case for instantonsSection 5.2the harmonicity of the curvatui@ Z 5; of
the connectiorVp on Py is a necessary condition for the existence of solution® &7)

depending only on the foliated structutg, %E) and the bundle-like metrigy,.

In the following Lemma we use again the functér: Vect,Y(M) — Speq,Y(Iffl) to
transform a monopoléE, Vg, ¢) on M to the corresponding spectral daia V., ).

Lemma5.12. Suppose that the Poincaré basic unitary connectigrand the Higgs fielg
satisfy the monopolgq. (5.27) Then the transformed connecti®i is flat, that isVE =0.
Further, the scalar(1, 0)-form @ = *x(IF|Zyx) is harmonic and in particulap s-basig
thatisé = po. Settingé = R'px . (¢r), the second equation if5.28)transforms then
into the equation

Viep = VeR'Dra(px) = R pra(d) = 0. (5.32)

Proof. Recall thatV, is defined in(4.23)by
Ve=R%pYs(VEN 1 L~ L.®2F,

whereL = R'ps,.(K). The flatness o¥: follows from (4.24) since(V2)%° = 0. From
VE(¢) = O it follows that p.¢ preserves the she#f. Thus¢ induces an endomorphism
ox = Pk : K — KandVi determines the homomorphisif®'o. : K — K@ pi23,
by the usual formul&&®"(¢x) = VX o i — (dxc ® 1) o VK. Using(5.29) we may now
rewrite the second equation(8.28)asV ' (¢x) = &. Thus by(4.23) this transforms into
the equation

VeRDs () = R ps (@) (5.33)

As already noted, the formd is harmonic by(5.31) Sincea is of type (1, 0), we have
alsoix® = 0, for any vector fieldX in 7(px) and therefore fronf5.29) Lx&» = ix do =
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ixdew = 0; in other wordsg is in addltlon apyz-basic form and s&@ = p}w, for a
unique closed 2-fornw on X. HenceV,R?! Px.«(¢x) = o from (5.33) The fact thatw,
hencev = py.w are closed follows of course also from the flatnes¥ gf since we have
0= VZRp5 . (¢x) = do. g

Theorem 5.13. The functor$ andF induce an equivalence between the following objects

(1) Foliated Hermitian vector bundle&, Vi) e Vecty (M) with Poincaré basic unitary

connectionsvg and %-parallel Higgs fieldsgp in Endi(E), satisfying the monopole
equationg5.27)

(2) Relative skyscrapeiss, Vs, X) € SpeqY(M), such thatVs is flat, and Higgs fieldgs
in End(S), satisfying

Vsps = w. (5.34)

Proof. This follows fromLemma 5.1Zombined withTheorem 4.13 O

To conclude, let us analyze the properties of the parameter space of mongopeles
for afixedfoliated vector bundI€E, %E) For two Poincaré basic connectiovig, V/., we

have agairVy, = Vi + ¢, wherep € C*(M, End,(E) ® .Q 9, satlsflest(fp) Oasin
the remarks at the end &ection 5.2For the monopoles in thlSectlon 5.3the curvature
term}'*(?g) = 0. HenceV}, = V + ¢ satisfies the monopokguations (5.27)f and only
if ¢ satisfies the quadratic PDE

VEe(p) + 3¢, ¢] = 0. (5.35)

Note that the expressions(i.35)are of typg2, 0), since we already ha\ﬁeE(fp) = 0.Thus

the parameter space for the monopoles is the same as for the instantons (c@ngigre
The monopoleequations (5.27are linear in the Higgs fields. Thereforep’ also satisfies
(5.27) respectively5.28) if and only if ¢’ = ¢+, wherey € C*°(M, End,(E)) satisfies

Vi) =0. (5.36)
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Appendix A. DeRham complexes along the fibers

Throughout this paper we made use of the fiberwise DeRham complex relative to a fiber
bundler : M — B. This complex is well known from foliation theory; in our context is
extensively used if3,4].
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For any foliated vector bundlgr, %E) on M, there is a fiberwise DeRham complex of
sheaves

Ookervy @ 2 SEe 208 Fe 2l S pe vl . B pg ond,

(A1)

which is a fine resolution of the sheaf éﬁparallel sections It ® SZ‘;V}O. Therefore the
sheavesE ® £2);" are p,-acyclic and alsa(M, )-acyclic for the global section functor
(M, ), that is the derived direct imag®/n.(E ® £};) = 0, j > 0. It follows that the

higher direct images of ke‘%E) ® m* 2% can be computed from the fine resoluti@l)
and the projection formula by

Rim.(kerve ® 7*2%) = Rin,(kerve) ® 2 = 1/ (n.(E @ 2%, d)) ® 24,
(A.2)
Likewise, the global fiberwise cohomology is given by
HY“I (M, E) = HI(M,kervy @ m*2%) = HI(I(M, E ® 2"%), d3). (A.3)
The two cohomologies are linked by the convergent Leray spectral sequence
ES = H'(B, Rin.(kerve) ® 2%) = H™V (M, kervg ® 7*$2%), (A.4)
with edge homomorphisms
EJ° = HI(B, m.(kervp) ® %) — H/ (M, kervy @ n*$2%) — Ev
= Rfyr*(kervE ® ¥ 2%), (A.5)

where we seR/x,(-) = I'(B, R/m,(-)) for the global sections iR/, (-). In our context
of torus fiber bundles, we encounter vanishing conditions, leading to degeneracy conditions

for the spectral sequence.?ﬁjn*(keré;;) =0, 0 < j < d,the non-zero terms are
determined by edge isomorphisms

ES° = HI(B, 7, (kerVg) ® 24> HI(M. kerve @ 7*$2%),  j = 0. (A.6)

If an*(ker%E) =0,0< j < d,the non-zero terms are determined by edge isomorphisms
HY (M, kerve ® 7 2%) 5 EL! = HI(B, R, (kerve) ® 2%), j>0. (A7)

In particular, we have foj = 0:

HYM. kerVe @ 7 .Q“)—>E0d — (B, Rm, (kervg) @ 2" “)
— Rin.(kervg ® T*2Y). (A.8)

The previous discussion of basic connectionSéation 4.1could have been formulated
in terms of this fiberwise resolution (and its global cohomology) with coefficients in the
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foliated adjoint vector bundle ER@E). Specifically, the mixed curvature ter(rv{,zj)l’1 ofan
adapted connectioW . for (E, V) satisfiesdy(V2)11 =0 and forVy, = Ve + ¢, ¢ €
I'(M,End,(E) ® Qif), we have from

(VA = (VDM + Vel = (VD + dge.
Thus(V2)11 defines a conomology class

a(E, Vi) = [(V)M] e HY (M, End(E)) = HY(I(M, Endy(E) ® 2%, d3)).
(A.9)

depending only on the foliated vector bundlg, %E). This class is very similar to the
Atiyah classin the theory of holomorphic vector bundles, where it obstructs the existence of a

complex analytic connection. By construction, the clags % £) is exactly the obstruction

to the existence of a basic connection far; %E).
In Sections 3 and,4he resolutior(A.1) is implicitly used with respect to the pull-back
fiber bundlep : Z — M, the fiberwise derivativ&’;;, and its restriction tpx : Zx — X.
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