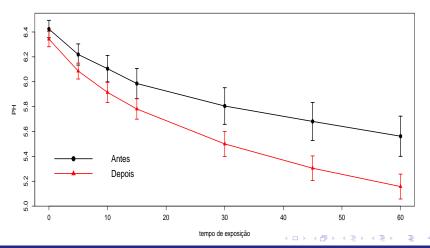
Modelos multivariados (marginais): parte 3

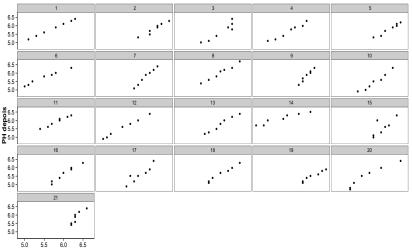
Prof. Caio Azevedo

Exemplo 3: pH da placa bacteriana dentária

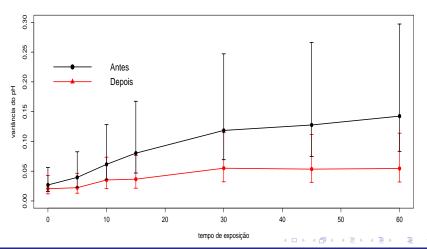
- Estudo realizado na Faculdade de Odontologia da Universidade de São Paulo para avaliar o efeito do uso contínuo de uma solução para bochecho no pH da placa bacteriana dentária.
- O pH da placa dentária foi medido de 21 voluntários antes e depois de um período de uso dessa solução para bochecho foi avaliado ao longo de 60 minutos, após a adição de sacarose ao meio em que as unidades experimentais foram colocadas.
- O pH ideal varia, em geral, entre 6,8 e 7,2 (pH alcalino). Quanto menor, pior (mais ácido).



Exemplo 3: cont.

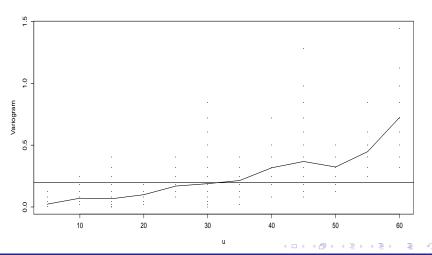

- Dois fatores intra-unidades: período de avaliação com dois níveis
 (antes e depois do uso da solução para bochecho) e tempo após a
 adição de sacarose com 7 níveis (0, 5, 10, 15, 30, 45 e 60 minutos).
- Estudo irregular, completo e balanceado (em relação ao tempo e período).
- O valor do pH no período "antes" pode ser considerado como uma covariável contínua ou como uma condição de avaliação (ou fator).

Perfis médios


Dispersão pH depois × pH antes (por indivíduo)

Variâncias (diagonal), correlações (acima) e covariâncias (abaixo): gênero feminino

	tempo						
tempo	0	5	10	15	30	45	60
0	0,02	0,66	0,55	0,47	0,24	0,26	0,19
5	0,01	0,02	0,94	0,88	0,78	0,62	0,73
10	0,01	0,03	0,04	0,97	0,90	0,76	0,83
15	0,01	0,02	0,04	0,04	0,94	0,77	0,88
30	0,01	0,03	0,04	0,04	0,06	0,86	0,96
45	0,01	0,02	0,03	0,03	0,05	0,05	0,87
60	0,01	0,02	0,04	0,04	0,05	0,05	0,06


Variâncias em cada condição com intervalos de confiança

Gráficos dos perfis das linhas da matriz de correlações

Variograma

Modelagem para os dados do Exemplo 3

$$Y_{ij} = \beta_0 + \beta_1 x_{ij} + \beta_2 (w_{ij} - \overline{w}_1) + \xi_{ij}, j = 1, 2, ..., n_i$$
, (indivíduo), $i = 1, 2, ..., 7$, (tempo de exposição (condição de avaliação)), $n_i = 21, \forall i$, em que $\overline{w}_1 = \frac{1}{n_i} \sum_{i=1}^{n_1} w_{ij} = 6,42381$.

- **a** x_{ij} : é o tempo de exposição (0, 5, 10, 15, 30, 45 e 60) após a adição de sacarose, em minutos, no qual o ph (depois da utilização do enxaguante) foi medido no instante i do indivíduo j.
- w_{ij} : é o ph (antes da utilização do enxaguante) medido no instante i do indivíduo j.
- Y_{ij}: é o ph (depois da utilização do enxaguante) medido no instante i do indivíduo j.

Modelagem para os dados do Exemplo 2 (cont.)

