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Abstract.

For transitive Markov subshifts over countable alphabets, this note ensures that a

dense subclass of locally Hölder continuous potentials admits at most a single periodic

probability as a maximizing measure with compact support. We resort to concepts

analogous to those introduced by Mather and Mañé in the study of globally minimizing

curves in Lagrangian dynamics. In particular, given a summable variation potential,

we show the existence of a continuous sub-action in the presence of an Aubry point.
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Potential, Sub-actions, Peierls Barrier.

Mathematics Subject Classification number : 28D05, 37A05, 37B10.

1. Introduction and Main Results

Ergodic optimization in the context of countable Markov shifts registers works mainly

focused on ensuring existence and describing properties of optimizing measures [11, 3, 2].

By a perturbative approach, we show here the denseness into a class of locally Hölder

continuous potentials of the subset formed by those that admit at most one periodic

probability as maximizing measure with compact support. To the best of our knowledge,

this is an inaugural result of typicality for optimal measures in this scenario in which the

compactness of the phase space is not assumed. Our strategy follows the one adopted for

the case of finite alphabets [5, 10, 4]. In addition to the main result, other contribution

of these notes to ergodic optimization over non-compact phase spaces is the adaptation

to a symbolic dynamic setting of the viewpoint developed by Mañé for Lagrangian

systems [6]. Concepts discussed here had not yet been considered with the depth that

we were led to take into account. In particular, we had to return to the very concept

of the ergodic maximizing constant via Mañé’s critical value, an attitude that, to our

knowledge, had not yet been used in ergodic optimization.
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Let Σ denote a one-sided Markov shift on a countable alphabet and σ : Σ → Σ the

left shift map. To be concrete, we assume from this point forward that the alphabet is

the set of non-negative integers Z+. As usual Z+ is provided with the discrete topology

and Σ with the product topology, being metrizable when, for a fixed λ ∈ (0, 1), the

distance between two sequences x = (x0, x1, . . .) and y = (y0, y1, . . .) is d(x, y) = λℓ,

where ℓ indicates the first position of disagreement. We assume throughout the text

that the dynamics (Σ, σ) is topologically transitive.

We call a potential any continuous function A : Σ → R bounded from above.

The main objective is to study (when they exist) the σ-invariant probabilities that

maximize the integral of A over Σ. The regularity of the potential plays an important

role in this analysis. In fact, much of the subtlety of results in ergodic optimization

lies in this specific aspect. For subshifts over finite alphabets, for instance, one can

either generically have a single maximizing probability supported in a periodic orbit by

focusing on Hölder continuous potentials [5], or observe in a dense way the phenomenon

of the existence of uncountably many ergodic maximizing measures with full support

and positive entropy when taking into account continuous potentials in general [14].

We first consider potentials with summable variation. For a function A : Σ → R
and a non-negative integer ℓ ≥ 0, the ℓ-th variation is defined as

Varℓ(A) = sup
{
A(x)− A(y) : d(x, y) ≤ λℓ

}
.

For all 0 ≤ n < m ≤ ∞, we denote Varmn (A) :=
∑m

ℓ=nVarℓ(A). We say that A is of

summable variation when

Var∞1 (A) :=
∞∑
ℓ=1

Varℓ(A) < +∞.

(Note that no restriction is imposed on the zeroth variation of A.) The space of real-

valued functions of summable variation is a disjoint collection of affine spaces, each of

which is a metric space with respect to the distance

∥A−B∥sv := Var∞1 (A−B) + ∥A−B∥∞,

where ∥ · ∥∞ denotes the supremum norm. A specific class will receive our attention: a

potential A is said to be locally Hölder continuous when there exists a positive constant

Liploc(A) such that Varℓ(A) ≤ Liploc(A)λ
ℓ for all ℓ ≥ 1.

Given a potential A, we introduce the ergodic maximizing constant as

βA = sup

{∫
Σ

A dµ : µ is σ-invariant probability

}
.

