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Abstract

The interest here is the comparison of sequences within or between groups.

Sequences are considered on an individual basis, i.e., all possible pairwise compar-

isons within and across groups are performed. We develop a categorical analysis-

of-variance framework based on Hamming distances, the proportion of positions

at which two aligned sequences differ, and estimate the variability between, within

and across groups. We assume that the sequences are independent, but the posi-

tions may not be. In this context U-statistics are utilized to represent the average

distance between and within groups as well as the overall distance. The total sum

of squares is decomposed into within-, between- and across-group sums of squares.

The latter term is new: it does not appear in the classical set-up. Generalized-U-

statistics theory (Puri & Sen, 1971; Lee, 1990; Sen & Singer, 1993) is used to find

the asymptotic distributions of each sum of squares. Test statistics are developed

to assess homogeneity among groups.

1. Introduction The focus here lies in the comparison of sequences. The se-
quences are considered on an individual basis in the sence that they are compared to
each other: all possible pairwise comparisons within and across groups are performed.

∗This research was funded in part by CAPES, FAPESP (Brazilian Institutions), the National Sci-

ence Foundation, the American Foundation for AIDS Research and the National Institutes of Health.
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We develop an analysis-of-variance framework based on Hamming distances and esti-
mate the variability between, within and across groups (Section 2). In the within sum
of squares, we are estimating the variability among individuals within a group around
the average distance within this group. In the across sum of squares, we are estimating
the variability of individuals across two groups with respect to the average distance
between those groups. In the between sum of squares, we estimate the variability in
the group average distances around the overall distance.

Weir (1990a) describes an analysis of variance for the genetic variation in the
population, in particular for the amount of observed heterozygosity. The variance of
the estimate of the average heterozygosity is broken down to show the contribution of
populations, loci and individuals by setting out the calculations in a framework similar
to that of an analysis of variance. Our situation is a little different because we would like
to construct a categorical analysis of variance based on Hamming distances (Seillier-
Moiseiwitsch et al., 1994 and references therein), assuming that the sequences are
independent, but the positions may not be. The Hamming distance is the proportion
of positions at which two aligned sequences differ.

In this context U-statistics are utilized to represent the average distance between
and within groups as well as the overall distance (Sections 3 and 4). The total sum of
squares is decomposed into within-, between- and across-group sums of squares. The
latter term is new: it does not appear in the classical set-up. Generalized-U-statistics
theory (Puri & Sen, 1971; Lee, 1990; Sen & Singer, 1993) is used to find the asymptotic
distributions of each sum of squares. In Section 5 test statistics are developed to assess
homogeneity among groups. The power of the tests are discussed in Section 6. Finally,
a data analysis is shown in Section 7.

2. The Total Sum of Squares and its decomposition Let Xg
i =

(Xg
i1, X

g
i2, . . . , X

g
ik)′ be a random vector representing sequence i of group g. Suppose

i = 1, . . . , N , k = 1, . . . ,K and g = 1, . . . , G. So, Xg
ik represents either the amino acid

or the nucleotide present at position k of sequence i in group g (e.g., at the nucleotide
level, xg

ik ∈ {A, C, T, G}).
Consider Xg1

i and Xg2
j .

Definition 1
The Hamming Distance D

(g1g2)
ij is a descriptive statistic for sequence comparison de-

fined by

D
(g1,g2)
ij =

1
K

K∑

k=1

II(Xg1
ik 6= Xg2

jk) (2.1)

=
1
K
× (number of positions where Xg1

i and Xg2
j differ),
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and when g1 = g2 = g,

Dg
ij =

1
K

K∑

k=1

II(Xg
ik 6= Xg

jk) .

Let θg
k = P{Xg

ik 6= Xg
jk} and θ̄g

· = 1
K

∑K
k=1 θg

k . Then,

E[Dg
ij ] =

1
K

K∑

k=1

E[II(Xg
ik 6= Xg

jk)] =
1
K

K∑

k=1

θg
k = θ̄g

· .

Define the average distance within a group as

D̄g
· =

(
N

2

)−1 ∑

1≤i<j≤N

Dg
ij =

(
N

2

)−1 1
K

∑

1≤i<j≤N

K∑

k=1

II(Xg
ik 6= Xg

jk)

which is a U-statistic of degree 2 (Lee, 1990). The average distance between two groups
is

D̄
(g1,g2)· =

1
N2

N∑

i=1

N∑

j=1

D
(g1,g2)
ij =

1
N2K

N∑

i=1

N∑

j=1

K∑

k=1

II(Xg1
ik 6= Xg2

jk)

which is a two-sample U-statistics of degree (1,1) (Hoeffding, 1948; Puri & Sen, 1971;
Lee, 1990). The overall distance is

D̄· =
[
G

(
N

2

)
+ N2

(
G

2

)]−1



G∑
g=1

∑

1≤i<j≤N

Dg
ij +

∑

1≤g1<g2≤G

N∑

i=1

N∑

j=1

D
(g1,g2)
ij




=
(

NG

2

)−1



G∑
g=1

(
N

2

)
D̄g
· +

∑

1≤g1<g2≤G

N2D̄
(g1,g2)·




which is a linear combination of U-statistics.

