Testes de hipótese para tabelas de contingência:

parte 2 (testes de aderência e medidas de

associação/dependência)

Prof. Caio Azevedo

Exemplo 6: distribuição espacial de árvores

- Os dados a seguir (extraídos de Andrade e Ogliari (2010)) se referem ao número de árvores por quadrante da espécie Guapira opposita, obtidos de um estudo realizado com o objetivo de verificar a distribuição espacial dessa espécie num local de restinga.
- Foram considerados um total de 94 quadrantes e contou-se o número de quadrantes com zero árvores, uma árvore, duas árvores, assim por diante.
- Na última categoria foram contabilizados todos os quadrantes que apresentaram pelo menos nove árvores.

- As hipóteses de interesse são:
 - H₀: A espécie se distribui aleatoriamente na região (a probabilidade de uma árvore ocorrer em qualquer ponto da região é a mesma e independe de qualquer outra árvore).
 - *H*₁ : A espécie não se distribui aleatoriamente.
- Equivalentemente:
 - H₀: A distribuição de Poisson (discutível) é apropriada para modelar o comportamento (aleatório) da dispersão espacial.
 - H₁: A distribuição de Poisson não é apropriada para modelar o comportamento (aleatório) da dispersão espacial.

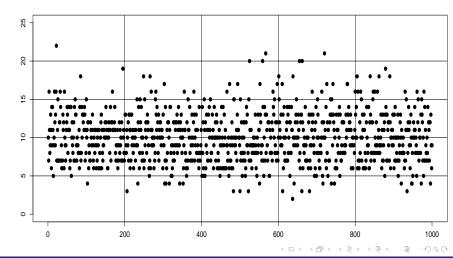
Dados

Quantidade de árvores por quadrante (x)	(N_j) quantidade de quadrantes com x árvores
0	6
1	18
2	23
3	19
4	11
5	6
6	5
7	4
8	1
9	1

x: número de árvores por quadrante, $x \in \{0,1,...,9\}$; Y_i : número de árvores no i-ésimo quadrante, i=1,2,...,94. Sob H_0 , $Y_i \overset{i.i.d}{\sim}$ Poisson(λ).

- A estatística para testar a aderência (adequabilidade) é
 Q_H = ∑_{j=1}^m (N_j-E_j)²/E_j. N_j é a frequência observada de quadrantes
 (quantidade de Y_i's) com determinada quantidade de árvores (m = 9). E_j é a quantidade esperada (sob H₀) de quadrantes com determinada quantidade de árvores (quantidade esperada de Y_i's sob a validade do modelo de Poisson).
- Temos que: $E_j = 94 \times P(Y = j), j = 0, 1, 2, ..., 9,$ $Y \sim \mathsf{Poisson}(\widetilde{\lambda}), \widetilde{\lambda} = \frac{1}{94} \sum_{j=0}^{9} j \times N_j = 2, 87.$
- Para calcular $\widetilde{\lambda}$ consideramos uma média ponderada de sorte que, na última categoria $x_i = 9$.

Ilustração da estrutura dos dados



Dados e análise

X	N_j	Prob. de Poisson	Num. esperado de quadrantes
0	6	0,0566	5,3172
1	18	0,1625	15,2729
2	23	0,2333	21,9345
3	19	0,2234	21,0011
4	11	0,1604	15,0806
5	6	0,0922	8,6633
6	5	0,0441	4,1473
7	4	0,0181	1,7018
8	1	0,0065	0,6110
9	1	0,0021*	0,1950

(* Calculada para $x_i=9$). Nesse caso, $q_H=9,59$ e $p-valor=P(Q\geq 9,59|H_0)=0,4772, Q\sim \chi_9^2$. Assim, não rejeitamos a hipótese de distribuição espacial aleatória.

Voltemos ao Exemplo 3: estudo sobre a inclinação (identificação) partidária estadunidense

■ Tabela de contingência (2×2) com os resultados da pesquisa.

		Inclinação		
		Democrata	Total	
Gênero	Feminino	762	468	1230
	Masculino	484	477	961
Total	-	1246	945	2191

Pergunta: as proporções de pessoas para cada inclinação partidária é a mesma entre os gêneros?