Obviously βA ∈ ( − ∞, supA]. We say that an invariant probability measure µ is

maximizing whenever
∫
A dµ = βA. The existence of maximizing measures is far from

obvious in the general context of Markov shifts. When these exist, however, they are

expected to be supported in the Aubry set, the habitat of maximizing trajectories (for

details, see Chapter 4 of [8]).
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Definition 1.1 (Aubry set). We say that x ∈ Σ is an Aubry point for the potential A

when, for any ε > 0, there are a point w ∈ Σ and an integer n > 0 such that d (x,w) < ε,

d (σn(w), x) < ε and

−ε < Sn(βA − A)(w) < ε,

where Sn indicates the n-th Birkhoff sum. The set of Aubry points is denoted by Ω(A).

Our main result can be stated as follows.

Main Theorem. Let (Σ, σ) be a topologically transitive Markov shift on a countable

alphabet. Let A be a locally Hölder continuous potential. Suppose that a non-empty

compact invariant subset of its Aubry set is contained in a subshift over a finite alphabet.

Then, for any ε > 0, there is a locally Hölder continuous potential B such that

∥A − B∥sv < ε and B has at most a single periodic probability as maximizing measure

with compact support.

Note that, thanks to Atkinson’s theorem [1], the hypothesis on the Aubry set

is equivalent to the existence of a maximizing probability with compact support.

Examples of potentials that fulfill this last requirement are provided by the coercive

ones [2, Theorem 1]. Remember that a potential A is said to be coercive when

limi→+∞ supA|[i] = −∞, where [i] is the cylinder set {x = (x0, x1, . . .) ∈ Σ : x0 = i}.
Thus, a particular consequence of our main result is the following one.

Corollary for Coercive Potentials. Let (Σ, σ) be a topologically transitive Markov

shift on a countable alphabet. Let A be a coercive locally Hölder continuous potential.

Then, given ε > 0, there exists a coercive locally Hölder continuous potential B such

that ∥A−B∥sv < ε and B admits a single periodic probability as maximizing measure.

For primitive subshifts, the so-called oscillation condition (for details, see [11,

Definition 5.1]) actually allows to consider more general class of examples [11,

Theorem 6.1]. As a matter of fact, the central results in [11, 3, 2] ensure that, in

the cases analyzed, any maximizing probability is indeed supported in a subshift over

a finite subalphabet. Our main theorem takes into account also other situations. For

instance, if Σ0,Σ1 ⊂ Σ are disjoint subshifts, the first one over a finite subalphabet

and the second one over a countable subalphabet, the result applies to the potential

A = −d(Σ0, ·)d(Σ1, ·), whose maximizing probabilities are clearly all those invariant

ones supported either in Σ0 or in Σ1.

A key ingredient for obtaining the above theorem is the notion of a sub-action,

namely, a continuous function u : Σ → R such that

A+ u ◦ σ − u ≤ βA everywhere on Σ.

Previously the notion of normal form [11, Definition 2.2] consisted of an interesting

proposal to extend the role played by sub-actions in characterizing maximizing

probabilities. An ancillary result of this work is the guarantee of existence of a sub-

action via the Mañé potential ϕA or the Peierls barrier hA, both defined on Σ × Σ,

objects hitherto unexplored in the general context of potentials of summable variation
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on transitive countable Markov shifts. Their precise definition is postponed until the

next session. In the Lagrangian setting, the pioneer notions were introduced in [13, 12].

Collateral Theorem. Let (Σ, σ) be a topologically transitive Markov shift on a

countable alphabet. Let A be a potential of summable variation. Suppose there exists

an Aubry point for A. Then, for any x ∈ Ω(A) fixed, the potential admits a sub-action

defined as

ux( · ) = ϕA(x, · ) = hA(x, · ),

which has ℓ-th variation bounded from above by Var∞ℓ (A). If
∑∞

ℓ=1Var
∞
ℓ (A) < +∞,

the sub-action ux has summable variation. In particular, a locally Hölder continuous

potential admits a locally Hölder continuous sub-action.

The paper is organized as follows. In section 2, we introduce both the Mañé

potential and the Peierls barrier and highlight their main properties. The third section

is devoted to the Aubry set, with special attention to its interactions with these action

potentials. In particular, Collateral Theorem corresponds to Theorem 3.9. The proof

of Main Theorem is presented in the final section of this note.

2. Mañé Potential and Peierls Barrier

2.1. Fundamental Facts

Both the Mañé potential and the Peierls barrier are action potentials between points, the

first considers trajectories of any size, the second focuses on arbitrarily long trajectories.

