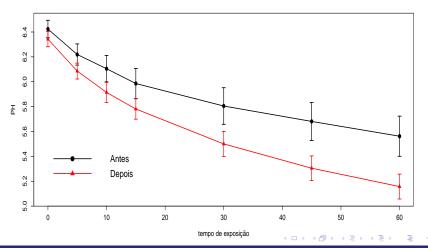
Modelos lineares mistos: parte 4

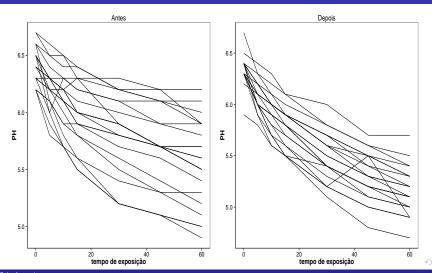
Prof. Caio Azevedo

Exemplo 3: pH da placa bacteriana dentária

- Estudo realizado na Faculdade de Odontologia da Universidade de São Paulo para avaliar o efeito do uso contínuo de uma solução para bochecho no pH da placa bacteriana dentária.
- O pH da placa dentária foi medido de 21 voluntários antes e depois de um período de uso dessa solução para bochecho foi avaliado ao longo de 60 minutos, após a adição de sacarose ao meio em que as unidades experimentais foram colocadas.
- O pH ideal varia, em geral, entre 6,8 e 7,2 (pH alcalino). Quanto menor, pior (mais ácido).



Exemplo 3: cont.


- Dois fatores intra-unidades: período de avaliação com dois níveis
 (antes e depois do uso da solução para bochecho) e tempo após a
 adição de sacarose com 7 níveis (0, 5, 10, 15, 30, 45 e 60 minutos).
- Estudo irregular, completo e balanceado (em relação ao tempo e período).
- O valor do pH no período "antes" pode ser considerado como uma covariável contínua ou como uma condição de avaliação (ou fator).

Perfis médios

Perfis individuais

Modelagem para os dados do Exemplo 3

$$Y_{ij}=\mu_{ij}+\xi_{ij},\,j=1,2,...,n_i,$$
 (indivíduo), $i=1,2,...,7,$ (tempo de exposição (condição de avaliação)), $n_i=21,\forall i$, em que $\overline{w}_1=\frac{1}{n_1}\sum_{j=1}^{n_1}w_{ij}=6,42381.$

- **a** x_{ij} : é o tempo de exposição (0, 5, 10, 15, 30, 45 e 60) após a adição de sacarose, em minutos, no qual o ph (depois da utilização do enxaguante) foi medido no instante i do indivíduo j.
- w_{ij} : é o ph (antes da utilização do enxaguante) medido no instante i do indivíduo j.
- Y_{ij}: é o ph (depois da utilização do enxaguante) medido no instante i do indivíduo j.

Modelagem para os dados do Exemplo 2 (cont.)

- $(1) \mu_{ij} = \beta_0 + \beta_1 x_{ij} + \beta_2 (w_{ij} \overline{w}_1) + b_j; (2)$ $\beta_0 + \beta_1 x_{ij} + \beta_2 (w_{ij} - \overline{w}_1) + b_{1j} + b_{2j} x_{ij}.$
- (Esperança marginal): $E(Y_{ij})$.
- β_0 : é ph (depois) esperado marginal para indivíduos no tempo 0 com ph (antes) igual à 6,42381.
- $m{\beta}_1$ é o incremento no ph (depois) esperado marginal, para o aumento em uma unidade no tempo de exposição.
- β_2 : é o incremento no ph (depois) esperado marginal, para o aumento em uma unidade no valor do ph (antes).

Modelagem para os dados do Exemplo 2 (cont.)

- Defina: $\boldsymbol{b}_j = b_{1j}$ ou $(\boldsymbol{b}_j = (b_{1j}, b_{2j}))$; $b_{1jk} \stackrel{i.i.d}{\sim} N_1(0, \psi_1)$, ou $(b_{1j}, b_{2j}) \stackrel{i.i.d}{\sim} N_2(\mathbf{0}, \boldsymbol{\Psi}), \boldsymbol{\Psi} = \begin{bmatrix} \psi_1 & \psi_0 \\ \psi_0 & \psi_2 \end{bmatrix}$.
- (1): $\mathcal{V}(Y_{ij}) = \sigma^2$ (homocedástico); (2) $\mathcal{V}(Y_{ij}) = \sigma_i^2 = \sigma^2 \exp(x_{ij}\gamma_1)$ (heterocedástico).
- $Corre(Y_{ij}, Y_{i'j})$ (1) AR(1), (2) (ARMA(1,1)).

Modelos

Modelo	Variância	Correlação	Efeitos aleatórios
HAR1I	Homocedástico	AR(1)	intercepto
HAR1CA	Homocedástico	AR(1)	intercepto, coeficiente angular
HARMA11I	Homocedástico	ARMA(1,1)	intercepto
HARMA11CA	Homocedástico	ARMA(1,1)	intercepto, coeficiente angular
HEAR1I	Heterocedástico	AR(1)	intercepto
HEAR1CA	Heterocedástico	AR(1)	intercepto, coeficiente angular
HEARMA11I	Heterocedástico	ARMA(1,1)	intercepto
HERMA11CA	Heterocedástico	ARMA(1,1)	intercepto, coeficiente angular

Modelos

Modelo	AIC	BIC
HAR1I	-152,21	-134,39
HAR1CA	-150,21	-129,42
HARMA11I*	-	-
HARMA11CA*	-	-
HEAR1I	-153,10	-132,32
HEAR1CA	-151,17	-127,41
HEARMA11I	-149,10	-122,38
HERMA11CA	-147,17	-117,48

^{*} O processo iterativo não convergiu. O MMM selecionado foi HAR1

(homocedástico, AR1 sem efeitos aleatórios): AIC= -154,21; BIC=-139,36.