Produto de binomiais (condicionalmente) independentes

A tabela anterior é uma realização (amostra) possível, oriunda da seguinte estrutura:

		Inclinação		
		Democrata Republicano		Total
Gênero	Feminino	$N_{11}(heta_{11})$	$N_{12}(\theta_{12})$	$n_{1.}=1230$
	Masculino	$N_{21}(\theta_{21})$	$N_{22}(\theta_{22})$	$n_{2.} = 961$
Total	-	N _{.1}	N _{.2}	n = 2191

- Já vimos que, nesse caso, as hipóteses de homogeneidade e independência são equivalentes.
- Há outras formas de se quantificar (testar) a dependência.
- Chances: $\lambda_1 = \frac{\theta_{11}}{1 \theta_{11}} \text{ e } \lambda_2 = \frac{\theta_{21}}{1 \theta_{21}}.$
- lacktriangle λ_1 quantifica o quão mais $(\lambda>1)$ ou menos $(\lambda<1)$ provável é um eleitor do gênero feminino ter uma inclinação "democrata" em relação à ter uma inclinação "republicana".
- Analogamente, para λ_2 (gênero masculino). Note que $\lambda_i \in (0, \infty), i = 1, 2.$

Razão de chances:

$$\pi=rac{\lambda_1}{\lambda_2}=rac{rac{ heta_{11}}{1- heta_{11}}}{rac{ heta_{21}}{1- heta_{21}}},\pi\in(0,\infty).$$

- Quantifica o quão maior $(\pi > 1)$ ou menor $(\pi < 1)$ é a chance de um eleitor do gênero feminino ter uma inclinação "democrata" em relação à ter uma inclinação "republicana", comparado com a equivalente chance para o gênero masculino.
- Podemos provar que $\theta_{11} = \theta_{21}$ (independência) $\leftrightarrow \pi = 1$ (exercício).

- Podemos, então, verificar (e quantificar) a existência de dependência testando as hipóteses $H_0: \pi = 1$ vs $H_1: \pi \neq 1$.
- Equivalentemente, podemos testar $H_0: \eta = \ln \pi = 0$ vs $H_1: \eta = \ln \pi \neq 0$.
- lacktriangle Temos que o estimador de máxima verossimilhança de η é dado por

$$\widehat{\eta} = \ln \widehat{\pi} = \ln \left(\frac{\frac{\widehat{\theta}_{11}}{1 - \widehat{\theta}_{11}}}{\frac{\widehat{\theta}_{21}}{1 - \widehat{\theta}_{21}}} \right) = \ln \left(\frac{N_{11}N_{22}}{N_{12}N_{21}} \right) = \ln N_{11} + \ln N_{22} - \ln N_{12} - \ln N_{21},$$

em que $\widehat{\theta}_{i1} = \frac{N_{i1}}{n_{i.}}$, i = 1, 2, devido à propriedade da invariância dos estimadores de MV.

- A distribuição assintótica de $\widehat{\eta}$ se aproxima mais de uma distribuição normal do que a distribuição assintótica de $\widehat{\pi}$, para um mesmo conjunto de dados.
- Isso ocorre, essencialmente, porque $\widehat{\eta} \in (-\infty, \infty)$ enquanto que $\widehat{\pi} \in (0, \infty)$. Além disso, a distribuição de $\widehat{\eta}$ é menos assimétrica do que a distribuição de $\widehat{\pi}$.
- Para $n_{i.}$, i=1,2 suficientemente grandes, temos que $\widehat{\eta} \approx N(\eta, \sigma_{\eta}^2)$, em que $\sigma_{\eta}^2 = \frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}$ (é a estimativa de máxima verossimilhança da variância assintótica de η).