We can introduce them through the following auxiliary function.

Definition 2.1. Let A : Σ → R be a potential and γ ∈ R be a constant. Given integers

k ≥ 0 and l ≥ 0, we define for x, y ∈ Σ,

γ
AS

k
l (x, y) := inf

n≥l
inf

d(x,w) ≤ λk

d(σn(w), y) ≤ λk

Sn(γ − A)(w).

To avoid cumbersome notation, when it is clear the potential taken into account,

we will simply denote γSk
l (x, y). Likewise, when γ = βA, we will just use Sk

l (x, y).

Concerning its basic properties, this function clearly fulfills, for all x, y ∈ Σ,

0 ≤ k, l =⇒ γSk
l (x, y) < +∞; (1)

0 ≤ l1 ≤ l2 =⇒ γSk
l1
(x, y) ≤ γSk

l2
(x, y); (2)

0 ≤ k1 ≤ k2 =⇒ γSk1
l (x, y) ≤ γSk2

l (x, y). (3)

Besides, the auxiliary function is locally constant, i. e.,

γSk
l (x, y) =

γSk
l (x

′, y′) whenever d(x, x′) ≤ λk and d(y, y′) ≤ λk. (4)

Note that even if the infimum in the definition of auxiliary function is not +∞, the

above result does not prevent the supremum with respect to k of γSk
l to be +∞. This

fact will lead us to pay close attention to situations in which ±∞ values can be present.

A fundamental inequality involving the auxiliary function is the following one.
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Lemma 2.2. Let A : Σ → R be a potential of summable variation and γ ∈ R be

a constant. For all integers k ≥ k̄ > 0 and l ≥ k − k̄, m ≥ 0 and for any points

x, y, z ∈ Σ, we have

γSk
l+m(x, z) ≤ γSk

l (x, y) +
γSk̄

m(y, z) + Var∞k̄ (A).

Proof. This result corresponds to a version of Lemma 5.1 of [8] for countable

alphabets and potentials of summable variation, the proof of that result being easily

adjustable.

We initially consider versions of Mañé potential and Peierls barrier at any level γ.

Definition 2.3. Let A : Σ → R be a potential and γ ∈ R be a constant.

(i) We define the Mañé potential as the function ϕγ
A : Σ× Σ → R ∪ {±∞} given as

ϕγ
A(x, y) := lim

k→∞
γSk

1(x, y) = sup
k≥0

inf
n≥1

inf
d(x,w) ≤ λk

d(σn(w), y) ≤ λk

Sn(γ − A)(w)

for all x, y ∈ Σ.

(ii) The Peierls barrier is the function hγ
A : Σ× Σ → R ∪ {±∞} defined as

hγ
A(x, y) := sup

k≥0
sup
l≥1

γSk
l (x, y)

= lim
k→∞

lim inf
n→∞

inf
d(x,w) ≤ λk

d(σn(w), y) ≤ λk

Sn(γ − A)(w)

for every x, y ∈ Σ.

It is immediate from these definitions that

ϕγ
A(x, y) ≤ hγ

A(x, y) (5)

for all x, y ∈ Σ. It is also easy to see that γSk
l (x, σ

n(x)) ≤ Sn(γ − A)(x), for all k ≥ 0

and n ≥ l, from which we obtain a fundamental inequality over an orbit

ϕγ
A (x, σn(x)) ≤ Sn(γ − A)(x), (6)

for every x ∈ Σ and for all n ≥ 1.

We can present basic “triangle inequalities” involving the Mañé potential and the

Peierls barrier.

Proposition 2.4. Let A : Σ → R be a potential of summable variation and γ ∈ R be a

constant. Then, for every point x, y, z ∈ Σ, the following inequalities hold

ϕγ
A(x, z) ≤ ϕγ

A(x, y) + ϕγ
A(y, z), (7)

hγ
A(x, z) ≤ ϕγ

A(x, y) + hγ
A(y, z), (8)

hγ
A(x, z) ≤ hγ

A(x, y) + ϕγ
A(y, z), (9)

hγ
A(x, z) ≤ hγ

A(x, y) + hγ
A(y, z). (10)

Proof. From Lemma 2.2, the proof follows the same lines as the proof of item ii of

Proposition 5.2 of [8].
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2.2. Minus Infinity Dichotomy

We analyze a central dichotomy of the Mañé potential (and the Peierls barrier) with

respect to the value −∞, which is intrinsically related with the ergodic maximizing

constant.

