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Main goals

Present some multilevel Item Response Theory (IRT) models and

some of their applications.

Bayesian inference through MCMC algorithms.

Computational implementations by using WinBUGS/R2WinBUGS.

For a introduction about IRT we recommend the short course of

Prof. Dalton Andrade: “An Introduction to Item Response Theory”.
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Item Response Theory (IRT)

Psychometric theory developed to meet needs in education. It

consists of sets of models that consider the so-called latent variables

or latent traits (variables that can not be measured directly as

income, height and gender).

Item Response Models (IRM): represent the relationship between

latent traits (knowledge in some cognitive field, depression level,

genetic predisposition in manifesting some disease) of experimental

units (subjects, schools, enterprises, animals, plants) and items of a

measuring instrument (cognitive tests, psychiatric questionnaires,

genetic studies).
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IRT: Brief review

First models: Lord (1952), Rasch (1960) and Birnbaum (1957).

Such modeling corresponds to/is related to the probability to get a

certain score on each item.

There are several families of IRM.
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IRT models

Type of response (is related to the link function): dichotomous,

polytomous, counting process, continuous (unbounded and

bounded), mixture type (continuous + dichotomous).

Number of groups: one and multiple group.

Number of tests (number of latent traits): univariate and

multivariate.

Latent trait (test) dimension: unidimensional and multidimensional.

Measures over time-point (conditions): non-longitudinal (one

time-point) and longitudinal.

Nature of the latent trait : cumulative and non-cumulative

(unfolding models).
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Observed proportion of correct answer by score level
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IRT data

Without loss of generality, let us refer as “subjects” to the

experimental units.

A matrix of responses of the subjects to the items (binary, discrete,

continuous) is available after the subjects were given to a test(s).

Additionally, collateral information (explanatory covariables) such as

gender, scholar grade, income etc could be available.
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Binary IRT data

Item

Subject 1 2 3 4

1 0 1 0 0

2 0 0 0 0

3 0 0 1 1

4 1 0 1 0

5 0 1 0 0
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Graded IRT data

Item

Subject 1 2 3 4

1 0 0 1 0

2 1 2 3 1

3 3 2 2 2

4 0 0 2 2

5 3 1 0 2
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Three-parameter model

Let Yij be the response of the subject j to item i (1, correct, 0,

incorrect), j = 1, 2, ..., n, i = 1, 2, ..., I .

Yij |(θj , ζ i )
ind.∼ Bernoulli(pij) ,

pij = ci + (1− ci )F (θj , ζ i ,ηFi
)

Unidimensional, dichotomous, one group and univariate

(non-longitudinal).
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Three-parameter model: latent trait

θj : latent trait of subject j .

Usual assumption θj |(µθ, ψθ,ηθ)
i.i.d.∼ D(µθ, ψθ,ηθ), where D(., ., .)

stands for some distribution where E(θ) = µθ, V(θ) = ψθ (0 and 1,

respectively, for model identification) and an additional vector of

parameters (skewness, kurtosis) ηθ.
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Three-parameter model (3PM): item parameters

ζ i = (ai , bi )
′.

ai : discrimination parameter (scale) of item i .

bi : difficulty parameter (location) of item i .

ci : approximate probability (low asymptote) of subjects with low

level of the latent trait to get a correct response in item i (AKA

guessing parameter).

If ci = 0 and ai = 1, ci = 0 we have, respectively, the two and one

parameter models.

Caio L. N. Azevedo, Department of Statistics, State University of Campinas, Brazil I CONCOLTRI, Universidad Nacional de Colômbia, May 2016 Acknowledgments to Prof. Dr. Héliton Tavares, Federal University of Pará, Brazil, for providing data sets.
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Three-parameter model: link function (item response

function - IRF)

F (.) is an appropriate (in general) cumulative distribution function

(cdf) related to a (continuous and real) random variable.

ηFi
is (possibly a vector) of parameters related to the link function

of item i .

The most known choices are F (θj , ζ i ) = Φ(ai (θj − bi )) (probit) and

F (θj , ζ i ) = 1

1+e−ai (θj−bi ) (logit).