Exemplo 3 (cont.) Metodologias assintóticas

- Portanto, $IC(\eta, \gamma) = [\widehat{\eta} z_{\frac{1-\gamma}{2}}\sigma_{\eta}; \widehat{\eta} + z_{\frac{1-\gamma}{2}}\sigma_{\eta}]$, em que $P(Z \geq z_{\frac{1-\gamma}{2}}) = \frac{1-\gamma}{2}$ e $\sigma_{\eta} = \sqrt{\sigma_{\eta}^2}$, lembrando que $IC(\eta, \gamma)$ representa um intervalo de confiança (nesse caso assintótico) para η com coeficiente de confiança (aproximado) γ .
- Um teste para testar $H_0: \eta = \eta_0$ vs $H_1: \eta \neq \eta_0$ é, rejeitar H_0 se $p - valor < \alpha$, em que $p - valor = 2P(Z > |z_t||H_0)$, em que z_t é o valor calculado da estatística

$$Z_t = rac{\widehat{\eta} - \eta_0}{\sigma_\eta}, Z pprox N(0, 1).$$

■ Também podemos obter uma aproximação numérica da distribuição de $\widehat{\eta}$ por reamostragem.

Método delta univariado

- Considere uma tabela gerada por uma multinomial (os resultados valem, com as devidas adaptações, para o modelo produto de multinomiais).
- Temos que o emv de cada θ_{ij} é dado por $\widehat{\theta}_{ij} = \frac{N_{ij}}{n}$.
- Para n. suficientemente grande

$$\widehat{ heta}_{ij} pprox \mathcal{N}\left(heta_{ij}, rac{ heta_{ij}\left(1 - heta_{ij}
ight)}{ extbf{n}_{..}}
ight)$$

ou, de modo equivalente,

$$\sqrt{n_{..}}\left(\widehat{\theta}_{ij}-\theta_{ij}\right) \xrightarrow[n_{..}\to\infty]{D} N\left(0,\theta_{ij}\left(1-\theta_{ij}\right)\right)$$

Método delta univariado

- Defina $\tau_{ij} = h(\theta_{ij}) = \theta_{ij} (1 \theta_{ij})$. Pelo princípio da invariância, temos que o emv de τ_{ij} é $\widehat{\tau}_{ij} = \widehat{\theta}_{ij} \left(1 \widehat{\theta}_{ij}\right)$.
- Qual a distribuição assintótica de $\hat{\tau}_{ii}$?
- A obtenção pode ser feita através do método Delta (univariado).
- Seja $\widehat{\theta}$ uma variável aleatória de sorte que, para n suficientemente grande,

$$\widehat{\theta} \approx N(\theta, \sigma^2).$$

■ Defina $\widehat{\tau} = g(\widehat{\theta})$. Então, para n suficientemente grande,

$$\widehat{\tau} \approx N(g(\theta), \sigma^2 [\psi(\theta)]^2),$$

em que
$$\psi(\theta) = \frac{d}{d\theta}g(\theta)$$
.

- Nesse caso, $g(\theta_{ij}) = \theta_{ij}(1 \theta_{ij})$ e $\psi(\theta_{ij}) = 1 2\theta_{ij}$.
- Assim, para n. suficientemente grande,

$$g(\widehat{\theta}_{ij}) pprox N\left(\theta_{ij}(1-\theta_{ij}), rac{\theta_{ij}(1-\theta_{ij})(1-2\theta_{ij})^2}{n_{..}}
ight)$$

Método delta multivariado

 \blacksquare Seja $\widehat{\theta}=(\widehat{\theta}_1,\widehat{\theta}_2,...,\widehat{\theta}_p)'$ de sorte que, para n suficientemente grande

$$\widehat{\boldsymbol{\theta}} \approx N_p(\boldsymbol{\theta}, \boldsymbol{\Sigma}).$$

■ Defina $\widehat{\tau} = (g_1(\widehat{\theta}), g_2(\widehat{\theta}), ..., g_r(\widehat{\theta}))'$, então, para n suficientemente grande,

$$\widehat{\boldsymbol{\tau}} \approx N_r(\boldsymbol{\tau}, \boldsymbol{\Psi} \boldsymbol{\Sigma} \boldsymbol{\Psi}'),$$

em que
$$\tau = (g_1(\theta), g_2(\theta), ..., g_r(\theta))'$$
.