The Total Sum of Squares can be decomposed as

TSS =
G∑

g=1

∑

1≤i<j≤N

(Dg
ij − D̄·)2 +

∑

1≤g1<g2≤G

N∑

i=1

N∑

j=1

(D(g1,g2)
ij − D̄·)2 (2.2)

=
G∑

g=1

∑

1≤i<j≤N

(Dg
ij − D̄g

· )
2 +

G∑
g=1

∑

1≤i<j≤N

(D̄g
· − D̄·)2

+
∑

1≤g1<g2≤G

N∑

i=1

N∑

j=1

(D(g1,g2)
ij − D̄

(g1,g2)· )2 +
∑

1≤g1<g2≤G

N∑

i=1

N∑

j=1

(D̄(g1,g2)· − D̄·)2

= WSS + BSS + AWSS + ABSS

where WSS stands for Within Sum of Squares, BSS for Between Sum of Squares,
AWSS for Across Within Sum of Squares and ABSS for Across Between Sum of
Squares
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3.Connections Between Sums of Squares and U-statistics Since
we have G groups of N sequences, we can disregard the group clustering and think of
the sequences as a random sample of size NG. Then

TSS =
∑

1≤i<j≤NG

(Dij − D̄·)2

=
(

NG(NG− 1)
2

− 1
)(NG(NG−1)

2

2

)−1 ∑
i<j, i′<j′

i≤i′ or j≤j′

(Dij −Di′j′)2

2
(3.3)

WSS =
G∑

g=1

∑

1≤i<j≤N

(Dg
ij − D̄g

· )
2

=
(

N(N − 1)
2

− 1
)(N(N−1)

2

2

)−1 G∑
g=1

∑
i<j, i′<j′

i≤i′ or j≤j′

(Dg
ij −Dg

i′j′)
2

2
(3.4)

and

AWSS =
∑

1≤g1<g2≤G

N∑

i=1

N∑

j=1

(D(g1,g2)
ij − D̄

(g1,g2)· )2

= (N2 − 1)
(

N2

2

)−1 ∑

1≤g1<g2≤G

N∑

i=1

N∑

j=1

N∑

i′=1

N∑
j′=1

i≤i′ or j≤j′

(D(g1,g2)
ij −D

(g1,g2)
i′j′ )2

2

(3.5)

The above sums of squares can also be expressed as linear combinations of U-statistics
(Pinheiro, 1997). For instance, WSS is a linear combination of one-sample U-statistics
of degrees 3 and 4, and AWSS is a linear combination of two-sample U-statistics of
degrees (2,2) and (2,1).

4. Asymptotic Distributions and decompositions of U-statistics
Let Un be a U-statistic of degree m with kernel φ(X1, . . . , Xm) and E(Un) = θ(F ) = θ.

Un = U(X1, . . . , Xn) =
(

n

m

)−1 ∑

1≤i1<···<im≤n

φ(Xi1 , . . . , Xim), n ≥ m (4.6)

where

θ(F ) = EF {φ(X1, . . . , Xm)} =
∫

. . .

∫
φ(x1, . . . , xm) dF (x1) . . . dF (xm)

Let

Ψc(x1, . . . , xc) ≡ E{φ(x1, . . . , xc, Xc+1, . . . , Xm)} (4.7)
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ψc(x1, . . . , xc) ≡ E{φ(x1, . . . , xc, Xc+1, . . . , Xm)− θ}, (4.8)

ξc ≡ E{ψ2
c (X1, . . . , Xc)} = E{Ψ2

c(X1, . . . , Xc)} − θ2 and ξ0 ≡ 0. (4.9)

Theorem 1
The function Ψc defined in (4.7) has the properties
(i) Ψc(x1, . . . , xc) = E{Ψd(x1, . . . , xc, Xc+1, . . . , Xd)} for 1 ≤ c < d ≤ m,
(ii) E{Ψc(x1, . . . , xc)} = E{φ(X1, . . . , Xm)}.

The proof appears in Lee (1990, p. 11).

By (4.6) and (4.8),

Var(Un) =
(

n

m

)−2 m∑
c=0

(c)∑
Cov{φ(Xi1 , . . . , Xim

)φ(Xj1 , . . . , Xjm
)}

where
∑(c) stands for summation over all subscripts such that

1 ≤ i1 < i2 < · · · < im ≤ n, 1 ≤ j1 < j2 < · · · < jm ≤ n,

and exactly c equations ik = jh are satisfied. By (4.9), each term in
∑(c) is equal to

ξc. The number of terms in
∑(c) is

n(n− 1) · · · (n− 2m + c + 1)
c!(m− c)!(m− c)!

=
(

m

c

)(
n−m

m− c

)(
n

m

)
(4.10)

Since ξ0 = 0,

Var(Un) =
(

n

m

)−1 m∑
c=1

(
m

c

)(
n−m

m− c

)
ξc (4.11)

Hoeffding (1948) obtained the inequality: 0 ≤ ξc ≤ c

d
ξd 1 ≤ c < d ≤ m, which leads

to

m2

n
ξ1 ≤ Var(Un) ≤ m

n
ξm

Now, from (4.11) and (4.10)

Var(Un) =
m2

n

(
n−m

n− 1

)
· · ·

(
n− 2m + 2
n−m + 1

)
ξ1 + · · ·

+
m!

n(n− 1) . . . (n−m + 1)
ξm

Hence nVar(Un) is a decreasing function of n which tends to its lower bound m2ξ1 as
n increases, i.e.,

Var(Un) =
m2

n
ξ1 + O(n−2) (4.12)
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Therefore, if E(φ2) < ∞ and ξ1 > 0,

n1/2(Un − θ) d−→ N(0,m2ξ1), (Hoeffding, 1948) (4.13)

We may rewrite (4.6) as

Un = n−[m]
∑

1≤i1 6=···6=im≤n

∫

Rpm

· · ·
∫

φ(x1, . . . , xm)
m∏

j=1

d(c(xj −Xij )),

where n−[m] = (n[m])−1 = {n . . . (n−m + 1)}−1.