Alternatives: cdf of the skew normal, skew-t, skew scale mixture,

among others.
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Examples of IRF for the 3PM (logistic link)
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Examples of IRF for the 3PM (logistic link)
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Multidimensional Compensatory three-parameter model

Let Yij as before and:

Yij |(θj , ζ i )
ind.∼ Bernoulli(pij); pij = ci + (1− ci )F (θj , ζ i , ηFi )

θj = (θj1, ..., θjM)′, θjm: latent trait of subject j related to

dimension m,m = 1, 2, ...,M.

Usual assumption θj. = (θj1, θj2, ...., θjm)′|(µθ,Ψθ,ηθ)
i.i.d∼ DM(µθ,Ψθ,ηθ), where D(., ., .) stands for some M-variate

distribution with mean- vector E(θ) = µθ, covariance matrix

Cov(θ) = Ψθ and an additional vector of parameters (skewness,

kurtosis) ηθ.
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Population (latent traits) parameters

µθ =


µθ1

µθ2

...

µθM

 and Ψθ =


ψθ1 ψθ12 . . . ψθ1M

ψθ12 ψθ2 . . . ψθ2M

...
...

. . .
...

ψθ1M
ψθ2M

. . . ψθM

 ,

For model identification, µθ = 0 and ψθi = 1, i = 1, 2, ...,M (that is, Ψθ

is a correlation matrix).
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Multidimensional Compensatory three-parameter model

ζ i = (ai , di )
′.

ai = (ai1, ..., aiM)′, vector of parameters related to the discrimination

of item i . di : parameter related to the difficulty of item i .

Multidimensional difficulty:
−di√∑M
k=1 a

2
i

(logistic link).

Multidimensional discrimination:
√∑M

k=1 a
2
i (logistic link).

The other quantities are as defined before.

Caio L. N. Azevedo, Department of Statistics, State University of Campinas, Brazil I CONCOLTRI, Universidad Nacional de Colômbia, May 2016 Acknowledgments to Prof. Dr. Héliton Tavares, Federal University of Pará, Brazil, for providing data sets.
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Item response surfaces (IRS)-logistic link (IRF) and ci = 0

                                   a1 = 0, 5; a2 = 1 ; d = 2       a1 = 0, 5; a2 = 1 ; d = -2

           
                               a1 = 1; a2 = 1,5 ; d = 2                   

 

 
                                    a1 = 1; a2 = 1,5 ; d = -2
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Three-parameter multiple group model

Let Yijk be the response of the subject j, from group k to item i (1,

correct, 0, incorrect), j = 1, 2, ...., nk , i = 1, ..., I and k = 1, 2, ...,K .

Yijk |(θjk , ζ i )
ind.∼ Bernoulli(pijk), pijk = ci + (1− ci )F (θjk , ζ i ,ηFi

)

θjk : latent trait of subject j from group k .

Usual assumption θjk |(µθk , ψθk ,ηθk )
i.i.d∼ D(µθk , ψθk ,ηθk ), where

D(., ., .) stands for some distribution E(θ) = µθk , V(θk) = ψθk (0

and 1, for the reference group, respectively, for model identification)

and an additional vector of parameters (skewness, kurtosis) ηθk .

Caio L. N. Azevedo, Department of Statistics, State University of Campinas, Brazil I CONCOLTRI, Universidad Nacional de Colômbia, May 2016 Acknowledgments to Prof. Dr. Héliton Tavares, Federal University of Pará, Brazil, for providing data sets.
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Three-parameter multiple group model

In general we expect to observe a large number of subjects in each

group and a small number of groups. The groups are independent in

the sense that we have the each subject belongs to one and only

group.

All the other quantities remain the same.
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Three-parameter longitudinal model

Let Yijt be the response of the subject j, in time-point t to item i (1,

correct, 0, incorrect), j = 1, 2, ...., n, i = 1, ..., I and t = 1, 2, ...,T .

Yijt |(θjt , ζ i )
ind.∼ Bernoulli(pijt), pijt = ci + (1− ci )F (θjt , ζ i ,ηFi

)

θjt : latent trait of subject j in time-point t.