Método delta multivariado

e

$$\Psi = \begin{bmatrix} \frac{\partial}{\partial \theta_1} g_1(\theta) & \frac{\partial}{\partial \theta_2} g_1(\theta) & \frac{\partial}{\partial \theta_3} g_1(\theta) & \dots & \frac{\partial}{\partial \theta_p} g_1(\theta) \\ \frac{\partial}{\partial \theta_1} g_2(\theta) & \frac{\partial}{\partial \theta_2} g_2(\theta) & \frac{\partial}{\partial \theta_3} g_2(\theta) & \dots & \frac{\partial}{\partial \theta_p} g_2(\theta) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial}{\partial \theta_1} g_r(\theta) & \frac{\partial}{\partial \theta_2} g_r(\theta) & \frac{\partial}{\partial \theta_3} g_r(\theta) & \dots & \frac{\partial}{\partial \theta_p} g_r(\theta) \end{bmatrix}.$$

Estimador do log da razão de chances (produto de multinomiais):

$$\pi = \frac{\lambda_1}{\lambda_2}, \lambda_i = \frac{\theta_{i1}}{1 - \theta_{i1}}, i = 1, 2 \text{ e } \eta = \ln \pi.$$

lacktriangle Temos que o estimador de máxima verossimilhança de η é dado por

$$\widehat{\eta} = \ln \widehat{\pi} = \ln \left(\frac{\frac{\theta_{11}}{1 - \widehat{\theta}_{11}}}{\frac{\widehat{\theta}_{21}}{1 - \widehat{\theta}_{21}}} \right) = \ln \left(\frac{N_{11}N_{22}}{N_{12}N_{21}} \right) = \ln N_{11} + \ln N_{22} - \ln N_{12} - \ln N_{21},$$

em que $\widehat{\theta}_{i1} = \frac{N_{i1}}{n_{i.}}$, i = 1, 2, devido à propriedade da invariância dos estimadores de MV.

- Idéia: queremos obter a distribuição assintótica de $\ln \widehat{\pi} = \ln \widehat{\lambda}_1 \ln \widehat{\lambda}_2$, em que $\ln \widehat{\lambda}_i = \ln \frac{\widehat{\theta}_{i1}}{1 \widehat{\theta}_{i1}}, i = 1, 2.$
- Como $\widehat{\lambda}_i, i=1,2$ são mutuamente independentes e são funções não-lineares de $\widehat{\theta}_i$, aplica-se o método em cada um (separadamente) e depois utiliza-se a linearidade e independência de $\ln \widehat{\pi}$ em termos de $\ln \widehat{\lambda}_i, i=1,2$.
- Nesse caso, para $n_{i.}$, i=1,2 suficientemente grandes, $\ln \widehat{\lambda}_{i} \approx N\left(\ln \lambda_{i}, \frac{\theta_{i1}(1-\theta_{i1})}{n_{i.}}(\psi(\theta_{i}))^{2}\right)$, em que $\psi(\theta_{i}) = \frac{\partial}{\partial \theta_{i1}} \ln \lambda_{i}$.

- Mas, $\frac{\partial}{\partial \theta_{i1}} \ln \lambda_i = \frac{1}{\theta_{i1}(1-\theta_{i1})}, i=1,2.$
- Logo, $\sigma^2(\psi(\theta))^2 = \frac{\theta_{i1}(1-\theta_{i1})}{n_{i.}} \frac{1}{\theta_{i1}^2(1-\theta_{i1})^2} = \frac{1}{n_{i.}\theta_{i1}(1-\theta_{i1})}$.
- Assim, temos, para $n_{i.}$, i = 1, 2 suficientemente grandes, que

$$\ln \widehat{\lambda}_i = \ln \left(\frac{\widehat{\theta}_{i1}}{1 - \widehat{\theta}_{i1}} \right) \approx N_1 \left(\ln \lambda_i, \frac{1}{n_{i.}\theta_{i1}(1 - \theta_{i1})} \right), i = 1, 2$$

■ Portanto, como $\hat{\lambda}_1$ e $\hat{\lambda}_2$, são mutuamente independentes,

$$\begin{split} \mathcal{V}(\widehat{\eta}) &= \mathcal{V}(\ln \widehat{\lambda}_1 - \ln \widehat{\lambda}_2) = \frac{1}{n_{1.}\theta_{11}(1 - \theta_{11})} + \frac{1}{n_{2.}\theta_{21}(1 - \theta_{21})} \\ &= \frac{1}{n_{1.}\theta_{11}} + \frac{1}{n_{1.}(1 - \theta_{11})} + \frac{1}{n_{2.}\theta_{21}} + \frac{1}{n_{2.}(1 - \theta_{21})} \end{split}$$