Lemma 2.5. Let A : Σ → R be a potential. Then

βA = sup

{
κ ∈ R :

there exists a periodic point x = σp(x)

with Sp(κ− A)(x) < 0

}

= min

{
κ ∈ R :

Sp(κ− A)(x) ≥ 0

for all periodic point x = σp(x)

}
.

This corresponds to the Mañé critical value characterization for βA (see [6]).

Proof. Since Sp(κ−A)(x) < 0 ⇔ p κ < SpA(x) and Sp(κ−A)(x) ≥ 0 ⇔ SpA(x) ≤ p κ,

the sets

I := {κ ∈ R : there is a periodic point x = σp(x) with p κ < SpA(x)} ,
J := {κ ∈ R : SpA(x) ≤ p κ for all periodic point x = σp(x)}

are complementary intervals with infinite endpoints such that sup I = inf I∁ = inf J .

As J is a closed set, the infimum is in fact a minimum.

Note that βA ≥ minJ . In fact, given a periodic point x = σp(x), for the associated

σ-invariant probability µx := 1
p

∑p−1
i=0 δσi(x), we obtain SpA(x) = p

∫
A dµx ≤ p βA.

From topological transitivity, periodic probabilities are dense among invariant

measures, by Theorem 4.2 and Section 6 of [7], so that

βA = sup
{

1
p
SpA(x) : x = σp(x) is a p-periodic point of Σ

}
.

It is easy to see that every κ ∈ J is greater than or equal to βA, thus βA ≤ minJ .

Now we can precisely state the fundamental dichotomy.

Proposition 2.6. Let A : Σ → R be a potential of summable variation and γ ∈ R be

a constant. The following assertions are equivalent:

(i) γ ≥ βA;

(ii) ϕγ
A (x, x) > −∞ for every x ∈ Σ.

From the above proposition and the corresponding triangle inequality, the Mañé

potential (and the Peierls barrier) assumes the value −∞ everywhere or nowhere.

Proof. Let us prove the contrapositive statements. Suppose that ϕγ
A (x, x) = −∞ for

some x ∈ Σ. It is immediate that γSk
1 (x, x) = −∞ for any k. Since γS1

1(x, x) is an

infimum, there exist w ∈ Σ and integer n ≥ 1 fulfilling

d(x,w) ≤ λ, d(σn(w), x) ≤ λ and Sn(γ − A)(w) < −Var∞1 (A).
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In particular, w0 = x0 = wn, so we can consider the periodic point

z := (x0, w1, . . . , wn−1, x0, w1, . . . , wn−1, . . . ) = σn(z) ∈ Σ.

Note that Sn(γ − A)(z) ≤ Sn(γ − A)(w) + Var∞1 (A) < 0. From Lemma 2.5, γ < βA.

Assume now γ < βA. Again Lemma 2.5 ensures that there is a periodic point

x = σp(x) such that −M := Sp(γ − A)(x) < 0. By the periodicity of x, from

inequality (6) we conclude that

ϕA,γ(x, x) = lim
k→∞

ϕA,γ

(
x, σk p(x)

)
≤ lim

k→∞
Sk p(γ − A)(x) = lim

k→∞
−kM = −∞.

Corollary 2.7. Let A : Σ → R be a potential of summable variation. Then, for every

x, y ∈ Σ,

−∞ < ϕA (x, y) and −∞ < hA (x, y) .

Proof. By Proposition 2.6, we have ϕA (z, z) > −∞. Apply twice inequality (7) in order

to obtain −∞ < ϕA (z, z) ≤ ϕA (z, x) + ϕA (x, y) + ϕA (y, z) for any x, y ∈ Σ. Thus,

inequality (5) provides −∞ < ϕA (x, y) ≤ hA (x, y).

3. Aubry Set

The Aubry set was already introduced in Definition 1.1. We provide below a list of the

main properties of this set that remain unchanged regardless the non-compact scenario.

Proofs may be found in Chapter 4 of [8].

Proposition 3.1. Let A : Σ → R be a potential. The following properties hold.