Usual assumption θj. = (θj1, θj2, ...., θjT )′|(µθ,Ψθ,ηθ)
i.i.d.∼ DT (µθ,Ψθ,ηθ), where D(., ., .) stands for some T-variate

distribution with mean- vector E(θ) = µθ, covariance matrix

Cov(θ) = Ψθ and an additional vector of parameters (skewness,

kurtosis) ηθ.

All the other quantities remain the same.
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Population (latent traits) parameters

µθ =


µθ1

µθ2

...

µθT

 and Ψθ =


ψθ1 ψθ12 . . . ψθ1T

ψθ12 ψθ2 . . . ψθ2T

...
...

. . .
...

ψθ1T
ψθ2T

. . . ψθT

 ,

For model identification, µθ1 = 1 and ψθ1 = 1.

For multiple group and/or longitudinal framework, one or more different

tests are administered by the examinees of each group/ in each time

point. The tests have common items and the structure can be recognized

as an incomplete block design.
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Example of tests design

 

 

 

Test 1: I1 items                                            Test 2: I2 items I12 common items 

                                       Test 3: I3 items 

I23 common 

items 
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Example of tests design

 

 

 

 

 

 

 

 

Test 1: I1 items                                            Test 2: I2 items I123 common items 

(among tests 

1,2,3) 

 

 Test 3: I3 items 
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Bayesian inference

Let us consider the three-parameter one group model.

Original likelihood (under the conditional independence

assumptions)

L(θ, ζ) =
I∏

i=1

n∏
j=1

p
yij
ij (1− pij)

1−yij

θ = (θ1, ..., θn)′ e ζ = (ζ1, ..., ζ I )
′.
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Bayesian inference

Prior distribution

p(θ, ζ) =
n∏

i=1

p(θj)
I∏

i=1

p(ζ i ) =
n∏

i=1

p(θj)
I∏

i=1

p(ai )p(bi )p(c i )

where a = (a1, ..., aI )
′, b = (b1, ..., bI )

′ e c = (c1, ..., cI )
′.
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Bayesian inference

Joint posterior distribution:

p(θ, ζ|y) =
I∏

i=1

n∏
j=1

p
yij
ij (1− pij)

1−yij
n∏

i=1

p(θj)
I∏

i=1

p(ai )p(bi )p(c i )

It is intractable but the so-called full conditional distributions are

either known (and easy to sample from) or they can be sampled by

using some (auxiliary) algorithm such as the Metropolis-Hastings,

slice sampling, adaptive rejection sampling.
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Augmented data scheme (probit link)

It facilitates the implementation of MCMC (and of the CADEM)

algorithms.

Depending of the augmented data structure it facilitates the

implementation of the model in WinBUGS/OpenBUGS/JAGS/Stan.

Useful to define the so-called (latent/augmented) residuals (model

checking).

Useful to define more general IRT models.
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Augmented data scheme (probit link)

Let us consider aiθj − di , where di = aibi e ai (θj − bi ).

If ci = 0,∀i (two-parameter) model (Albert (1992)):

Zij |(θj , ζ i , yij) ∼ N(aiθj − di , 1),

where yij is the indicator of Zij being greater than zero and di = aibi .

For other link functions (IRF) it is possible to define other

augmented data schemes.
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Augmented data scheme (probit link)

For the three-parameter model we have two options.

Beguin and Glas’ scheme (2001).

Zij |(θj , ζ i ,Wij) ∼ N(aiθj − di , 1),

where Wij is the indicator of Zij being greater than zero, and

P(Wij = 1|Yij = 1, θj , ζ i ) ∝ Φ(aiθj − di )

P(Wij = 0|Yij = 1, θj , ζ i ) ∝ ci (1− Φ(aiθj − di ))

P(Wij = 1|Yij = 0, θj , ζ i ) = 0

P(Wij = 0|Yij = 0, θj , ζ i ) = 1
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Augmented data scheme (probit link)

Sahu’s scheme (2002).