Writing d(c(xj −Xij
)) = dF (xj) + d[c(xj −Xij

)− F (xj)], 1 ≤ j ≤ m, we obtain

Un = θ(F ) +
m∑

h=1

(
m

h

)
Un,h n ≥ m (4.14)

where

Un,h = n−[h]
∑

1≤i1 6=···6=ih≤n

∫

Rph

· · ·
∫

Ψh(x1, . . . , xh)
h∏

j=1

d[c(xj −Xij
)− F (xj)]

for 1 ≤ h ≤ m. Further, if we write

Ψ◦h(x1, . . . , xh) = Ψh(x1, . . . , xh)−
h∑

j=1

Ψh−1(x1, . . . , xj−1, xj+1, . . . , xh)

+ · · ·+ (−1)hθ(F ), ∀ (x1, . . . , xh) ∈ Rph, (4.15)

for 1 ≤ h ≤ m, we obtain

Un,h =
(

n

h

)−1 ∑

1≤i1<···<ih≤n

Ψ◦h(Xi1 , . . . , Xih
), 1 ≤ h ≤ m (4.16)

and the Un,h are themselves U-statistics. From direct computation, E(Un,h) = 0, ∀ 1 ≤
h ≤ m and

Var(Un,h) = E(U2
n,h) = O(n−h), h = 1, 2, . . . , m; (4.17)

and we can write

Un = θ(F ) +
m

n

n∑

i=1

[Ψ1(Xi)− θ(F )] + Op(n−1) (4.18)

Let {X(j)
i ; i ≥ 1}, j = 1, . . . , c (≥ 2) be independent sequences of independent

random vectors, where X(j)
i has a distribution function F (j)(x), x ∈ Rp, for j =

1, . . . , c. Let F = (F (1), . . . , F (c)) and φ(X(j)
i , 1 ≤ i ≤ mj , 1 ≤ j ≤ c) be a Borel-

measurable kernel of degree m = (m1, . . . , mc), where without loss of generality we
assume that φ is symmetric in the mj(≥ 1) arguments of the jth set, for j = 1, . . . , c.
Let m0 = m1 + · · ·+ mc and

θ(F) =
∫

Rm0

· · ·
∫

φ(x(j)
i , 1 ≤ i ≤ mj , 1 ≤ j ≤ c)

c∏

j=1

mj∏

i=1

dF (j)(x(j)
i ) (4.19)
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Definition 2
For a set of samples of sizes n = (n1, n2, . . . , nc) with nj ≥ mj , 1 ≤ j ≤ c, the
generalized U-statistic for θ(F) is

U(n) =
c∏

j=1

(
nj

mj

)−1 ∗∑

(n)

φ(X(j)
α , α = ij1, . . . , ijmj

, 1 ≤ j ≤ c), (4.20)

where the summation
∑∗

(n) extends over all 1 ≤ ij1 < . . . < ijmj
≤ nj , 1 ≤ j ≤ c.

U(n) is an unbiased estimator of θ(F).

Now, for every dj : 0 ≤ dj ≤ mj , 1 ≤ j ≤ c, let d = (d1, . . . , dc) and

Ψd1...dc
(x(j)

1 , . . . ,x(j)
dj

, 1 ≤ j ≤ c) ≡ E(φ(x(j)
1 , . . . ,x(j)

dj
,X(j)

dj+1, . . . ,X
(j)
mj

, 1 ≤ j ≤ c))

(4.21)

so that Ψ0 = θ(F) and Ψm = φ. Then

ξd(F) = E
(
Ψ2

d(X(j)
1 , . . . ,X(j)

dj
, 1 ≤ j ≤ c)

)
− θ2(F), 0 ≤ d ≤ m (4.22)

so that ξ0(F) = 0. Then, for every n ≥ m (Sen, 1981),

Var [U(n)] =
c∑

j=1

n−1
j σ2

j [1 + O(n−1
0 )] (4.23)

where n0 = min(n1, . . . , nc) and

σ2
j = m2

j ξδj1,...,δjc(F) j = 1, . . . , c (4.24)

with δαβ = 1 or 0 according to whether α = β or not.

The decomposition for U(n) can be developed similarly to the one-sample U-
statistic. For a two-sample U-statistic of degree (m1,m2), we have

U(n1, n2) = θ(F) +
m1

n1

n1∑

i=1

[Ψ10(Xi)− θ(F)] +
m2

n2

n2∑

i=1

[Ψ01(Yi)− θ(F)]

+ Op(n−1
0 ) (4.25)

where n0 = min(n1, n2).

The above expression can be generalized for multiple-sample U-statistics. For
instance, the decomposition for a three-sample and four-sample U-statistics are as
follows

U(n1, n2, n3) = θ(F) +
m1

n1

n1∑

i=1

[Ψ100(Xi)− θ(F)] +
m2

n2

n2∑

i=1

[Ψ010(Yi)− θ(F)]

+
m3

n3

n3∑

i=1

[Ψ001(Zi)− θ(F)] + Op(n−1
0 ) (4.26)
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where n0 = min(n1, n2, n3) and

U(n1, n2, n3, n4) = θ(F) +
m1

n1

n1∑

i=1

[Ψ1000(Xi)− θ(F)] +
m2

n2

n2∑

i=1

[Ψ0100(Yi)− θ(F)]

+
m3

n3

n3∑

i=1

[Ψ0010(Zi)− θ(F)] +
m4

n4

n4∑

i=1

[Ψ0001(Wi)− θ(F)]

+ Op(n−1
0 ) (4.27)

where n0 = min(n1, n2, n3, n4).