(i) For every continuous function f : Σ → R and any constant c ∈ R, we have

Ω(A) = Ω (A+ f ◦ σ − f − c).

(ii) Ω(A) is an invariant set, i. e., σ (Ω(A)) ⊂ Ω(A).

(iii) Ω(A) is a closed set.

(iv) If µ is an A-maximizing measure, then suppµ ⊂ Ω(A). In particular, the existence

of a maximizing probability implies the Aubry set is non-empty.

The behavior of the Mañé potential and the Peierls barrier on the diagonal and the

Aubry set are intimately related. The following alternative characterization of Aubry

points, given by Corollary 4.5 of [8], allows us to be more precise.

Lemma 3.2. Let A : Σ → R be a potential. Then, x ∈ Ω(A) if and only if for any

ε > 0 and for all integer L ≥ 1, there are a point w ∈ Σ and an integer n ≥ L such that

d(x,w) < ε, d(σn(w), x) < ε and

−ε ≤ Sn(βA − A)(w) ≤ ε.

Proposition 3.3. Let A : Σ → R be a potential of summable variation. Then

x ∈ Ω(A) ⇐⇒ ϕA(x, x) = hA(x, x) = 0.
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Proof. Note first that 0 ≤ ϕA(x, x) ≤ hA(x, x) ≤ +∞ for any x ∈ Σ. As a matter of

fact, ϕA (x, σ(x)) ∈ R by inequality (6) and Corollary 2.7. From inequalities (7) and (5),

it follows that 0 = ϕA (x, σ(x))− ϕA (x, σ(x)) ≤ ϕA(x, x) ≤ hA(x, x) for all x ∈ Σ.

Let x ∈ Ω(A). From Lemma 3.2, for every k ≥ 0 and for all integer L ≥ 1, there

are w ∈ Σ and n ≥ L such that d(x,w) < λk, d(σn(w), x) < λk and

Sk
L(x, x) ≤ Sn(βA − A)(w) ≤ λk.

By taking the supremum with respect to L ≥ 1 and passing to the limit as k → ∞, we

obtain hA(x, x) ≤ 0.

Reciprocally, suppose hA(x, x) = 0. In particular, ϕA(x, x) = supk≥0 Sk
1(x, x) = 0.

Thus, given ε > 0, there is K ≥ 0 such that −ε < Sk
1(x, x) ≤ 0 for any k ≥ K. We may

assume that λK ≤ ε. For a fixed k ≥ K, since Sk
1(x, x) is an infimum, there are a point

w ∈ Σ and an integer n ≥ 1 fulfilling d(x,w) ≤ λk ≤ ε, d(σn(w), x) ≤ λk ≤ ε and

−ε < Sk
1(x, x) ≤ Sn(βA − A)(w) < Sk

1(x, x) + ε ≤ ε.

Therefore, x is an Aubry point.

3.1. Sub-action

We will show that the existence of an Aubry point x ensures that there is always a

continuous sub-action, precisely the function

y ∈ Σ 7−→ ux(y) := ϕA(x, y) = hA(x, y) ∈ R.

The first step is to observe that we are dealing with a real-valued function.

Proposition 3.4. Let A : Σ → R be a potential of summable variation. If hA(x, z) ∈ R
for some x, z ∈ Σ, then

ϕA (x, y) ∈ R and hA (x, y) ∈ R, ∀ y ∈ Σ.

Proof. Property (2) and Lemma 2.2 (with m = 0) provide for any x, y, z ∈ Σ,

sup
l≥1

Sk
l (x, y) ≤ sup

l≥k−k̄

Sk
l (x, y) ≤ sup

l≥1
Sk

l (x, z) +Sk̄
0 (z, y) + Var∞1 (A),

where k ≥ k̄ > 0. By passing to the limit as k → ∞, and recalling inequality (5), we

obtain for any k̄ > 0,

ϕA (x, y) ≤ hA (x, y) ≤ hA (x, z) +Sk̄
0 (z, y) + Var∞1 (A).

We conclude the result applying Corollary 2.7, the hypothesis and (1).

Corollary 3.5. Let A : Σ → R be a potential of summable variation. If x ∈ Ω(A),

then

ϕA(x, y) = hA(x, y) ∈ R, ∀ y ∈ Σ.
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Proof. The equality between the Mañé potential and the Peierls barrier in this case

follows from inequalities (5) and (9), and from Proposition 3.3, since

ϕA(x, y) ≤ hA(x, y) ≤ hA(x, x) + ϕA(x, y) = ϕA(x, y).