Zij wij yij

Zij |(θj , ζ i ,wij , yij)
ind.∼ N(aiθj − di )11(−∞,0)(zij) 0 0

Zij |(θj , ζ i ,wijk , yij)
ind.∼ N(aiθj − di )11(0,∞)(zij) 0 1

Zij |(θj , ζ i ,wij , yij)
ind.∼ N(aiθj − di ) 1 1

Wij zij

1 negative

bernoulli(ci ) positive
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Bayesian modeling

Hierarchical representation (based on the augmented data scheme)

of the two-parameter probit model.

Zij |(θj , ζ i , yij)
ind∼ N(aiθj − di , 1)

θi
i.i.d.∼ N(0, 1)

ai
i.i.d.∼ N(µa, ψa)11(ai )(0,∞)

di
i.i.d.∼ N(µd , ψd)

Caio L. N. Azevedo, Department of Statistics, State University of Campinas, Brazil I CONCOLTRI, Universidad Nacional de Colômbia, May 2016 Acknowledgments to Prof. Dr. Héliton Tavares, Federal University of Pará, Brazil, for providing data sets.
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Bayesian modeling

Augmented data likelihood (under the conditional independence

assumptions)

p(z ,w |y) =
n∏

j=1

I∏
i=1

p(zij ,wij |yij)

Joint (augmented) posterior

p(z ,w ,θ, ζ|y) =
n∏

j=1

I∏
i=1

p(zij ,wij)p(yij)
n∏

i=1

p(θj)
I∏

i=1

p(ai )p(bi )p(c i )

Caio L. N. Azevedo, Department of Statistics, State University of Campinas, Brazil I CONCOLTRI, Universidad Nacional de Colômbia, May 2016 Acknowledgments to Prof. Dr. Héliton Tavares, Federal University of Pará, Brazil, for providing data sets.
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MCMC algorithm for the three-parameter probit model:

original likelihood

Let (.) denote the set of all necessary parameters, then:

1 Start the algorithm by choosing suitable initial values.

Repeat steps 2–3.

2 Simulate θj from θj. | (.), j = 1, ..., n.

3 Simulate (ai , bi ) from (ai , bi ) | (.), i =1,...,I. (may be done

separately for each parameter)

4 Simulate ci from ci | (.), i =1,...,I.
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MCMC algorithm for the three-parameter probit model:

augmented likelihood

Let (.) denote the set of all necessary parameters, then:

1 Start the algorithm by choosing suitable initial values.

Repeat steps 2–3.

2 Simulate Zij from Zij | (.), i = 1, ..., I , j = 1, ..., n.

3 Simulate Wij from Wij | (.), i = 1, ..., I , j = 1, ..., n.

4 Simulate θj from θj. | (.), j = 1, ..., n.

5 Simulate (ai , bi ) from (ai , bi ) | (.), i =1,...,I. (may be done

separately for each parameter)

6 Simulate ci from ci | (.), i =1,...,I.
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Bayesian modeling

The above hierarchical representation can be easily implemented in

the WinBUGS (OpenBugs,JAGS, Stan) packages.

The two augmented data schemes for the three-parameter are not

easily (impossilble?) implememented in those packages. However it

can be implemented by using the original likelihood (depending on

the IRF).

Also, usual MCMC algorithms can be implemented in R programs

using the so-called full conditional distributions (easy to obtain and,

generally, easy to sample from).
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WinBUGS code: parameter probit model

Show the probit2P.r file.
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Model validation and comparison

Posterior predictive checking (plots, measures of goodness of fit,

Bayesian p-value).

Residual analysis.

Statistics of model comparison (AIC, BIC, E(AIC), E(BIC), DIC,

E(DIC), LPLM).

Statistics of goodness of fit.
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Multilevel Data

Multilevel data are characterized when sample (experimental) units

are nested in other ones.

We can have two or more levels.

For example:

Students (level 1) nested within schools (level 2) (two-level

structure).

Students (level 1) nested within classrooms (level 2) nested within

schools (level 3) (three-level structure).

