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Abstract. This paper provides an introductory study on Holling-type func-

tional responses, namely, Holling-types I and II, described in a fuzzy environ-

ment. The environment considered is the space of S (A)-linearly correlated

fuzzy numbers, established from the structure of vector spaces embedded in

the class of fuzzy numbers. The arithmetic structure is given by the induced,

and cross, arithmetic operations. The parameters involved are written as fuzzy

quantities, as well as the population. A brief analysis of the choice of the un-

derlying strongly linearly independent set is made considering the fuzziness

associated with the Holling term encloses the work.
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1. Introduction

Multi-species interactions are known for having very complex dynamics.

The classical prey-predator model, originally proposed by Lotka (1925) and

Volterra (1926), have been extensively studied in the last decades from sev-

eral points of view. The original model predicts that the predator population

increases proportionally to the encounter with the prey population which, in

turn, decreases proportionally to this encounter. As a result, the solution to
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the model depicts fluctuating populations in an ecosystem (May and McLean,

2007). Several rereadings on the prey-predator dynamics were done all over the

years. Okubo and Levin (2001), for instance, dealt with two and multispecies

population dynamics with spatial dispersion - including prey-predator model.

His focus were mainly for the ecological point of view of the phenomenon.

Holling (1959b,a, 1965, 1966) introduced the families called Holling-type

functional responses by considering the response of the consumption of prey by

individual predators to changes of prey density. His studies involved the sawfly

cocoons and small mammals dynamics, and the mathematical expressions:

f(x) = cx, x > 0 (1.1)

and

f(x) =
c

h+ x
, x > 0 (1.2)

were provided, being denoted by Holling-Type I response, and Holling-Type

II response, respectively. In both equations (1.1) and (1.2), x denotes the

prey density. Holling’s contributions still represent a remarkable contribution

from the mathematical ecology until nowadays, once some dynamics, such as

parasitoids in an ecosystem, for instance, are only well-described with Holling

interactions (see (Fernández-Arhex and Corley, 2003) for details). Justified by

its scientific relevance, Pervez et al. (2018) presented a study which explains

how environmental factors produce different functional response of predators

in a multi-especies dynamics.

Peixoto et al. (2008), as one of the first studies on prey-predator dy-

namics using tools from fuzzy sets theory, used a fuzzy rule-based system to

study the Holling-Tanner model, assuming a Holling Type II functional re-

sponse. More recent contributions considered functional responses with uncer-

tainty. Using granular derivative for fuzzy-valued functions, Das et al. (2022)

considered prey-predator model under Ivlev’s functional response - also known

as Type V Holling response. Mondal et al. (2022) considered Holling- type

II functional response and interval uncertainty to study prey-pradator model.

Sukarsih et al. (2023) used Zadeh’s extension principle applied to a Runge-

Kutta method to provide numerical solutions to the dynamics.

This manuscript aims to study Holling-type functional responses consid-

ering the population and parameters as fuzzy quantities. To this end, a linear

algebra approach is used, so that all fuzzy quantities are assumed to belong

to vector spaces generated by a Strongly linearly independent set (Esmi et al.,
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2021). The arithmetic operations employed are called ψ−arithmetic operations,

given by induced and cross operations (Esmi et al., 2021; Laiate et al., 2021b).

The structure is organized as follows: The section 2 presents the basic con-

cepts on the algebra used all long the text. The section 3 derives the analytical

expressions to represent both population and parameters in the Holling-type I

and II functional responses. The section 4 provides a brief analysis on the basis

of the vector space considered. The section 5 encloses the paper by presenting

some final considerations.

2. Fuzzy sets theory

A fuzzy set A of a topological space U is characterized by a function

µA : U : [0, 1],

where A(x) represents the membership degree of each x ∈ U belongs to A.

The application µA(·) is called the membership function of A, and the set of all

fuzzy sets of U is denoted by F(U). By notational convenience, µA(·) is usually

written as A(·).

For a given topological space U , each A ∈ F(U) is completely described

by the so-called α−levels (or levelsets) of A, given by the relation:

[A]α =

{

{x ∈ U : A(x) ≥ α} , α ∈ [0, 1)

{x ∈ U : A(x > 0)}, α = 0
,

where X denotes the closure of X ⊂ R. Note that the levelsets of A ∈ F(U)

consist on classical subsets of U , i.e, [A]α ∈ P(U), ∀α ∈ [0, 1].

A fuzzy number is a normal fuzzy subset of R whose α−levels are com-

pact intervals of R (Barros et al., 2017). More specifically, A is a fuzzy number

if the following conditions are fulfilled:

i) There exists x ∈ R such that A(x) = 1 (A is normal);

ii) [A]α ∈ Kc, where Kc is the set of all compact subsets of R;

iii) The set supp(A) = {x ∈ R : A(x) > 0} is compact.