Logo

$$\widetilde{\mathcal{V}(\widehat{\eta})} = \sigma_{\eta}^{2} = \frac{1}{n_{1.}\widetilde{\theta}_{11}} + \frac{1}{n_{1.}(1 - \widetilde{\theta}_{11})} + \frac{1}{n_{2.}\widetilde{\theta}_{21}} + \frac{1}{n_{2.}(1 - \widetilde{\theta}_{21})}$$

$$= \frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}$$

Portanto, como já tinha sido visto anteriormente, para $n_{i.}, i=1,2$ suficientemente grandes, $\widehat{\eta} \approx \mathcal{N}(\eta, \sigma_{\eta}^2)$.

- Voltando ao exemplo, temos: $\widetilde{\eta} = \ln\left(\frac{n_{11}}{n_{12}}/\frac{n_{21}}{n_{22}}\right) = \ln(n_{11}) + \ln(n_{22}) \ln(n_{12}) \ln(n_{21}) = 0,473 \text{ e } \sigma_{\eta} = 0,087.$
- Ainda, $IC(\eta, 0, 95) = [0, 302; 0, 644]$ e p-valor < 0,0001 (associado ao teste de nulidade de η , como visto anteriormente).
- Além disso, $IC(\pi, 0, 95) = [e^{0,302}; e^{0,644}] = [1,353; 1,904].$
- Logo, como esperado, rejeitamos a hipótese de independência entre gênero e inclinação partidária.
- A função "oddsratio" do pacote "vcd" estima a razão de chances, o erro-padrão assintótico e executa o teste apresentado anteriormente.

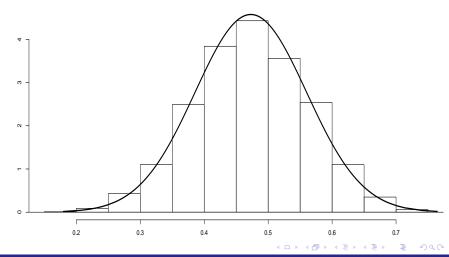
Um procedimento para se obter uma aproximação numérica da distribuição exata de $\widehat{\eta}$

- Estime os parâmetros associados ao modelo suposto gerador da tabela de contingência utilizando o método de MV.
- Para b=1,...,B execute os seguintes passos
 - Gere uma tabela de contingência sob o modelo em questão, utilizando as estimativas calculadas anteriormente.
 - 2 Obtenha a estimativa de MV η .
- Ao final teremos uma amostra aleatória da distribuição exata de $\widehat{\eta}$ (ou seja, uma aproximação numérica).

Cont.

- Com essa amostra podemos construir um histograma, intervalos de confiança e estimar o poder do teste anteriormente apresentado (para isso temos que calcular a estatística do teste Z_t , além da estimativa de η).
- Se quisermos obter uma aproximação da distribuição exata da estatística do teste sob H₀ e calcular o respectivo p-valor, devemos, além de calcular a estatística Z_t no passo 2, estimar os parâmetros e gerar a tabela de contingência, sob H₀ (no passo 1).

Histograma da distribuição exata obtida via simulação



Resultados numéricos

•
$$\sigma_{\eta} = 0,085$$
, $IC(\eta, 0,95) = [0,302; 0,632]$.

- p-valor < 0,0001.
- Neste caso, a aproximação assintótica mostrou-se bastante apropriada.

Comentários

- Os resultados podem ser estendidos para tabelas $(2 \times s)$ e $(r \times s)$.
- No primeiro caso, "precisaremos" de (s-1) razões de chances.
- No segundo caso, "precisaremos" de $\begin{pmatrix} r \\ 2 \end{pmatrix}$ \times (s-1) razões de chances.
- As definições anteriores permanecem, essencialmente, as mesmas.
- Chance: $\lambda_{ij} = \frac{\theta_{ij}}{1 \theta_{ij}}$.
- Razão de chances $\pi_{ilj} = \lambda_{ij}/\lambda_{lj}$.
- Pesquisar!