Longitudinal data: measurement occasions (level 1) nested within

subjects (level 2) (two-level structure).
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Multilevel models

In general we expect to observe some dependence (correlation)

among the sample units (observations) that are nested (within

groups).

Usefull (generally in a very easy way):

To model and measure separately effects of interest in different levels.

To account for different sources of variability.

To accommodate dependency structures.

AKA hierarchical models (american nomenclature) whereas

multilevel (european nomenclature).

Closely related to the so-called mixed models (repeated

measurement data).
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A very simple two - level multilevel linear model

Let us suppose that estimates of the latent traits θjk ,

j = 1, ..., nk ; k = 1, ...,K from subjects (in any number) belonging

to different groups (several of them), for example schools.

We suspect that the subjects that belong to the same group are

more similar among them when we compared with those from other

schools.

We want to consider this nested structure through a linear multilevel

model.
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A very simple two - level multilevel linear model

θjk = β0k + ξjk (level 1)

β0k = γ + uk (level 2)

ξjk
i.i.d∼ N(0, ψ), uk

i.i.d∼ N(0, τ), ξjk⊥uk ∀j , k

It incorporates dependence among the subjects belonging to the same

group (they will be more similar to each other, than to those subjects

belonging to other groups).
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A Two - level multilevel linear model with covariates

Let us suppose that estimates of the latent traits θjk ,

j = 1, ..., nk ; k = 1, ...,K from subjects (in any number) belonging

to different groups (a large number) and some collateral information

(covariables), says Xrjk , r = 1, ..., p are available.

We want to measure the impact of those covariables on the latent

traits, to use this information to improve the late traits estimates

and also to consider the nested structure through a linear multilevel

model.
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A Two - level multilevel linear model with covariables

θjk = β0k +

p∑
r=1

βrXrjk + ξjk (level 1)

β0k = γ + uk (level 2)

ξjk
i.i.d∼ N(0, ψ), uk

i.i.d∼ N(0, τ), ξjk⊥uk ∀j , k

Besides to incorporate dependence among the subjects belonging to the

same group, this model considers additional information to estimate the

latent traits and allows to measure the impact of those information in the

latent traits.
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A General Two - level multilevel linear model

θjk = β0k +

p∑
r=1

βrXrjk + ξjk = X jkβk + ξjk (level 1)

βk = W kγ + uk(level 2)

ξjk
i.i.d∼ N(0, ψ),uk

i.i.d∼ N(p+1)(0,Ω), ξjk⊥uk ∀j , k

Besides to incorporate dependence among the subjects belonging to the

same group, this model considers additional information to estimate the

latent traits and allows to measure the impact of those information in the

latent traits.
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Some applications of multilevel modeling in IRT

Data with natural hierarchical (nested) structures: students nested

in classrooms (and/or schools).

Longitudinal data: students followed at the final of each scholar

grade.

DIF (Differential Item Functioning): a nested structure in the item

parameters.

Lack of local independence: correlation among the responses that

can not be accounted by multidimensional models.
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Bayesian inference for multilevel IRT model

The joint posterior distribution will depend on the multilevel

structure adopted along with the prior distribution required by the

new parameters.

The original/augmented likelihood can be modified as well as the

prior distributions for the latent traits and item parameters,

depending on the multilevel structure adopted.
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A multilevel IRT model

Let us consider the three parameter model (for multiple group) and

the three multilevel models presented before.

Yijk |(θjk , ζ i )
ind.∼ Bernoulli(pijk)

pijk = ci + (1− ci )F (θjk , ζ i ,ηFi
)

θjk = β0k + ξijk (level 1)

β0k = γ + uk (level 2)

ξjk
i.i.d∼ N(0, ψ), uk

i.i.d∼ N(0, τ), ξjk⊥uk ∀j , k
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Multilevel Item Response Theory Models: An Introduction



A multilevel IRT model

Besides to incorporate dependence among the subjects belonging to

the same group, this model considers additional information to

estimate the latent traits and allows to measure the impact of those

information in the latent traits.
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A multilevel IRT model with covariables

Yijk |(θjk , ζ i )
ind.∼ Bernoulli(pijk)

pijk = ci + (1− ci )F (θjk , ζ i ,ηFi
)