Besides, hA(x, y) ∈ R thanks to Propositions 3.3 and 3.4.

The Peierls barrier is continuous with respect to the second variable.

Proposition 3.6. Let A : Σ → R be a potential of summable variation. If hA(x̄, z) ∈ R
for some x̄, z ∈ Σ, then the map

y ∈ Σ 7−→ hA(x̄, y) ∈ R

is continuous with ℓ-th variation bounded from above by Var∞ℓ (A). In particular, if∑∞
ℓ=1Var

∞
ℓ (A) < +∞, then hA(x̄, ·) is of summable variation.

Proof. Proposition 3.4 guarantee that hA(x̄, · ) is a real-valued function. Consider points

x, y ∈ Σ such that d(x, y) ≤ λk̄, with k̄ > 0. From property (2) and Lemma 2.2 (with

m = 0), we obtain

sup
l≥1

Sk
l (x̄, x) ≤ sup

l≥k−k̄

Sk
l (x̄, x) ≤ sup

l≥1
Sk

l (x̄, y) +Sk̄
0 (y, x) + Var∞k̄ (A),

where k ≥ k̄ > 0. Note that Sk̄
0(y, x) ≤ S0(βA − A)(x) = 0. As k → ∞, it follows that

hA (x̄, x)− hA (x̄, y) ≤ Var∞k̄ (A), for any x, y ∈ Σ with d(x, y) ≤ λk̄. In other terms,

Varℓ (hA(x̄, · )) ≤ Var∞ℓ (A).

Remark 3.7. There is a slight loss of regularity between the potential A and the

associated Peierls barrier, which seems to be natural on non-compact scenarios, see [9].

Regularity on the first coordinate can be verified for Aubry points.

Proposition 3.8. Let A : Σ → R be a potential of summable variation. Then, for any

ȳ ∈ Σ fixed, the map

x ∈ Ω(A) 7−→ ϕA(x, ȳ) = hA(x, ȳ) ∈ R

is continuous with ℓ-th variation bounded from above by Var∞ℓ (A). In particular, if∑∞
ℓ=1Var

∞
ℓ (A) < +∞, then hA(·, ȳ)|Ω(A) is of summable variation.

Proof. Thanks to Corollary 3.5, ϕA(x, · ) = hA(x, · ) ∈ R, for every x ∈ Ω(A). By

inequality (10) and Proposition 3.3, we obtain

hA(x, ȳ)− hA(y, ȳ) ≤ hA(x, y) = hA(x, y)− hA(x, x),

for all x, y ∈ Ω(A). Hence, if d(x, y) ≤ λℓ with ℓ ≥ 1, Proposition 3.6 ensures that

Varℓ
(
hA( · , ȳ)|Ω(A)

)
≤ Var∞ℓ (A).

We can now ensure the existence of a basic sub-action, obtained from the Mañé

potential and the Peierls barrier (also known as Collateral Theorem).



Dense periodic optimization for CMS via Aubry points 10

Theorem 3.9. Let A : Σ → R be a potential of summable variation. Then, for any

x ∈ Ω(A) fixed, the map

ux( · ) = ϕA(x, · ) = hA(x, · ) : Σ −→ R
y 7−→ ux(y) = ϕA(x, y) = hA(x, y)

is a continuous sub-action with ℓ-th variation bounded from above by Var∞ℓ (A). In

particular, if
∑∞

ℓ=1Var
∞
ℓ (A) < +∞, then ux is a sub-action of summable variation.

More specifically, if A : Σ → R is a locally Hölder continuous potential, then ux is a

locally Hölder continuous sub-action.

Proof. First, note that ux fulfills the inequality in the definition of a sub-action. Indeed,

by applying inequalities (7) and (6), for every y ∈ Σ, we get

ux ◦ σ(y) = ϕA (x, σ(y)) ≤ ϕA (x, y) + ϕA (y, σ(y))

≤ ux(y) + (βA − A)(y) = ux(y)− A(y) + βA.

Next, the statements about the regularity of the function ux are direct consequences of

Corollary 3.5 and Proposition 3.6.