4. Combining the U-statistics We can write

WSS =
(N − 2)

3

G∑
g=1

[U(3)
1,1 + U(3)

1,2 + U(3)
1,3]

+
(N − 2)(N − 3)

12

G∑
g=1

[U(4)
2,1 + U(4)

2,2 + U(4)
2,3]

where

U(3)
1,1 =

(
N

3

)−1 ∑

i<j<j′
(Dg

ij −Dg
ij′)

2 , U(3)
1,2 =

(
N

3

)−1 ∑

i<i′<j

(Dg
ij −Dg

i′j)
2 and

U(3)
1,3 =

(
N

3

)−1 ∑

i<j<j′
(Dg

ij −Dg
jj′)

2

are one-sample U-statistics of degree 3 and

U(4)
2,1 =

(
N

4

)−1 ∑

i<j<i′<j′
(Dg

ij −Dg
i′j′)

2 , U(4)
2,2 =

(
N

4

)−1 ∑

i<i′<j<j′
(Dg

ij −Dg
i′j′)

2 and

U(4)
2,3 =

(
N

4

) ∑

i<i′<j′<j

(Dg
ij −Dg

i′j′)
2

are one-sample U-statistics of degree 4. The expected value of WSS is

E(WSS) =
G∑

g=1

(N − 2)
{

µg1 +
(N − 3)

4
µg2

}
.

Under H0, there is homogeneity among groups, i.e., for any g, θg
k = θk and

θg
k1k2

= θk1k2 , thus

E0(WSS) = G(N − 2)
{

µ1 +
(N − 3)

4
µ2

}

where

µ1 =
2

K2




K∑

k=1

θk +
∑

k1 6=k2

θk1k2 −
K∑

k=1

θk(i, j; i, j′)−
∑

k1 6=k2

θk1k2(i, j; i, j
′))


 (4.28)
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and

µ2 =
2

K2





K∑

k=1

θk(1− θk) +
∑

k1 6=k2

(θk1k2 − θk1θk2)



 (4.29)

Note that

θk = P(Xik 6= Xjk) =
C−1∑
c=0

pk(c)[1− pk(c)] (4.30)

θk1k2 = P(Xik1 6= Xjk1 ; Xik2 6= Xjk2)

=
C−1∑

c1,c2=0

pk1k2(c1, c2)




C−1∑
c3=0

c3 6=c1

C−1∑
c4=0

c4 6=c2

pk1k2(c3, c4)


 (4.31)

Decomposing WSS, under H0,

WSS = G(N − 2)
(

µ1 +
(N − 3)

4
µ2

)

+ (N − 2)
3
N

G

N∑

i=1

[Ψ(1)1(Xi)− µ1] + Op(1)

+
(N − 2)(N − 3)

N
G

N∑

i=1

[Ψ(2)1(Xi)− µ2] + Op(N) (4.32)

and the associated mean square expression is

WMS ≡ WSS

G
(
N
2

) =
2WSS

GN(N − 1)

=
(N − 2)(N − 3)

N(N − 1)2

{
µ2 +

4
N

N∑

i=1

[Ψ(2)1(Xi)− µ2]

}
+ Op(N−1) (4.33)

with

E0(WMS) =
µ2

2
+ O(N−1)

and

Var0(WMS) =
4(N − 2)2(N − 3)2

GN2(N − 1)2
ξ
(2)
1

N
+ O(N−2)

For AWSS,

AWSS =
∑

1≤g1<g2≤G

[
(N − 1)2

4

(
U(2,2)

4,1 + U(2,2)
4,2

)

+
(N − 1)

2

(
U(2,1)

5,2 + U(1,2)
5,1

)]

9



where

U(2,2)
4,1 =

[(
N

2

)(
N

2

)]−1 ∑

i 6=i′

∑
j 6=j′
j 6=i′

(D(g1,g2)
ij −D

(g1,g2)
i′j′ )2 and

U(2,2)
4,2 =

[(
N

2

)(
N

2

)]−1 ∑
i 6=j

i6=i′

∑

j 6=j′
(D(g1,g2)

ij −D
(g1,g2)
i′j′ )2

are two-sample U-statistcis of degree (2,2) and

U(1,2)
5,1 =

[(
N

1

)(
N

2

)]−1 N∑
i=1
i6=j′

∑
1≤j, j′≤N

j 6=j′

(D(g1,g2)
ij −D

(g1,g2)
ij′ )2 and

U(2,1)
5,2 =

[(
N

2

)(
N

1

)]−1 N∑
j=1
j 6=i′

∑

i 6=i′
(D(g1,g2)

ij −D
(g1,g2)
i′j )2

are two sample U-statistics of degree (1,2) and (2,1), respectively.

E(AWSS) = (N − 1)
∑

1≤g1<g2≤G

(
(N − 1)

2
µ(g1,g2)4 + µ(g1,g2)5

)

and under H0

E0(AWSS) =
G(G− 1)(N − 1)

2

(
(N − 1)

2
µ4 + µ5

)

where µ4 = µ2 is given by (4.29) and µ5 = µ1 is given by (4.28).

AWSS can be decomposed as

AWSS =
∑

1≤g1<g2≤G

[
(N − 1)2

2

(
µ(g1,g2)4 +

2
N

N∑

i=1

(Ψ(4)10(X
g1
i )− µ(g1,g2)4)

+
2
N

N∑

j=1

(Ψ(4)01(X
g2
j )− µ(g1,g2)4) + Op(N−1)




+
(N − 1)

2

(
2µ(g1,g2)5 +

1
N

N∑

i=1

(Ψ(5)10(X
g1
i )− µ(g1,g2)5)

+
2
N

N∑

j=1

(Ψ(5)01(X
g1
j )− µ(g1,g2)5) +

2
N

N∑

i=1

(Ψ(5)10(X
g1
i )− µ(g1,g2)5)

+
1
N

N∑

j=1

(Ψ(5)01(X
g2
j )− µ(g1,g2)5) + Op(N−1)




]
(4.34)

The associated mean-square expression is

AWMS =
AWSS(

G
2

)
N2

=
2AWSS

N2G(G− 1)