θjk = β0k +

p∑
r=1

βrXrjk + ξijk (level 1)

β0k = γ + uk (level 2)

ξjk
i.i.d∼ N(0, ψ), uk

i.i.d∼ N(0, τ), ξjk⊥uk ∀j , k

Besides to incorporate dependence among the subjects belonging to the

same group, this model considers additional information to estimate the

latent traits and allows to measure the impact of those information in the

latent traits.
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A general multilevel IRT model

Yijk |(θjk , ζ i )
ind.∼ Bernoulli(pijk)

pijk = ci + (1− ci )F (θjk , ζ i ,ηFi
)

θjk = β0k +

p∑
r=1

βrXrjk + ξjk = X jkβk + ξjk (level 1)

βk = W kγ + uk (level 2)

ξjk
i.i.d∼ N(0, ψ),uk

i.i.d∼ N(p+1)(0,Ω), ξjk⊥uk ∀j , k

It incorporates dependence among the subjects belonging to the same

group (they will be more similar to each other, than to those subjects

belonging to other groups).
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A longitudinal multilevel IRT model - Uniform covariance

matrix

Yijt |(θjt , ζ i )
ind.∼ Bernoulli(pijt)

pijt = ci + (1− ci )F (θjt , ζ i ,ηFi
)

θjt = µθt +
√
ψθt τj + ξjt (level 1)

τj
i.i.d.∼ N(0, σ2) (level 2)

ξjt
i.i.d.∼ N(0, ψt), ξjt ⊥ τj ,∀j , t

It incorporates dependence among the latent traits within subjects.
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Implied covariance matrix

Heteroscedastic uniform model - HU

Ψθ =


ψ∗θ1

√
ψ∗θ1

√
ψ∗θ2

ρ∗θ . . .
√
ψ∗θ1

√
ψ∗θT ρ

∗
θ√

ψ∗θ1

√
ψ∗θ2

ρ∗θ ψ∗θ2
. . .

√
ψ∗θ2

√
ψ∗θT ρ

∗
θ

...
...

. . .
...√

ψ∗θ1

√
ψ∗θT ρ

∗
θ

√
ψ∗θ2

√
ψ∗θT ρ

∗
θ . . . ψ∗θT

 ,

where ψ∗θt = ψθt (1 + σ2), and Corre(θt , θt′) = ρ∗θ =
σ2

1 + σ2
, t 6= t ′ t

=1,2,...,T.
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A longitudinal multilevel IRT model - Hankel

(Heteroscedastic) covariance matrix

Yijt |(θjt , ζ i )
ind.∼ Bernoulli(pijt)

pijt = ci + (1− ci )F (θjt , ζ i ,ηFi
)

θjt = µθt + τj + ξjt (level 1)

τj
i.i.d.∼ N(0, σ2) (level 2)

ξjt
i.i.d.∼ N(0, ψt), ξjt ⊥ τj ,∀j , t

It incorporates dependence among the latent traits related to the same

subjects.
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Implied covariance matrix

Heteroscedastic covariance model - HC

Ψθ =


ψ∗θ1

σ2 . . . σ2

σ2 ψθ2 . . . σ2

...
...

. . .
...

σ2 σ2 . . . ψθT

 ,

where ψ∗θt = ψθt + σ2, and Corre(θt , θt′) =
σ2

σ2 + ψθt
, t 6= t ′, t,t’

=1,2,...,T
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A multilevel IRT model for DIF (item level)

Yijk |(θjk , ζ i )
ind.∼ Bernoulli(pijk)

pijk = ci + (1− ci )Φ(aikθjk − dik)

dik = di︸︷︷︸
item parameter

+ βik︸︷︷︸
groups nested within items

aik = ai︸︷︷︸
item parameter

+ eαik︸︷︷︸
groups nested within items

θjk
ind.∼ N(µθk , ψθk )

βik
i.i.d.∼ N(0, σ2

βi ) ⊥ αik
i.i.d.∼ N(0, σ2

αi
),∀i , k
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Application 1 : Multiple group IRT data

Originally, it is a longitudinal (with dropouts) with 4 time-points.