When the potential A admits a sub-action u, we introduce its contact locus as

MA (u) := (A+ u ◦ σ − u)−1 (βA) .

We summarize the main properties of this set including its relations with the Aubry

set and the maximizing measures. Proofs may be found in [8] and remain unchanged

regardless the non-compact scenario.

Proposition 3.10. Let A : Σ → R be a potential and u : Σ → R be any sub-action

of A. The following properties hold.

(i) MA (u) is a closed set.

(ii) Ω(A) ⊂ MA (u).

(iii) If µ is an A-maximizing measure, then suppµ ⊂ MA (u). In particular, MA (u) is

a non-empty set whenever there exists a maximizing probability.

4. Densely Periodic Optimization

This section is dedicated to prove the Main Theorem. The argument is inspired by the

proof of Contreras theorem for shifts over finite alphabets [5, 10, 4]. In particular, we

will make use of the following result.

Lemma 4.1 (Huang, Lian, Ma, Xu, Zhang). Let Ω be a compact invariant subset of a

Markov subshift over a finite alphabet. Then, for any τ > 0, there exists a periodic orbit

O such that ∑
z∈O

d(Ω, z) < τ∆(O),

where ∆(O) denotes the half-gap of the orbit: ∆(O) = 1
2
min

{
λ,min y, z ∈ O

y ̸= z

d(y, z)
}
‡.

‡ It is conventional that min ∅ = ∞, so that ∆(O) = λ/2 if O consists of a single fixed point.
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For a proof of this lemma, see [10, Proposition 3.1] or [4, Lemma 2.3].

Proof of the Main Theorem. Let Ω denote the non-empty compact invariant subset

of the Aubry set of the potential A that is contained in a subshift over a finite

alphabet. For x ∈ Ω, we consider the associated locally Hölder continuous sub-action

u := ϕA(x, ·) = hA(x, ·), given by Theorem 3.9, and we introduce

Â :=
1

1 + ∥A+ u ◦ σ − u− βA∥sv
(A+ u ◦ σ − u− βA).

Note that Â ≤ 0 is a locally Hölder continuous potential of norm less than 1, which

admits among its maximizing probabilities all A-maximizing measures with compact

support.

As maximizing measures are preserved when multiplying a potential by a positive

constant, it suffices to show that, given ε > 0, there exists a periodic point y = y(ε) ∈ Σ

such that, if the perturbed potential

Â− εd(orb(y), ·)

has a maximizing probability with compact support, then this is necessarily the periodic

measure

µy :=
1

#orb(y)

∑
z∈orb(y)

δz.

By taking τ ∈ (0, ε), which will be specified later, we apply Lemma 4.1 to determine

a periodic point y fulfilling∑
z∈orb(y)

d(Ω, z) < τ∆,

where we abbreviate ∆ = ∆(orb(y)). Hence, denote

β(ε) := βÂ−εd(orb(y),·) ≤ 0

and define

B̂ := Â− εd(orb(y), ·)− β(ε).

It is now sufficient to show that if there exists a B̂-maximizing probability with compact

support, then it must necessarily be µy.

We have
∫
Â dµy =

∫
[Â− εd(orb(y), ·)] dµy ≤ β(ε). In particular, note that∫

B̂ dµy ≤ 0. (11)

Besides, as ∥Â∥sv ≤ 1 and Â|Ω ≡ 0 (by item ii of Proposition 3.10),∫
Â dµy =

1

#orb(y)

∑
z∈orb(y)

Â(z) ≥ − 1

#orb(y)

∑
z∈orb(y)

d(Ω, z),
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which yields ∫
Â dµy ≥ − 1

#orb(y)
τ∆.

We then obtain that

B̂ ≤ −β(ε) ≤ 1

#orb(y)
τ∆. (12)

Let us denote r := −β(ε)/ε. We point out that

d(orb(y), z) > r ⇒ B̂(z) ≤ 0. (13)

Indeed, in this case,

B̂(z) = Â(z)− εd(orb(y), z)− β(ε) ≤ β(ε)− β(ε) = 0.

Suppose that B̂ admits a maximizing probability with compact support, say, S.

