Bayesian inference for a skew-normal IRT model under

 the centred parameterizationCaio L. N. Azevedo, IMECC/Unicamp Heleno Bolfarine, IME/USP Dalton F. Andrade, INE/UFSC

10th Bayesian Statistics Brazilian Meeting

- Brief review about Item Response Theory.
- Two parameter IRT model for dichotomous responses.
- Latent traits.
- Skew normal distribution for the latent traits.
- Bayesian estimation.
- Simulation.
- Comments.
- Psychometric theory: a set of models which deals with latent variables (called latent traits).
- Item Response Models (IRM) : represent the probability of a examinee get a certain score in an item.
- Such probability is a function of the latent traits (examinees) and the item parameters (item).
- Large number of differents IRM : dichotomous, polytomous, one and multiple groups, multidimensionals, longitudinals.
- Applications in many fields: educational assessment, bilogical essays, marketing among other applications.
- First works due to Lord (1952) and to Rasch (1960).

Item Response Function

$$
\begin{aligned}
& P\left(Y_{i j}=1 \mid\left(\theta_{j}, \zeta_{i}\right)\right)=\Phi\left(a_{i}\left(\theta_{j}-b_{i}^{*}\right)\right)=\Phi\left(a_{i} \theta_{j}-b_{i}\right) \\
& i=1, \ldots, I \text { (item) }, j=1, \ldots, n \text { (indivíduo), }
\end{aligned}
$$

- $Y_{i j}$: is the answer of the examinee j to the item i. It is equals to 1 if the examinee answers the item i correctly and 0 otherwise.
- θ_{j} : is the latent trait (knowledge, "level of depression", etc, of the examinee j.
- $\zeta_{i}=\left(a_{i}, b_{i}\right)^{t}$.
- a_{i} : is the discrimination parameter of the item i.
- b_{i}^{*} : is the difficulty parameter of the item i.
- $b_{i}=a_{i} b_{i}$: is the slope of the item i.

Curvas do modelo L2P

Curvas do modelo L2P

- Applications of the two parameter IRT model:
- Cognitive tests with open items (corrected as right/wrong): basic level school.
- Clinical assessment questionnaires.
- Institucional assessment questionnaires.
- Total quality management.
- Schoolar management.
- Test with multiple choice items where "guessing" is no possible.
- Latent traits:
- (Intrinsic) Characteristics of the subjetcs (examinees).
- Fixed effetcs: parameters.
- Random effects: random variables.
- An IRT models is (completely) characterized by its Item Response Function.
- An usual assumption: the latent traits follow a suitable distribution (either a bayesian or a frequentist approach).
- They incorporate information about the sampling process.
- Prior information can be incoporated.
- It is possible to make inference concerning not observed subjetcs.
- It is helpfull to ensure the model identifiability.
- An usual assumption is: $\theta_{j} \mid \boldsymbol{\eta}_{\theta} \sim N(0,1), \boldsymbol{\eta}_{\theta}=\left(\mu_{\theta}=0, \psi_{\theta}=1\right)$.
- This assumption can be unrealistic.
- Normality assumption does not hold: asymmetry, multimodality, heavy tails.
- Proposals in the literature.
- Finite mixture of normal distributions: Mislevy (1984).
- Beta-Binomial: Mislevy (1984).
- Nonparametric approach (histogram): Mislevy (1984).
- Multivariate t distribution with known degrees of freedom: Ghosh et al (2000).
- Skew normal under the direct parameterization: Bazan, Branco \& Bolfarine et al (2006).
- Univariate t distribution with known degreees of reedom: Azevedo \& Andrade (2007).
- Focus: asymmetry.
- Selection of examinees: highest scores, lowest social - economic status.
- Special teaching progam : longitudinal designs.
- The nature of the latent traits distribution of the examinees.
- Alternative (skew-normal distribuion)

$$
\begin{align*}
\theta_{j} \mid \boldsymbol{\eta}_{\theta} & \sim S N\left(0,1, \lambda_{\theta}\right) \\
\boldsymbol{\eta}_{\theta} & =\left(\mu_{\theta}=0, \psi_{\theta}=1, \lambda_{\theta}\right) \tag{2}
\end{align*}
$$

- It is necessary to determine (to stablish) the latent trait scale.
- The results must be not only comparable but also be interpretable.
- Fact: under the assumption (2):

$$
\begin{align*}
& \mathcal{E}\left(\theta_{j} \mid \lambda_{\theta}\right)=h\left(\lambda_{\theta}\right) \tag{3}\\
& \mathcal{V}\left(\theta_{j} \mid \lambda_{\theta}\right)=g\left(\lambda_{\theta}\right) \tag{4}
\end{align*}
$$

- This makes the model (1) be not identified.