10



=
(N − 1)2

N2G(G− 1)

∑

1≤g1<g2≤G

[
µ(g1,g2)4 +

2
N

N∑

i=1

(Ψ(4)10(X
g1
i )− µ(g1,g2)4)

+
2
N

N∑

j=1

(Ψ(4)01(X
g2
j )− µ(g1,g2)4)


 + Op(N−1) (4.35)

E0(AWMS) =
µ4

2
+ O(N−1)

Note that E0(AWMS) = E0(WMS) since under H0, µ4 = µ2,

Var0(AWMS) =
(N − 1)4

2N4G(G− 1)

(
4
N

ξ
(4)
10 +

4
N

ξ
(4)
01

)
+ O(N−2)

Now

BSS =
N(N − 1)

2

G∑
g=1

(D̄g
· − D̄·)2 =

N(N − 1)
2

D′
1D1

where D1 is the G× 1 vector

D1 = (D̄1
· − D̄· . . . D̄G

· − D̄·)′

Note that

E(D̄g
· ) =

1
K

(
N
2

)
∑

1≤i<j≤N

E(Dg
ij) =

1
K

K∑

k=1

θg
k = θ̄g

·

E(D̄(g1,g2)· ) =
1
K

K∑

k=1

θ
(g1,g2)
k = θ̄

(g1,g2)·

and

E(D̄·) =
(N − 1)

G(NG− 1)

G∑
g=1

θ̄g
· +

2N

G(NG− 1)

∑

1≤g1<g2≤G

θ̄
(g1,g2)·

Therefore,

ν1 ≡ E(D̄g
· − D̄·) = θ̄g

· −
(N − 1)

G(NG− 1)

G∑
g=1

θ̄g
· +

2N

G(NG− 1)

∑

1≤g1<g2≤G

θ̄
(g1,g2)·

Since D̄g
· is a U-statistic of degree 2,

Var(D̄g
· ) =

4
N

ξ
(12)
1 + O(N−2)

where ξ
(12)
1 ≡ E[ψ2

(12)1(X
g
i )], and since D̄

(g1,g2)· is a two-sample U-statistic of degree
(1, 1),

Var(D̄(g1,g2)· ) =
1
N

ξ
(13)
10 +

1
N

ξ
(13)
01 + O(N−2) (4.36)

11



where ξ
(13)
10 ≡ E[ψ2

(13)10(X
g1
i )] and ξ

(13)
01 ≡ E[ψ2

(13)01(X
g2
j )]. Under H0,

ψ2
(12)1(xi) =

1
K2

K∑

k=1

P2(Xjk 6= xik) +
(
θ̄·

)2 − 2
K

θ̄·
K∑

k=1

P(Xjk 6= xik)

+
1

K2

∑

k1 6=k2

P(Xjk1 6= xik1 ;Xjk2 6= xik2)

We are assuming that under H0 there is homogeneity across or within groups, i.e.,
θ1

k = θ2
k = · · · = θG

k = θk and θ
(g1,g2)
k = θg

k = θk. Therefore, under H0,
√

N
(
D̄g
· − θ̄·

) d−→ N(0, 4ξ
(12)
1 ) (4.37)

and

γ−1
13

(
D̄

(g1,g2)· − θ̄·
)

d−→ N(0, 1) (4.38)

where γ2
13 = 1

N ξ
(13)
10 + 1

N ξ
(13)
01 = 2

N ξ
(12)
1 by (4.36).

If D̄· is a linear combination of normal variables, then D̄· also follows a normal
distribution.

D̄· =
(N − 1)

G(NG− 1)

G∑
g=1

D̄g
· +

2N

G(NG− 1)

∑

1≤g1<g2≤G

D̄
(g1,g2)·

Under H0,

η1 ≡ E0(D̄·) =
(N − 1)θ̄· + N(G− 1)θ̄·

(NG− 1)
= θ̄·

σ2
1 ≡ Var0(D̄·)

+
4N2

G2(NG− 1)2

=
(N − 1)2

G(NG− 1)2
4
N

ξ
(12)
1 +

2N2(G− 1)
G(NG− 1)2

[(
1
N

(ξ(13)
10 + ξ

(13)
01 )

)

+ 2(G− 2)
1
N

ξ
(13,1;13,2)
10

]
+

2N(N − 1)
G2(NG− 1)2

G(G− 1)
2
N

ξ
(12,13)
1

where ξ
(13,1;13,2)
10 = E{ψ(13,1)10(X

g1
i )ψ(13,2)10(X

g1
i )} and

ψ(13,2)10(x
g1
i ) = E[φ13,2(x

g1
i ,Xg3

j )− θ̄(g1,g3)]. Under H0,
ψ(12)1(Xi) = ψ(13)10(Xi) = ψ(13)01(Xj) = ψ(13,1)10(Xi) = ψ(13,2)10(Xi). Therefore,
ξ
(12)
1 = ξ

(13)
10 = ξ

(31)
01 = ξ

(13,1;13,2)
10 = ξ

(12,13)
1 and

σ2
1 = [(N − 1)2 + N(G− 1)(NG− 1)]

4ξ
(12)
1

NG(NG− 1)2
(4.39)

Hence, under H0,

σ−1
1

(
D̄· − θ̄·

) d−→ N(0, 1)

12



Now

ν1 = E0(D̄g
· − D̄·) = θ̄· − θ̄· = 0 (4.40)

and

τ2
1 ≡ Var0(D̄g

· − D̄·)

=
[
1− 2

(N − 1)
G(NG− 1)

]
4
N

ξ
(12)
1 + σ2

1 −
4N(G− 1)
G(NG− 1)

2
N

ξ
(12,13)
1 (4.41)

where ξ
(12,13)
1 ≡ E{ψ(12)1(X

g1
i )ψ(13)10(X

g1
i )} = ξ

(12)
1 , since ψ(12)1(Xi) = ψ(13)10(Xi)

under H0.