568 first-grade students were selected from eight public primary

schools (at the first-time point). Along the subsequent grades, some

students dropped out from the study for different reasons. The

present data set consists of the following number of students, from

the first up to the fourth grade: 556, 556, 401 and 295.

The students are nested in classes and classes are nested in schools.

Caio L. N. Azevedo, Department of Statistics, State University of Campinas, Brazil I CONCOLTRI, Universidad Nacional de Colômbia, May 2016 Acknowledgments to Prof. Dr. Héliton Tavares, Federal University of Pará, Brazil, for providing data sets.
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Application 1 : Multiple group IRT data

Available information: dissertative items correct as right/wrong, age

of student, classroom, gender, school, teacher.

Analysis presented in Azevedo et al (2012) revelead that posterior

correlations among the latent traits are not significative and,

therefore, a multiple group IRT model can be considered.

Four tests (corresponding to each grade): Teste 1 - 20 items. For

grade two till four, the responses to the 20 new items and the

preceding 20 test items are considered, which leads to 40 items for

each grade and a total of 80 different test items.
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Tests design

 

 

 

 

 

 Item 

Test 1 - 20 21 - 40 41 - 60 61 - 80 

1     

2     

3     

4     
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Inference

Since the item were dissertative we fitted two pameter multiple

group model (ci = 0), that is

Yijk |(θjk , ζ i )
ind.∼ Bernoulli(pijk), pijk = Φ(aiθjk − di ), remembering

that bi = di/ai (difficulty parameter).

Priors: θjk
ind.∼ N(µθk , ψθk ), µθk = 0, ψθk = 1 (for model

identification, reference group: 1), ai
i.i.d.∼ lognormal(0, 0.25),

di
i.i.d∼ N(0, 4), µθk

ind.∼ N(0, 10) and ψθk
ind.∼ Ga(0.1, 0.1) where

X ∼ Ga(r , s) implies that E(X ) = rs.

Show Bugs code (probit2PnormMGM.r file).
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Application 2 : Multilevel IRT data

Corresponds to the the data of Application 1, taking only the first

time-point (grade 1), considering a two level nested structure, that

is, students within schools (8 groups), without covariables.

Yijk |(θjk , ζ i )
ind.∼ Bernoulli(pijk)

pijk = Φ(aiθjk − di )

θjk = β0k + ξijk (level 1)

β0k = γ + uk (level 2)

ξjk
i.i.d∼ N(0, ψ), uk

i.i.d∼ N(0, τ), ξjk⊥uk ∀j , k
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Inference

In this case, it is more suitable than the multiple group model, since

we have 8 groups. Instead of estimate 14 population parameters

(mean and variances) we estimate two variance components (ψ, τ),

eight random effects β0k and one location parameter γ (11).

Priors: Defined in the previews slide for θjk and β0k ,

ai
i.i.d.∼ lognormal(0, 0.25) and di

i.i.d∼ N(0, 4), τ ∼ N(0, 100),

ψ ∼ Ga(0.1, 0.1) and τ ∼ Ga(0.1, 0.1).

Model identification a1 = 1, b1 = 0.

Show Bugs code (probit2PnormMult.r file).
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Multilevel Item Response Theory Models: An Introduction



Results
variance of the random effects (tau)

values

d
e

n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
1

2
3

4

Caio L. N. Azevedo, Department of Statistics, State University of Campinas, Brazil I CONCOLTRI, Universidad Nacional de Colômbia, May 2016 Acknowledgments to Prof. Dr. Héliton Tavares, Federal University of Pará, Brazil, for providing data sets.
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Application 3 : Multilevel IRT data with covariables

Corresponds to the the data of Application 2 considering three -

covariables: age, gender (0: male, 1: male), classroom (factor with

four levels, classroom - 1A; 1B; 1C; 1D, reference level 1A)

Yijk |(θjk , ζ i )
ind.∼ Bernoulli(pijk)

pijk = Φ(aiθjk − di )

θjk = β0k + β1(agejk − 7) + β2X1jk + β3X2jk + β4X3jk

+ β5X4jk + ξijk (level 1)

β0k = γ + uk (level 2)

ξjk
i.i.d∼ N(0, ψ), uk

i.i.d∼ N(0, τ), ξjk⊥uk ∀j , k
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Inference

(continuation of model) where X1jk ,X2jk ,X3jk ,X4jk where dummy

variables indicating the female gender (the first) and the classroom

(X2jk ,X3jk ,X4jk), respectively.