Notice that:

$$
\begin{align*}
P\left(Y_{i j}=1 \mid \theta_{j}, \zeta_{i}\right) & =\Phi\left(a_{i}\left(\theta_{j}-b_{i}\right)\right)=\Phi\left(\frac{a_{i}}{\alpha}\left(\alpha \theta_{j}-\alpha b_{i}\right)\right) \\
& =\Phi\left(\frac{a_{i}}{\alpha}\left(\alpha \theta_{j}+\beta-\alpha b_{i}-\beta\right)\right) \\
& =\Phi\left(-a_{i}^{*}\left(\theta_{j}^{*}-b_{i}^{*}\right)\right) \tag{5}
\end{align*}
$$

where $\theta_{j}^{*} \mid \lambda_{\theta} \sim \operatorname{SN}\left(\beta, \alpha^{2}, \lambda_{\theta}\right)$.
This occurs because the expected value and the variance of θ, that is, the metric, is not defined. This, in its turn, makes the model be not identified.
identifiability \leftrightarrow metric is defined.

- Solution: the using of the centred parameterization defined by Azzalini (1989):

$$
\begin{equation*}
\theta_{j}^{(C)}=\frac{\theta_{j}-h\left(\lambda_{\theta}\right)}{\sqrt{g\left(\lambda_{\theta}\right)}} \tag{6}
\end{equation*}
$$

- Therefore, $\theta_{j}^{(C)} \sim S N_{C}\left(0,1, \gamma_{\theta}\right)$, where, $\forall \gamma_{\theta} \in(-0.99527,0.99527)$:

$$
\begin{aligned}
& \mathcal{E}\left(\theta_{j}^{(C)} \mid \lambda_{\theta}\right)=0 \\
& \mathcal{V}\left(\theta_{j}^{(C)} \mid \lambda_{\theta}\right)=1
\end{aligned}
$$

and, in this way, transformations as statetd in (5) are no longer possible and, therefore, the model is identified (the metric is defined).

- Result: The skew normal density under the CP is given by:

$$
\begin{equation*}
f\left(\theta_{j} \mid \gamma_{\theta}\right)=2\left(\varsigma_{\theta}\right)^{-1 / 2} \phi\left(\frac{\theta_{j}-\alpha_{\theta}}{\sqrt{\varsigma_{\theta}}}\right) \Phi\left[\lambda_{\theta}\left(\frac{\theta_{j}-\alpha_{\theta}}{\sqrt{\varsigma_{\theta}}}\right)\right], \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
\alpha_{\theta} & \equiv \alpha_{\theta}\left(\gamma_{\theta}\right)=-s \gamma_{\theta}^{1 / 3} \\
\varsigma_{\theta} & \equiv \varsigma_{\theta}\left(\gamma_{\theta}\right)=1+s^{2} \gamma_{\theta}^{2 / 3} \\
\lambda_{\theta} & \equiv \lambda_{\theta}\left(\gamma_{\theta}\right)=\frac{s \gamma_{\theta}^{1 / 3}}{\sqrt{r^{2}+s^{2} \gamma_{\theta}^{2 / 3}\left(r^{2}-1\right)}} \\
r & =\sqrt{\frac{2}{\pi}, s=\left(\frac{2}{4-\pi}\right)^{1 / 3}} \\
\gamma_{\theta} & =\sqrt{\frac{2}{\pi} \delta_{\theta}^{3}\left[\frac{4}{\pi}-1\right]\left[1-\frac{2}{\pi} \delta_{\theta}^{2}\right]^{-3 / 2}, \gamma_{\theta} \in(-0.99527,0.99527), \text { and }} \\
\delta_{\theta} & =\frac{\lambda_{\theta}}{\sqrt{1+\lambda_{\theta}^{2}}}
\end{aligned}
$$

- Augmented data likelihood

$$
p\left(\boldsymbol{z}_{. .} \mid \boldsymbol{\theta}, \boldsymbol{\zeta}\right)=\left\{\prod_{j=1}^{n} \prod_{i \in \mathcal{I}_{j}} p\left(z_{i j} \mid \theta_{j}, \boldsymbol{\zeta}_{i}\right)\right\}
$$