Estimativas dos parâmetros

MLM

Parâmetro	Estimativa	EP	IC(95%)	Estatística	p-valor
β_0	6,258	0,052	[6,156; 6,360]	121,446	<0,0001
eta_1	-0,012	0,001	[-0,015 ; -0,010]	-9,749	<0,0001
eta_2	0,398	0,076	[0,248 ; 0,549]	5,242	<0,0001

MMM

Parâmetro	Estimativa	EP	IC(95%)	Estatística	p-valor
β_0	6,258	0,052	[6,156 ; 6,360]	121,446	<0,0001
eta_1	-0,012	0,001	[-0,015 ;-0,010]	-9,749	<0,0001
eta_2	0,398	0,076	[0,248 ; 0,548]	5,242	<0,0001

Estimativas dos parâmetros

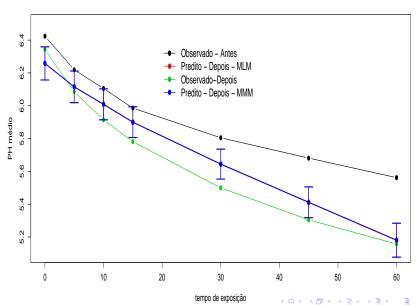
MLM

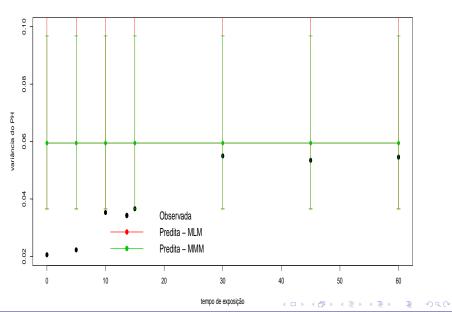
Parâmetro	Estimativa	IC(95%)
σ^2	0,06	[0,04;0,10]
ψ_1	< 0,01	$[<0.01;1.25 \times 10^{226}]$

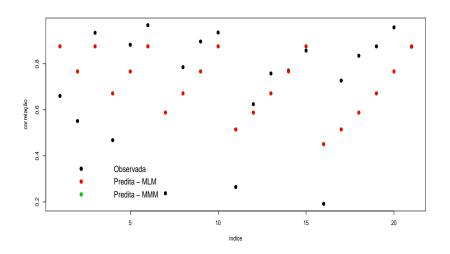
O parâmetro ψ_1 é não significativo.

MMM

Parâmetro	Estimativa	IC(95%)
σ^2	0,06	[0,04;0,10]

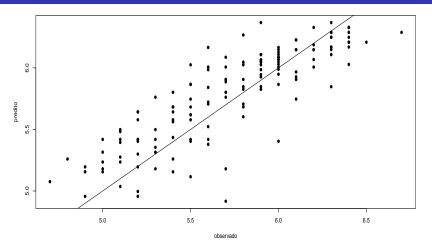

Estimativas dos parâmetros

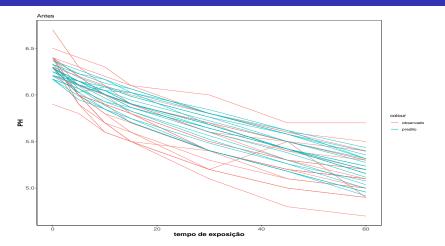

MLM


Parâmetro	Estimativa	IC(95%)
ρ	0,88	[0,79 ; 0,93]

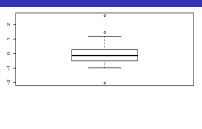
MMM

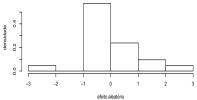
Parâmetro	Estimativa	IC(95%)
ρ	0,88	[0,79 ; 0,93]

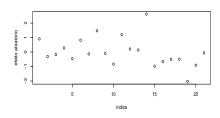


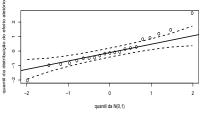


Valores individuais preditos: $\widehat{Y}\widehat{b}_j = \boldsymbol{X}_j\widehat{\boldsymbol{\beta}} + \boldsymbol{Z}_j\widehat{\boldsymbol{b}}_j$

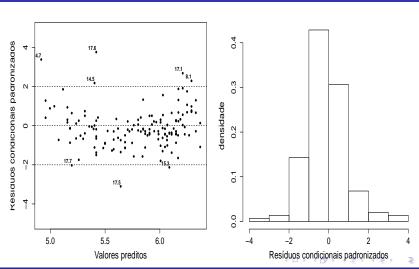


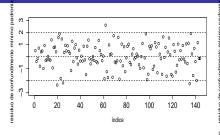


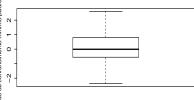

Perfis individuais preditos e observados

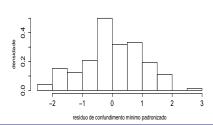


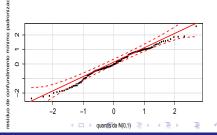
Efeitos aleatórios



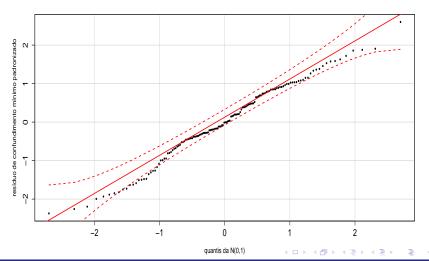



Resíduo condicional padronizado





Resíduo de confundimento mínimo padronizado



Resíduo de confundimento mínimo padronizado