Then,

τ2
1 = {(N − 1)2 + (NG− 1)[N(G− 1) + (NG− 1)(G− 2)]} 4ξ

(12)
1

NG(NG− 1)2

(4.42)

So,

τ−1
1 (D̄g

· − D̄·)
d−→ N(0, 1)

Since BSS is a quadratic form of normal random variables,

BSS =
N(N − 1)

2
D′

1D1 ∼
N(N − 1)

2

G∑
g=1

λg

(
χ2

1

)
g

which is a linear combination of χ2
1 random variables, where λg’s are the characteristic

roots of Var(D1) = Σ1. Note that the diagonal elements of Σ1 are τ2
1 and the off-

diagonal elements, under H0, are

Cov0(D̄g1· − D̄·, D̄g2· − D̄·)

=
[
(N − 1)2 − (NG− 1)(NG + N − 2)

(NG− 1)

]
4ξ

(12)
1

NG(NG− 1)
< 0

since (NG− 1)(NG + N − 2) > (N − 1)2.

Now,

E0(BSS) =
N(N − 1)

2
trace(Σ1) =

N(N − 1)
2

Gτ2
1

and

Var0(BSS) =
N2(N − 1)2

4
trace(Σ1)2

Let

BMS =
BSS

G
(
N
2

) =
1
G

D′
1D1

13



Then

E0(BMS) =
1
G

E0(BSS) = τ2
1

and

Var0(BMS) =
1

G2
Var0(BSS) =

1
G2

trace(Σ1)2

For ABSS we have,

ABSS =
∑

1≤g1<g2≤G

N∑

i=1

N∑

j=1

(D̄(g1,g2)· − D̄·)2 = N2D2D2

where D2 = (D̄(1,2)
· − D̄·, D̄

(1,3)
· − D̄·, . . . , D̄

(G−1,G)
· − D̄·)′ is a G(G−1)

2 × 1 vector.

Let

ν2 ≡ E(D̄(g1,g2)· − D̄·) = θ̄
(g1,g2)· − (N − 1)

G(NG− 1)

G∑
g=1

θ̄g
· −

2N

G(NG− 1)

∑

1≤g1<g2≤G

θ̄
(g1,g2)·

Under H0,

ν2 = E0(D̄
(g1,g2)· − D̄·) = θ̄· − θ̄· = 0 (4.43)

and

τ2
2 ≡ Var(D̄(g1,g2)· − D̄·)

= Var(D̄(g1,g2)· ) + Var(D̄·)− 2Cov(D̄(g1,g2)· , D̄·)

=
1
N

(
ξ
(13)
10 + ξ

(13)
01

)
+ σ2

1 −
4(N − 1)

G(NG− 1)
2
N

ξ
(12,13)
1

− 4N

G(NG− 1)

[
1
N

(ξ(13)
10 + ξ

(13)
01 ) + 2(G− 2)

1
N

ξ
(13,1;13,2)
10

]
(4.44)

Note that under H0 there is homogeneity among groups,

Ψ(13)10(xi) = Ψ(13)01(xj) = Ψ(13,1)10(xi) = Ψ(13,2)10(xi) =
1
K

K∑

k=1

P(Xik 6= xjk)

since the sequences are i.i.d.

Therefore, Ψ(13,1)10(xi)Ψ(13,2)10(xi) = Ψ2
(13)10(xi) and

ξ
(13,1;13,2)
10 = ξ

(13)
10 = ξ

(13)
01 = ξ

(12)
1 = ξ

(12,13)
1

So, under H0,

τ2
2 = {2(N − 1)2 + (NG− 1)[2N(G− 1) + (NG− 1)(G− 4)]} 2ξ

(12)
1

NG(NG− 1)2

(4.45)
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As in BSS,

ABSS ∼ N2

G(G−1)/2∑

i=1

λi

(
χ2

1

)
i

where λi’s are the characteristic roots of Σ2 = Var(D2). The diagonal elements of Σ2

are τ2
2 and, if all groups are different, the off-diagonal elements are

Cov(D̄(g1,g2)· − D̄·, D̄
(g3,g4)· − D̄·)

= [(N − 1)2 − (NG− 1)(NG + N − 2)]
4ξ

(12)
1

NG(NG− 1)2
< 0

and if g1 = g2 or g1 = g3 or g2 = g3,

Cov(D̄(g1,g2)· − D̄·, D̄
(g1,g3)· − D̄·)

= {4(N − 1)2 + (NG− 1)[4N(G− 1) + (G− 8)(NG− 1)]} ξ
(12)
1

NG(NG− 1)2
.

Now

E0(ABSS) = N2trace(Σ2) = N2 G(G− 1)
2

τ2
2

Var0(ABSS) = N4trace(Σ2)2

The corresponding mean-square term is defined as

ABMS =
ABSS

N2
(
G
2

) =
2

G(G− 1)
D′

2D2

Then

E0(ABMS) =
2

G(G− 1)
trace(Σ2) = τ2

2

Var0(ABMS) =
4

G2(G− 1)2
trace(Σ2)2

5. Test Statistics One alternative is to compare WMS with AWMS. Let
T1 = WMS

AWMS . Under H0,

WMS

AWMS
=

(N−2)(N−3)
2N(N−1)

{
µ2 + 4

N

∑N
i=1(Ψ(2)1(Xi)− µ2)

}
+ Op(N−1)

(N−1)2

2N2

{
µ2

4
N

∑N
i=1(Ψ(2)1(Xi)− µ2)

}
+ Op(N−1)

But, WMS
AWMS

p→ 1 as N →∞, i.e, asymptotically the distribution of WMS
AWMS is degener-

ate.
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Let Σ1 = 1
N Σ?

