ME 731 - Métodos em Análise Multivariada Segundo semestre de 2021 Lista de Exercícios I

OBS: Nas questões envolvendo a obtenção do teste da razão de verossimilhanças (TRV) você deverá obter a estatística $\Lambda = \frac{L(\widehat{\boldsymbol{\theta}}_0)}{L(\widehat{\boldsymbol{\theta}})}$, em que $L(\widehat{\boldsymbol{\theta}}_0), L(\widehat{\boldsymbol{\theta}})$ são, respectivamente, a verossimilhança maximizada sob H_0 e irrestritamente, depois a estatística $\lambda = -2\ln\Lambda$, apresentando a respectiva distribuição assintótica desta última, simplificando ambas as estatísticas o máximo possível. Para a versão assintótica do teste, você deverá apresentar as regiões de aceitação e crítica, bem como o p-valor associado ao teste.

- 1. Resolva os exercício deixados em sala de aula.
- 2. Seja $X \sim N_2(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$, cuja é densidade é dada por:

$$f_{\mathbf{X}}(\mathbf{x}) = \left(\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}\right)^{-1} (2\pi)^{-1} \times \\ \times \exp\left\{-\frac{1}{2(1-\rho^{2})}\left[\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2} + \left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2} - 2\rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\right] \right\} \\ \times \left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)\right\} \\ \times \mathbb{1}_{\mathcal{R}^{2}}(\mathbf{x})$$

Prove que X_1 e X_2 são independentes se e somente se forem não correlacioandos.

- 3. Prove, em relação à questão 1), que $X_1|X_2 = x_2 \sim N\left(\mu_1 + \rho\frac{\sigma_1}{\sigma_2}\left(x_2 \mu_2\right), \sigma_1^2(1 \rho^2)\right)$. Sugestão: procure escrever o expoente em termos de somas de quadrados, após simplificar o que for possível.
- 4. Sejam $X_1, ..., X_n$, variáveis aleatórias independentes tais que $X_i \sim N(\mu_i, \sigma_i^2)$. Prove que

$$X = (X_1, ..., X_n)' \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \text{ em que } \boldsymbol{\mu} = (\mu_1, ...\mu_n)' \in \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & 0 & ... & 0 \\ 0 & \sigma_2^2 & ... & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & ... & \sigma_n^2 \end{bmatrix}.$$

- 5. Exercício 4.13 página 203 do Livro Johson & Wichern. Applied Multivariate Analysis.
- 6. Seja $X \sim N_p(\mathbf{0}, \Sigma)$, obtenha a distribuição de $Y = X'\Sigma^{-1}X$. Sugestão: calcule a f.g.m. de Y.
- 7. Sejam $X_1, ..., X_n$, vetores aleatórios independentes tais que $X_i \sim N_p(\mu_i, \Sigma_i)$. Prove que

$$\boldsymbol{X} = (\boldsymbol{X}_1', ..., \boldsymbol{X}_n')' \sim N_{np}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \text{ em que } \boldsymbol{\mu} = (\boldsymbol{\mu}_1', ..., \boldsymbol{\mu}_n')' \text{ e } \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_1 & 0 & ... & 0 \\ 0 & \boldsymbol{\Sigma}_2 & ... & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & ... & \boldsymbol{\Sigma}_n \end{bmatrix}.$$

- 8. Seja $X_1, ..., X_n$ uma a.a. de $X \sim N_p(\mu, \Sigma)$. Responda os itens:
 - a) Obtenha o TRV para testar $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$ vs $H_1: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0$, em que $\boldsymbol{\mu}_0$ é um vetor conhecido, com $\boldsymbol{\Sigma}$ conhecido, ao nível de significância de α .
 - b) Repita o item b) considerando Σ desconhecido.
 - c) Encontre os estimadores de máxima verossimilhança de μ e Σ sob a restrição de que $\mathbf{R}\mu = \mathbf{b}$, em que \mathbf{b} é um vetor conhecido $(c \times 1)$ e \mathbf{R} é uma matriz conhecida de dimensão $c \times p, c \leq p$, de posto coluna completo. Sugestão: Use multiplicadores de Lagrange para maximizar a logverossimilhança.
 - d) Encontre o teste da razão de verossimilhança (t.r.v) e sua respectiva distribuição assintótica para testar $H_0: \mathbf{R}\boldsymbol{\mu} = \boldsymbol{b}_0$ vs $H_1: \mathbf{R}\boldsymbol{\mu} \neq \boldsymbol{b}_0$, ao nível de significância de α .
- 9. Seja $X_{i1},...,X_{in_i}$ uma a.a. de $X_i \sim N_p(\mu_i, \Sigma_i)$ (duas populações). Responda os itens:
 - a) Obtenha o TRV para testar $H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2$ vs $H_1: \boldsymbol{\mu}_1 \neq \boldsymbol{\mu}_2$, com $\boldsymbol{\Sigma}_i, i = 1, 2$ conhecidos, ao nível de significância de α .
 - b) Repita o item b) considerando $\Sigma_1 = \Sigma_2 = \Sigma$, porém desconhecido.
- 10. Repita os exercícios feitos XXXX par cada um dos sexos, em separado.