- β_0 : é ph (depois) esperado para indivíduos no tempo 0 com ph (antes) igual à 6,42381.
- $m{\beta}_1$ é o incremento no ph (depois) esperado, para o aumento em uma unidade no tempo de exposição.
- β_2 : é o incremento no ph (depois) esperado, para o aumento em uma unidade no valor do ph (antes).
- (1): $\mathcal{V}(Y_{ij}) = \sigma^2$ (homocedástico); (2) $\mathcal{V}(Y_{ij}) = \sigma_i^2 = \sigma^2 \exp(x_{ij}\gamma_1)$ (heterocedástico). (3) $\mathcal{V}(Y_{ij}) = \sigma_i^2 = \sigma^2 x_{ii}^{\gamma_2}$.
- $Corre(Y_{ij}, Y_{i'j})$ (1) AR(1), (2) (ARMA(1,1)).

Modelos

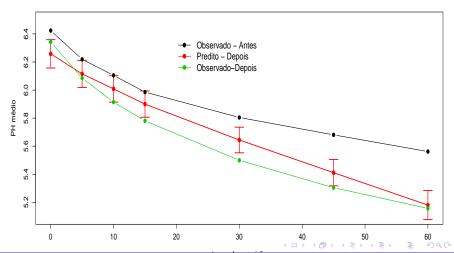
Modelo	Variância	Correlação	
HAR1	Homocedástico	AR(1)	
HARMA11	Homocedástico	ARMA(1,1)	
HE2AR1	Heterocedástico (2)	AR(1)	
HE2ARMA11	Heterocedástico (2)	ARMA(1,1)	
HE3AR1	Heterocedástico (3)	AR(1)	
HE3ARMA11	Heterocedástico (3)	ARMA(1,1)	

Modelos

Modelo	AIC	BIC	
HAR1	-154,21	-139,36	
HARMA11	-152,21	-134,39	
HE2AR1	-155,10	-137,29	
HE2ARMA11	-153,17	-132,38	
HE3AR1	-154,97	-137,15	
HE3ARMA11	-152,97	-132,18	

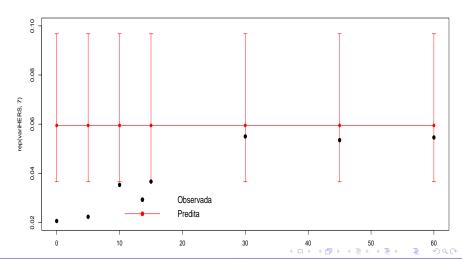
Modelo escolhido: HAR1

Estimativas dos parâmetros

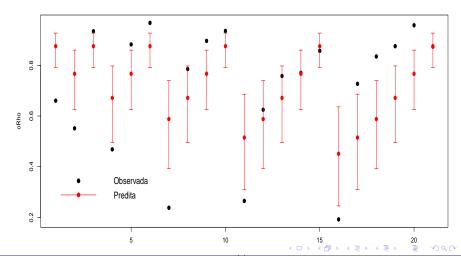

Parâmetro	Estimativa	EP	IC(95%)	Estatística	p-valor
$eta_{f 0}$	6,258	0,052	[6,156; 6,360]	121,446	< 0,0001
eta_1	-0,012	0,001	[-0,015 ;-0,010]	-9,749	<0,0001
eta_2	0,398	0,076	[0,248; 0,548]	5,242	<0,0001

Estimativas dos parâmetros

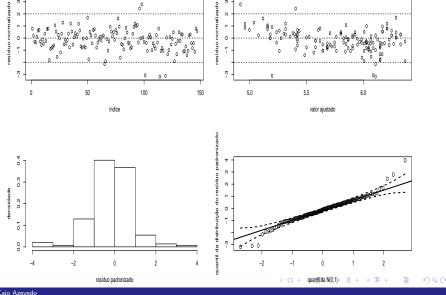
Parâmetro	Estimativa	IC(95%)
σ^2	0,06	[0,04;0,10]

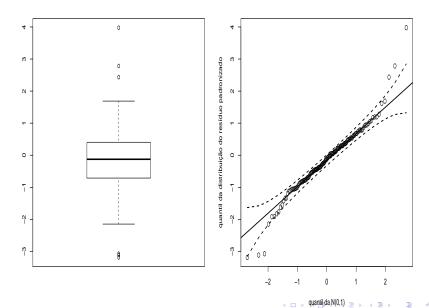

Parâmetro	Estimativa	IC(95%)
ρ	0,88	[0,79 ; 0,93]

Perfis médios: observados e preditos



Prof. Caio Azevedo


Variâncias: observadas e preditas



Correlações: observadas e preditas (MDA = 0.146)

Prof. Caio Azevedo