1 and Σ2 = 1
N Σ?

2. Under H0,

BMS =
BSS

G
(
N
2

) ∼ 1
NG

G∑
g=1

λ?
1g

(
χ2

1

)
g

ABMS =
ABSS

N2
(
G
2

) ∼ 2
NG(G− 1)

G(G−1)/2∑

i=1

λ?
2i

(
χ2

1

)
i

where λ?
1g’s and λ?

2i’s are the characteristic roots of Σ?
1 and Σ?

2, respectively. Also,
under H0, by theoretical results pertaining to U-statistics

√
N(WMS − µ2/2) → N

(
0,

4
G

ξ
(2)
1

)

and
√

N(AWMS − µ2/2) → N
(

0,
4

G(G− 1)
ξ
(2)
1

)
.

Thus,

BMS = Op(N−1) and ABMS = Op(N−1)

while

WMS = Op(N−1/2) and AWMS = Op(N−1/2)

Define

TN,2 ≡ N

(
BMS

WMS

)
and TN,3 ≡ N

(
ABMS

AWMS

)
.

Since, BMS and ABMS are the dominating terms in TN,2 and TN,3, respectively, we
can write

TN,2 =
2N(BMS)

µ2
+ Op(N−1/2)

and

TN,3 =
2N(ABMS)

µ2
+ Op(N−1/2)

Therefore,

TN,2 ∼ 2
Gµ2

G∑
g=1

λ?
1g

(
χ2

1

)
g

and

TN,3 ∼ 4
G(G− 1)µ2

G(G−1)/2∑

i=1

λ?
2i

(
χ2

1

)
i
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Because the elements of Σ?
1 and Σ?

2 are unknown, the characteristic roots of these
matrices are also unknown. Therefore, the above distributions do not have a closed
analytic form and we call upon resampling methods, such as the bootstrap, to generate
the reference distribution for the test statistic.

6. Power of the Tests

Lemma 1
Let Tn be a vector of random variables that can be expressed as

Tn = ν +
1√
n
Un + Rn

where Rn = Op(n−1).
If Q(T) = T′AT is a quadratic form on T. Then,

Q(T) = T′AT = {ν +
1√
n
Un + Rn}′A{ν +

1√
n
Un + Rn}

= Q(ν) +
2√
n

ν′AUn +
1
n

Q(Un) + 2ν ′ARn + Op(n−3/2)

If ν = 0 then Q(T) =
1
n

Q(Un) + Op(n−3/2).

In our case, T = D1 and the quadratic form is Q(D1) = D′
1D1. Note that we can

write,

D′
1D1 =

G∑
g=1

(D̄g
· − D̄·)2 =

G∑
g=1

(D̄g
· − D̄· − ν1)2 + 2 ν1

G∑
g=1

(D̄g
· − D̄· − ν1) + Gν2

1

Let VN = D1 − ν1, where ν1 is a vector G × 1 with elements ν1. Then, E(VN ) = 0

and Var(VN ) = Σ1 =
1
N

Σ?
1 = O(N−1). Therefore,

Q(D1) = D′
1D1 = V′

NVN + 2ν′1VN + ν′1ν1

Since
√

NVN ∼ N(0,Σ?
1),

NV′
NVN ∼

G∑
g=1

λ?
g

(
χ2

1

)
g

where λ?
g are the characteristic roots of Σ?

1. Also,

2
√

Nν′1VN ∼ N(0, 4ν′1Σ
?
1ν1)

Now,

TN,2 =
2N

Gµ2
V′

NVN +
4
√

Nν ′1
Gµ2

(√
NVN

)
+

2N

µ2
ν2
1 + Op(N−1/2)
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(
TN,2 − 2Nν2

1/µ2

4
√

Nν1/(Gµ2)

)
=

N
∑G

g=1(D̄
g
· − D̄· − ν1)2

2
√

Nν1

+
√

N

G∑
g=1

(D̄g
· − D̄· − ν1) + Op(N−1)

Note that

N
∑G

g=1(D̄
g
· − D̄· − ν1)2

2
√

Nν1

= Op(N−1/2), since N

G∑
g=1

(D̄g
· − D̄· − ν1)2 = Op(1)

and

√
N

G∑
g=1

(D̄g
· − D̄· − ν1) = Op(1), since

G∑
g=1

(D̄g
· − D̄· − ν1) = Op(N−1/2)

So, for a fixed ν1 6= 0, as N →∞,
(

TN,2 − 2Nν2
1/µ2

4
√

Nν1/(Gµ2)

)
=
√

N

G∑
g=1

(D̄g
· − D̄· − ν1) + Op(N−1/2)

Thus,

P(TN,2 > ν1) = P
(

Z > G
(µ2 − 2Nν1)

4
√

N

)
→ 1, as N →∞,

i.e., this test is consistent.

Now, consider a local alternative hypothesis. Let ν1 = 1√
N

γ?
1 , where γ?

1 is a
constant. Then,

TN,2 =
2N

Gµ2
V′

NVN +
4γ?

1

Gµ2

[√
N

G∑
g=1

(
D̄g
· − D̄· − 1√

N
γ?
1

)]

+
2
µ2

(γ?
1 )2 + Op(N−1/2)

(
TN,2 − 2 (γ?