Tabela de contingência $r \times s$: produto de multinomiais independentes

Variável 1 (resposta)							
		C ₁₁	C ₁₂		$C_{1(s-1)}$	C_{1s}	Total
Variável 2	C_{21}	$\mathcal{N}_{11}(heta_{11})$	$N_{12}(\theta_{12})$		$N_{1(s-1)}(\theta_{1(s-1)})$	$N_{1s}(\theta_{1s})$	<i>n</i> _{1.}
(explicativa)	C_{22}	$N_{21}(\theta_{21})$	$N_{22}(\theta_{22})$		$N_{1(s-1)}(\theta_{2(s-1)})$	$N_{2s}(\theta_{2s})$	<i>n</i> _{2.}
	:	:	:	٠.	:	:	
	C_{2r}	$N_{r1}(\theta_{r1})$	$N_{r2}(\theta_{r2})$		$N_{r(s-1)}(\theta_{r(s-1)})$	$N_{rs}(\theta_{rs})$	$n_{r_{+}}$
Total	-	N _{.1}	N _{.2}		$N_{\cdot(s-1)}$	$N_{.s}$	n

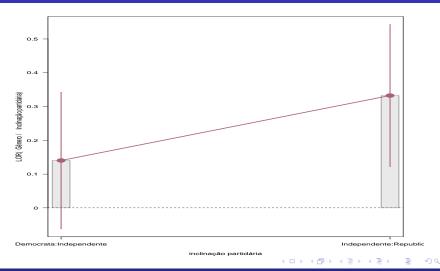
Exemplo 3 em sua íntegra

		Inclinação partidária				
		Democrata Independente Republicano				
Gênero	Feminino	762	327	468	1557	
	Masculino	484	239	477	1200	
Total	-	1246	566	945	2757	

Exemplo 3 em sua íntegra

		lı					
	·	Democrata	Democrata Independente Republicano				
Gênero	Feminino	762	327	468	1557		
	Masculino	484	239	477	1200		
Total	-	1246	566	945	2757		

Razões de chances para o exemplo 3



Outras medidas de associação

- Existem famílias de medidas de associação para tabelas de contingência $(r \times s)$ (multinomiais e produtos de multinomiais).
- Em geral, elas são baseadas na estatística de Pearson (qui-quadrado): $Q_H = \sum_{i=1}^r \sum_{j=1}^s \frac{(N_{ij} E_{ij})^2}{E_{ij}}$.
- A idéia é construir estatísticas com suporte limitado (intervalo (0,a), a >0), de tal forma que quanto maior/menor seu valor, maior/menor o grau de dependência.

Outras medidas de associação

A fórmula geral é $M = g(Q_H/T)$, em que T serve para limitar superiormente a estatística M. Assim, quanto mais próximo de zero for o valor de M menor será a magnitude da associação e quanto mais próximo desse limitante, maior será a magnitude dessa associação.

Outras medidas de associação (cont.)

Lembrando:

- *Q_H* : estatística qui-quadrado.
- n..: número total de observações.
- r : número total de linhas.
- s : número total de colunas
- Coeficiente Phi: $\Phi = \sqrt{\frac{Q_H}{n_{..}}}$.
- lacksquare Coeficiente de Cramer V: $V=\sqrt{rac{\Phi^2}{min(r,s)}}.$
- Coeficiente de contingência de Pearson: $C = \sqrt{\frac{Q_H}{Q_H + n_{..}}}$.
- Coeficiente T de Tschuprow: $\sqrt{\frac{\Phi^2}{(r-1)(s-1)}}$.
- Os limites superiores para esses coeficientes podem depender dos

valores de s, r e $n_{..}$ (não, necessariamente, são iguais à 1).

Comentários

- As medidas anteriores são apropriadas quando ambas as variáveis são nominais (ou quando pelo menos uma é nominal), embora possam ser utilizadas quando ambas forem ordinais se o interesse é medir associação.
- O coeficiente Φ não é muito apropriado para tabelas maiores do que
 2 × 2. As outras não tem limitações quanto à isso.
- Quase sempre é difícil avaliar a magnitude de tais medidas considerando apenas seu valor numérico.
- O mais apropriado é comparar o valor obtido pela tabela observada com os valores oriundos obtidas de tabelas geradas sob H₀.

