Unsteady Stokes Equations and the Fractional Leibniz Rule

Paulo Mendes de Carvalho Neto Departamento de Matemática Universidade Federal de Santa Catarina Florianópolis, Brazil

Abstract

This talk is dedicated to introduce a new inequality that involves an important case of Leibniz rule regarding Riemann-Liouville and Caputo fractional derivatives of order $\alpha \in (0, 1)$. More specifically, we prove that for suitable functions f, it holds that

$$D_{t_0,t}^{\alpha} [f(t)]^2 \leq 2 \Big[D_{t_0,t}^{\alpha} f(t) \Big] f(t), \quad \text{almost everywhere in } [t_0, t_1],$$

 and

$$cD_{t_0,t}^{\alpha} [f(t)]^2 \leq 2 \Big[cD_{t_0,t}^{\alpha} f(t) \Big] f(t), \text{ almost everywhere in } [t_0, t_1].$$

In the context of partial differential equations, the aforesaid inequality allows us to address the Faedo-Galerkin method to study the fractional version of the 2D Stokes equation on bounded domains Ω

$cD_t^{\alpha}u - \nu\Delta u + \nabla p$	=	f	in Ω , $t > 0$,
$ abla \cdot u$	=	0	in Ω , $t > 0$,
u(x,t)	=	0	on $\partial \Omega$, $t > 0$,
u(x,0)	=	$u_0(x)$	in Ω .

where cD_t^{α} is the Caputo fractional derivative of order $\alpha \in (0, 1)$ and f a suitable function. This is a joint work with Prof. Renato Fehlberg Júnior.

References

- [1] P. M. Carvalho-Neto and R. Fehlberg Junior, Conditions to the absence of blow up solutions to fractional differential equations, Acta Appl. Math. (2017)
- [2] **P. M. Carvalho-Neto** and R. Fehlberg Junior, *On the fractional version of Leibniz rule*, (to appear Mathematische Nachrichten).