1)2 /µ2

4γ?
1/(Gµ2)

)
=

N
∑G

g=1

(
D̄g
· − D̄· − 1√

N
γ?
1

)2

2γ?
1

+
√

N

G∑
g=1

(
D̄g
· − D̄· − 1√

N
γ?
1

)
+ Op(N−1/2)

Note that

N
∑G

g=1

(
D̄g
· − D̄· − 1√

N
γ?
1

)2

2γ?
1

= Op(1) and
√

N

G∑
g=1

(
D̄g
· − D̄· − 1√

N
γ?
1

)
= Op(1)

Therefore, TN,2 no longer follows a Normal distribution as N →∞. It is a convolution
of a linear combination of chi-square random variables and a normal random variable:

TN,2 =
2N

Gµ2
V′

NVN +
4
√

N

Gµ2
(γ?

1)
′VN +

2 (γ?
1)2

µ2
+ Op(N−1/2)
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TN,2 ∼ 2
Gµ2

G∑
g=1

λ?
1g

(
χ2

1

)
g

+ N
(
0,

16
G2µ2

2

(γ?
1)
′Σ?

1γ
?
1

)
+

2 (γ?
1 )2

µ2

Now, let us find out whether V′
NVN and (γ?

1)
′VN are independent. V′

NVN and
(γ?

1)
′VN are independent if and only if (γ?

1)
′Σ1 = 0 (Searle, 1971).

Recall that

Σ1 =




τ2
1 τ12 . . . τ12

τ12 τ2
1 . . . τ12

...
...

. . .
...

τ12 τ12 . . . τ2
1




where

τ2
1 = {(N − 1)2 + (NG− 1)[N(G− 1) + (NG− 1)(G− 2)]} 4ξ

(12)
1

NG(NG− 1)2

and

τ12 = {(N − 1)2 − (NG− 1)(NG + N − 2)} 4ξ
(12)
1

NG(NG− 1)2

Then,

(γ?
1)
′Σ1 = γ?

1 [τ2
1 + (G− 1)τ12 . . . τ2

1 + (G− 1)τ12]

and

τ2
1 + (G− 1)τ12 = 0

⇔ G(N − 1)2 + (NG− 1)[N(G− 1) + (NG− 1)(G− 2)

− (G− 1)(NG + N − 2)] = 0

⇔ N = 1

So, V′
NVN and (γ?

1)
′VN are independent if and only if N = 1, which is not the case

here.

Now, write

2
Gµ2

[
NV′

NVN + 2
√

N (γ?
1)
′VN

]
=

2
Gµ2

[
(
√

NVN + γ?
1)
′(
√

NVN + γ?
1 )− (γ?

1)
′
γ?

1

]

and

TN,2 =
2N

µ2
(BMS) =

2N

Gµ2
D′

1D1

=
2

Gµ2
(
√

NVN + γ?
1)
′(
√

NVN + γ?
1) + Op(N−1/2)
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Note that
√

NVN + γ?
1 ∼ N(γ?

1,Σ
?
1) and

D1 ∼ N(ν1,Σ1) or
√

ND1 ∼ N(γ?
1,Σ

?
1).

The distribution of
√

ND′
1D1 can also be derived the following way.

Let P be a G × G orthogonal matrix (i.e., P′P = I) such that PΣ?
1P

′ = Λ, where Λ
is a diagonal matrix, and

Y =
√

NPD1 ⇒
√

ND1 = P′Y

Then,

Y ∼ N(Pγ?
1,Λ) and ND′

1D1 = Y′PP′Y = Y′Y,

Hence,

ND′
1D1 = Y′Y ∼

G∑

i=1

λi

(
χ2

1(δi)
)

(6.46)

where δi =
(ν?

1i)
2

λi
, λi’s are the diagonal elements of the diagonal matrix Λ and ν?

1i is

the ith row of the vector ν?
1 = Pγ?

1. By (6.46),

TN,2 =
2N

Gµ2
D′

1D1 ∼
2

Gµ2

G∑

i=1

λi

(
χ2

1(δi)
)
i

Since we have a linear combination of non-central chi-square random variables,

when ν1 =
γ?
1√
N

,

P(TN,2 > ν1) → 1 as N →∞

As the distribution of TN,3 is similar to the distribution of TN,2, the above results about
consistency and power of the test apply to TN,3.

7. Data analysis The data set consists of three groups of HIV infected individu-
als. The interest is to compare the env gene V3 loops from B clade macrophage-tropic,
B clade t-cell adapted and clade C sequences. There is a hypothesis which says that
clade C is like B clade macrophage-tropic sequences. The sequences are all at the amino
acid level with 35 positions long and they can be downloaded from the Los Alamos
repository at the address http://hiv-web.lanl.gov

Since the elements of Σ?
1 and Σ?

2 are unknown, the characteristic roots of these
matrices are also unknown and the distributions of the test statistics do not have a
closed analytic form. In view of this, we call upon resampling techniques, such as the
bootstrap. Here is a summary of the procedure:
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1. Compute the statistics TN2 and TN3 from the data set.

2. Sample 46 sequences to each group with replacement from the pooled sample,
i.e., the combined groups.

3. Recompute the test statistics TN2 and TN3 from this sample and store it.

4. Repeat steps 2 and 3 R times (R should be at least 1,000).

The p-values for the tests are then
#T ′N2s ≥ TN2obs

R
and

#T ′N3s ≥ TN3obs

R
.

The results are

TN2obs = 20, 07 TN3obs = 4, 17

For R = 10, 000, the percentiles of the bootstrap distribution are given in Table 1
and the observed p-value for TN2 and TN3 are less than 1/10001. Therefore, we can
say that relative to the within-clade variation, there is significant variability between
the two clades and similarly, relative to the across-within-clade, there is significant
variability acroos-between the two clades.

Table 1: Percentiles of the Bootstrap Distribution

Statistic 1% 5% 95% 99%
TN2 0.0002 0.0007 2.6799 4.1866
TN3 0.0000 0.0000 0.0132 0.0520
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