Um procedimento de quantificação (numérica) da magnitude dos coeficientes

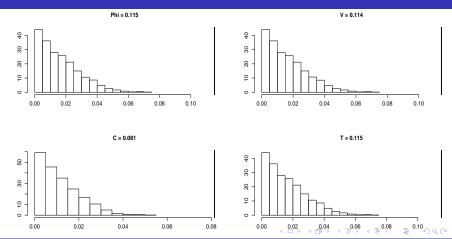
- Calcule os coeficientes de associação com base na tabela observada.
- Estime os parâmetros associados ao modelo suposto gerador da tabela de contingência (sob H₀, independência) utilizando o método de MV (por exemplo).
- Para b=1,...,B execute os seguintes passos
 - Gere uma tabela de contingência sob o modelo em questão, utilizando as estimativas calculadas anteriormente.
 - 2 Calcule os coeficientes de associação com base na tabela simulada.

Um procedimento de quantificação (numérica) da magnitude dos coeficientes (cont.)

- Ao final teremos uma amostra aleatória da distribuição exata dos coeficientes.
- Assim, quanto maior for a proporção de valores simulados menores que a estimativa calculada através da tabela observada, maior será a magnitude do coeficiente e, consequentemente, maior será a magnitude da associcação.
- Pode-se calcular p-valores para hipóteses de interesse.

Histograma das distribuições exatas dos coeficientes (sob H_0) obtidas via simulação

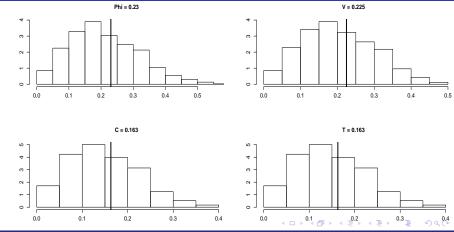
(exemplo da inclinação partidária)



Prof. Caio Azevedo

Histogramas das referidas distribuições (exemplo do estudo do estado civil com grau de

instrução) (a independência não foi rejeitada)



Prof. Caio Azevedo

Voltando ao Exemplo 1: comparação de métodos de detecção de cárie

		Risco de cárie segundo			
		o método convencional			
	·	Baixo	Médio	Alto	Total
Risco de cárie segundo	Baixo	11	5	0	16
o método simplificado	Médio	14 34 7		7	55
	Alto	2	13	11	26
Total	-	27	52	18	97

Queremos verificar o grau de concordância (plena) entre os métodos.

Medidas para variáveis ordinais

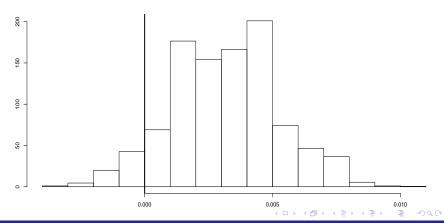
- Quando ambas as variáveis são ordinais, outras medidas podem ser mais apropriadas, principalmente dependendo das hipóteses de interesse.
- Em geral, nesses casos, está-se mais interessado em medir concordância do que dependência, embora tais conceitos possam estar relacionados, como já vimos.
- A idéia é comparar a quantidade de observações concordantes com as discordantes.

Medidas para variáveis ordinais

Defina

- C: número de pares concordantes.
- D: número de pares discordantes.
- Coeficiente τ -b de Kendall : $\tau_b = \frac{C-D}{n_{..}(n_{..}-1)/2}$.
- Coeficiente τ -c de Kendall: $\tau_c = \frac{C-D}{n_{...}^2(min(r,s)-1)/(2min(r,s))}$.
- Podemos usar um algoritmo semelhante ao caso anterior, mas agora obtendo as ditribuições dos coeficientes acima sem nos restringirmos à H₀.

Histograma das distribuição exata do coeficiente τ_b obtidas via simulação $IC(\tau_b,0,95)=[-0,001;0,007]$



Comentários

- Pelo comportamento do histograma e do intervalo de confiança, temos indícios de que a concordância plena é praticamente nula.
- No entanto, podem existir outros padrões de concordância (p.e., concordância marginal).
- Os coeficientes τ_b e τ_c são mais apropriados para tabelas quadradas e não quadradas, respectivamente.