- Prior

$$
p\left(\boldsymbol{\theta}, \boldsymbol{\zeta}, \gamma_{\theta} \mid \boldsymbol{\eta}_{\boldsymbol{\zeta}}, \boldsymbol{\eta}_{\gamma}\right)=\left\{\prod_{j=1}^{n} p\left(\theta_{j} \mid \gamma_{\theta}\right)\right\}\left\{\prod_{i=1}^{\prime} p\left(\boldsymbol{\zeta}_{i} \mid \boldsymbol{\eta}_{\zeta}\right)\right\} p\left(\gamma_{\theta} \mid \boldsymbol{\eta}_{\gamma}\right),
$$

$$
\begin{aligned}
p\left(\boldsymbol{z}_{\ldots}, \boldsymbol{\theta}, \boldsymbol{\zeta}, \gamma_{\theta} \mid \boldsymbol{y}_{\ldots .}, \boldsymbol{\eta}_{\boldsymbol{\zeta}}, \boldsymbol{\eta}_{\gamma}\right) & \propto p\left(\boldsymbol{z}_{. .} \mid \boldsymbol{\theta}, \boldsymbol{\zeta}, \boldsymbol{y}_{. .}\right) p\left(\boldsymbol{\theta} \mid \gamma_{\theta}\right) p\left(\boldsymbol{\zeta} \mid \boldsymbol{\eta}_{\boldsymbol{\zeta}}\right) p\left(\gamma_{\theta} \mid \boldsymbol{\eta}_{\gamma}\right) \\
& =\left\{\prod_{j=1}^{n} \prod_{i \in \mathcal{I}_{j}} p\left(z_{i j} \mid \theta_{j}, \boldsymbol{\zeta}_{i}, y_{i j}\right)\right\}\left\{\prod_{j=1}^{n} p\left(\theta_{j} \mid \gamma_{\theta}\right)\right\} \\
& \times\left\{\prod_{i=1}^{1} p\left(\boldsymbol{\zeta}_{i} \mid \boldsymbol{\eta}_{\boldsymbol{\zeta}}\right)\right\}\left\{p\left(\gamma_{\theta} \mid \boldsymbol{\eta}_{\gamma}\right)\right\} \\
& \propto \prod_{j=1}^{n} \prod_{i \in \mathcal{I}_{j}} \exp \left[-0.5\left(z_{i j}-a_{i} \theta_{j}+b_{i}\right)^{2}\right] \boldsymbol{I}_{\left(y_{i j k}, z_{i j k}\right)} \\
& \times\left\{\prod_{j=1}^{n} \phi\left(\frac{\theta_{j}-\alpha_{\theta}}{\sqrt{\varsigma_{\theta}}}\right)\right\}\left\{\prod_{j=1}^{n} \Phi\left[\lambda_{\theta}\left(\frac{\theta_{j}-\alpha_{\theta}}{\sqrt{\varsigma_{\theta}}}\right)\right]\right\} \\
& \times\left\{\prod_{i=1}^{l} \exp \left[\left(\boldsymbol{\zeta}_{i}-\boldsymbol{\mu}_{\zeta}\right)^{t} \boldsymbol{\Psi}_{\boldsymbol{\zeta}}^{-1}\left(\boldsymbol{\zeta}_{i}-\boldsymbol{\mu}_{\boldsymbol{\zeta}}\right)\right] \boldsymbol{I}_{\left(a_{i}>0\right)}\right\} \\
& \times\left(\varsigma_{\theta}\right)^{-n / 2} \boldsymbol{I}^{\prime}\left(\gamma_{\theta} \in A_{\gamma_{\theta}}\right)^{\left(\gamma_{\theta}\right)}
\end{aligned}
$$

- The posterior has an intractable form, however a Metropolis-Hastings within Gibbs sampling algorithm is feasible (MHWGS).
- Several situations were simulated concerning: number of examinees (NE) $(500,1000)$, number of items (NI) $(24,36)$ and asymmetry values (AV) $\lambda_{\theta} \in(-3,-2,-1,0,1,2,3)$ $\left(\gamma_{\theta} \in(-0.67,-0.45,-0.14,0.00,0.14,0.45,0.67)\right)$.
- Were generated $\mathrm{R}=10$ replicas.
- Sensitivity to the choice of the hyperparameter of the kernel dentisty of γ_{θ}.
- Comparison of the MHWGS algorithm with other estimation methods.
- More details: Azevedo, Bolfarine \& Andrade (2010).
- The proposed algorithm (MHWGS) recoveries all parameters properly.
- Best results are obtained by MHWGS.
- Burn-in: 5000; total sample $=35000$; thin : 30; valid sample $=$ 1000.