Priors: as presented in Application 2, additionally,

βi
i.i.d.∼ N(0, 100), i = 1, 2, ..., 5

Model identification a1 = 1, b1 = 0.

Show Bugs code (probit2PnormMultCov.r file).
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Application 4 : Multilevel IRT data with DIF

Corresponds to the the data of Application 2 considering a possible

effect of DIF on the difficulty parameter along the groups (schools).

Yijk |(θjk , ζ i )
ind.∼ Bernoulli(pijk)

pijk = ci + (1− ci )Φ(aiθjk − dik)

bik = bi + βik

θjk
ind.∼ N(µθk , ψθk )

βik
i.i.d.∼ N(0, σ2

βi
)
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Inference

Priors: as presented in Application 2, also in the preview slide,

additionally, σ2
βi

i.i.d.∼ Ga(0.1, 0.1), i = 1, 2, ..., 8

Model identification a1 = 1, b1 = 0.

Show Bugs code (probit2PnormMultDIF.r file).
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Results
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Application 5 : longitudinal IRT data

The data set analyzed stems from a major study initiated by the

Brazilian Federal Government known as the School Development

Program.

The aim of the program is to improve the teaching quality and the

general structure (classrooms, libraries, laboratory informatics etc) in

Brazilian public schools.

A total of 400 schools in different Brazilian states joined the

program. Achievements in mathematics and Portuguese language

were measured over five years (from fourth to eight grade of primary

school) from students of schools selected and not selected for the

program.
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Application 5 : longitudinal IRT data

The study was conducted from 1999 to 2003. At the start, 158

public schools were monitored, where 55 schools were selected for

the program.

Originally the students were followed along during six time-points

(five grade schools - fourth to eighth). We have six tests, one for

each time-point.

One test was applied in the begin, other in the final of the first

grade school, whereas the other tests were applied of the final of

each grade schools.

Other details can be found in Azevedo et al (2016).
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Multilevel Item Response Theory Models: An Introduction



Application 5 : longitudinal IRT data

In the present study, Math’s performances of 500 randomly selected

students, who were assessed in the fourth, fifth, and sixth grade,

were considered.

A total of 72 test items was used, where 23, 26, and 31 items were

used in the test in grade four (Test 1), grade five (Test 2), and

grade six (Test 3), respectively. Five anchor items were used in all

three tests.

Another common set of five items was used in the test in grade four

and five. Furthermore, four common items were used in the tests in

grades five and six.
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Test design

Test 1 Test 2

Test 3

Test 1 Test 2

13 items
12 items

5 items
4 items

22 items

5 items
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Within-student correlation structure of the latent traits

estimated by the MGM

Grade four Grade five Grade six

Grade four 1.000 .723 .629

Grade five .659 1.152 .681

Grade six .540 .641 1.071

Estimated posterior variances, covariances, and correlations among

estimated latent traits are given in the diagonal, lower and upper triangle,

respectively.
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Inference

We fitted two longitudinal IRT models: uniform (slide 52-53) and

Hankel (slide 54-55).

Priors: some of them were already defined in slides 52-55.

Additionally µθ1 = 0, ψθ1 = 1 (for model identification, reference

time-point: 1), ai
i.i.d.∼ lognormal(0, 0.25), di

i.i.d∼ N(0, 4),

µθt
ind.∼ N(0, 10), ψθt

ind.∼ Ga(0.1, 0.1) and σ2 ∼ Ga(0.1, 0.1).

Show Bugs code (probit2PnormLongUnif.r and

probit2PnormLongHankel.r files).
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Results: uniform model
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Results: Hankel model
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