Recall that S ⊂ Ω(B̂) by item iv of Proposition 3.1. Let us fix w ∈ S and consider

v := ϕB̂(w, ·) = hB̂(w, ·) sub-action for B̂. It is essential to remember that, thanks to

item iii of Proposition 3.10,

B̂ ◦ σℓ(w) + v ◦ σℓ+1(w)− v ◦ σℓ(w) = 0 ∀ ℓ ≥ 0,

which brings us in particular∑
p≤j≤q

B̂(σj(w)) ≥ −2 ∥v|S∥∞ ∀ 0 ≤ p ≤ q < ∞.

Because of the last inequality, we will show that σℓ(w) can be far from the periodic orbit

of y for at most a finite number of indices ℓ ≥ 0. By the expansiveness, for ℓ sufficiently

large, this will automatically lead to σℓ(w) ∈ orb(y) = supp(µy). Consequently, the

unique possible B̂-maximizing probability with compact support is µy.

Let ℓ0 ≥ 0 be the smallest integer such that d(orb(y), σℓ0(w)) > ∆. Recursively,

given ℓm−1, let ℓm > ℓm−1 be the smallest integer such that d(orb(y), σℓm(w)) > ∆. It

is now sufficient to show that the sequence (ℓm) can only be defined for a finite number

of indices.

Let us first remark that from (12)

r =
−β(ε)

ε
≤ 1

#orb(y)

τ

ε
∆ ≤ τ

ε
∆ < ∆.

Whenever the set

{ℓ : ℓm < ℓ < ℓm+1 and d(orb(y), σℓ(w)) ≤ r}

is empty, using (13) when necessary, note that∑
ℓm<ℓ<ℓm+1

B̂(σℓ(w)) ≤ 0.

Otherwise, we write km as the maximum of this set and we have∑
ℓm<ℓ<ℓm+1

B̂(σℓ(w)) ≤
∑

ℓm<ℓ≤km

B̂(σℓ(w)).
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Since d(orb(y), σkm(w)) ≤ r < ∆, the point on the orbit of y which achieves this distance

is uniquely determined. If we denote it as σkm(z) for z ∈ orb(y), by the very definition

of ∆ and by the expansiveness, we obtain that

d(Ω, σℓ(w)) = d(σℓ(z), σℓ(w)) ≤ λkm−ℓd(σkm(z), σkm(w))

for ℓ ∈ {ℓm + 1, . . . , km}. Recalling that ∥Â∥sv ≤ 1, we can estimate∑
ℓm<ℓ≤km

[
B̂(σℓ(w))− B̂(σℓ(z))

]
≤

≤ (1 + λ+ . . .+ λkm−(lm+1)) r − ε
∑

ℓm<ℓ≤km

d(orb(y), σℓ(w))

≤ 1

1− λ
r.

Therefore the following upper bound holds:∑
ℓm<ℓ<ℓm+1

B̂(σℓ(w)) ≤

≤ 1

1− λ
r +

⌊
km − ℓm
#orb(y)

⌋
#orb(y)

∫
B̂ dµy +

+ (#orb(y)− 1)
1

#orb(y)
τ∆

≤ 1

1− λ
r +

(
1− 1

#orb(y)

)
τ∆

≤
( 1

1− λ
· 1
ε
· 1

#orb(y)
+ 1− 1

#orb(y)

)
τ∆.

(We use (12) to establish the first and third inequalities and we use just (11) to obtain

the second one.) Obviously,

B̂(σℓm+1(w)) = Â(σℓm+1(w))− εd(orb(y), σℓm+1(w))− β(ε)

≤ −ε∆+
1

#orb(y)
τ∆.

Thus (whether or not there is km) we deduce that∑
ℓm<ℓ≤ℓm+1

B̂(σℓ(w)) ≤
[( 1

1− λ
· 1
ε
· 1

#orb(y)
+ 1

)
τ − ε

]
∆

≤
[( 1

1− λ
· 1
ε
+ 1

)
τ − ε

]
∆.

We then take

τ :=
1

2
· ε

1 + 1
1−λ

· 1
ε

,

so that ∑
ℓm<ℓ≤ℓm+1

B̂(σℓ(w)) ≤ −ε

2
∆.
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We conclude in this way that the orbit of w has at most

m ≤ 4

ε∆
||v|S||∞

indices such that σℓm(w) lies more than ∆ from the periodic orbit of y.
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