NE	NI	AV	ADMHWGS						
			1	2	3	4	5	FGS	MML
500	24	-3	0.154	0.154	0.154	0.153	0.155	0.161	0.237
500	36	-3	0.205	0.210	0.303	0.205	0.204	0.212	0.507
1000	24	-3	0.103	0.105	0.118	0.103	0.153	0.132	0.237
1000	36	-3	0.160	0.190	0.286	0.161	0.284	0.193	0.554
500	24	-2	0.135	0.136	0.138	0.138	0.138	0.152	0.233
500	36	-2	0.214	0.209	0.214	0.214	0.214	0.219	0.555
1000	24	-2	0.127	0.131	0.127	0.131	0.125	0.133	0.217
1000	36	-2	0.151	0.155	0.155	0.156	0.154	0.168	0.522
500	24	-1	0.167	0.171	0.165	0.169	0.172	0.170	0.299
500	36	-1	0.207	0.203	0.201	0.207	0.205	0.204	0.503
1000	24	-1	0.120	0.117	0.124	0.120	0.122	0.117	0.223
1000	36	-1	0.165	0.169	0.166	0.165	0.168	0.164	0.517
500	24	0	0.149	0.150	0.150	0.149	0.150	0.143	0.239
500	36	0	0.195	0.194	0.189	0.189	0.192	0.194	0.425
1000	24	0	0.108	0.107	0.108	0.108	0.108	0.108	0.203
1000	36	0	0.156	0.157	0.158	0.155	0.158	0.154	0.498
500	24	1	0.167	0.171	0.165	0.169	0.172	0.170	0.256
500	36	1	0.191	0.189	0.190	0.188	0.190	0.190	0.525
1000	24	1	0.110	0.110	0.107	0.108	0.107	0.100	0.193
1000	36	1	0.186	0.183	0.185	0.182	0.184	0.185	0.505
500	24	2	0.147	0.145	0.146	0.145	0.145	0.144	0.209
500	36	2	0.196	0.194	0.197	0.196	0.195	0.199	0.550
1000	24	2	0.129	0.127	0.127	0.125	0.126	0.132	0.226
1000	36	2	0.163	0.160	0.161	0.160	0.161	0.175	0.522
500	24	3	0.151	0.148	0.149	0.154	0.151	0.162	0.250
500	36	3	0.210	0.209	0.209	0.209	0.212	0.218	0.441
1000	24	3	0.230	0.300	0.299	0.120	0.302	0.158	0.3257
1000	36	3	0.153	0.152	0.158	0.155	0.152	0.184	0.524

Azevedo, Bolfarine and Andrade

- The CP ensures the model identifiability under the skew normality of the latent traits distribution.
- The MHWGS algorithm recoveries all parameters properly.
- Biased results are obtained when the asymmetry of the latent traits distribution is not considered.
- In the real data analysis (not showed) we found that the latent traits distributions presents negative asymmetry.
- Azzalini, A. (1985), A class of distribution which includes the normal ones, Scandinavian journal of statistics. 12, pp. 171-178.
- Azevedo, C. L. N., Bolfarine, H. \& Andrade. D. F. (2010). Bayesian inference for a skew-normal IRT model under the centred parameterization. Compputational Staistics \& Data Analysis, under revision.
- Andrade, D.F., Tavares, H.R., Cunha, R.V. (2000). Teoria da Resposta ao Item: Conceitos e Aplicações. São Paulo: Associação Brasileira de Estatística. Bazán, J. L., Branco, M. D. and Bolfarine, H. (2006), A Skew Item Response Model, Bayesian analysis, pp. 861-892.
- Lord, F.M. (1980). Applications of Item Response Theory to Practical Testing Problems. Hillsdale: Lawrence Erlbaum Associates

Muito obrigado!
 Thank you very much!

Azevedo, Bolfarine and Andrade
Bayesian inference for a skew-normal IRT model under the centred parameterization