The set of all fuzzy numbers is denoted by RF . It is immediate from

definition above that for each A ∈ RF , there exist a−α ≤ a+α such that

[A]α = [a−α , a
+
α ], ∀α ∈ [0, 1].
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As we shall see in the following, the study of arithmetic operations on

fuzzy numbers with the arithmetic operations on intervals.

The usual arithmetic operations on fuzzy numbers are given in terms

of Zadeh’s Extension Principle. In brief words, the standard arithmetic in

RA inherits the usual interval arithmetic operations in the following sense: let

A,B ∈ RA be fuzzy numbers given levelwise by [A]α = [a−α , a
+
α ] and [B]α =

[b−α , b
+
α ], for all α ∈ [0, 1], and λ ∈ R. Then, the sum, subtraction and scalar

multiplication are given, respectively, by

[A+B]α = [A]α + [B]α =
[
a−α + b−α , a

+
α + b+α

]

[A−B]α = [A]α + [B]α =
[
a−α − b+α , a

+
α − b−α

], (2.3)

and

[λA]α =







[λa−α , λa
+
α ] , λ ≥ 0

[λa+α , λa
−
α ] , λ < 0

, (2.4)

∀α ∈ [0, 1]. From (2.3) and (2.4), we conclude that the space of fuzzy numbers

is quasilinear, so that (λ + µ)A ≤ λA + µA for all scalar µ, λ ∈ R, where the

equality holds whenever µλ ≥ 0 (Bede, 2013). In the meantime, the operations

of product and division are given respectively by

[A ·B]α = [A]α · [B]α = [minPα,maxPα]

[A÷B]α = [A]α ÷ [B]α = [minQα,maxQα]

where Pα = {a−α b
−
α , a

+
α b

−
α , a

−
α b

+
α , a

+
α b

+
α} and Qα =

{
a−
α

b
−
α

,
a+
α

b
−
α

,
a−
α

b
+
α

,
a+
α

b
+
α

}

, α ∈ [0, 1].

As pointed out by several papers, these arithmetic operations are com-

putationally expensivel because of the computation of the indexed sets Pα and

Qα for all α. In addition, as well as the usual sum, the usual product do not

have an inverse in general, so that both relations A − A 6= 0 and A ÷ A 6= 1

hold in general for A ∈ RF . Other drawbacks are associated to the usual oper-

ation of product, including the impossibility of controlling the width, and the

changing shape of the resulting fuzzy number.

The next subsection provides an alternative arithmetic structure for spe-

cific subclasses of fuzzy numbers contained in RF .
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2.1. Induced fuzzy arithmetic operations: a vector space

structure

As presented previously, the class of fuzzy numbers is not linear under

the usual arithmetic operations of sum and scalar multiplication. In order to

establish finite-dimensional vector spaces of fuzzy numbers, we recall the notion

of symmetry of a fuzzy number.

Let A ∈ RF be a fuzzy number given. If there exists x ∈ R so that

A(x − y) = A(x + y), we say that A is symmetric with respect to x ∈ R (or

simply symmetric), and we denote it by (A|x).

Let A = {A1, A2, . . . , Am} ⊂ RF be a set ofm fuzzy numbers given. The

set of all linear combinations (or Minkowski combinations) of Ai is denoted by

the equation (2.5)

S (A) = {q1A1 + . . .+ qmAm : q1, . . . , qm ∈ R} . (2.5)

If B ∈ S (A), then we can write by the equation (2.6)

[B]α = q1 [A1]α + . . .+ qn [Am]α , α ∈ [0, 1]. (2.6)

Next, we recall the notion of Strong Linear Independence of a set of fuzzy

numbers.

Definition 2.1 ((Esmi et al., 2021)) Let A = {A1, . . . , Am} ⊂ RF be a set

of fuzzy numbers given and B ∈ S (A) be given by B = q1A1 + . . . + qmAm.

The set A is Strongly Linearly Independent (SLI, for short) if, and only if, the

following implication holds:

(B | 0) ⇒ q1 = . . . = qm = 0.

The next theorem is particularly useful to identify if a finite A of RF is

SLI.

Theorem 2.1 (Esmi et al. (2021)) The set A = {A1, . . . , Am} ⊂ RF is

SLI if and only if the function

ψ : Rm → S (A)

given by

ψ(x1, . . . , xm) = x1A1 + . . .+ xmAm (2.7)

is an isomorphism, where “ + ” and “qiAi” stand for the usual operations of

sum and scalar multiplication in RF , respectively.
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From Theorem 2.1, we can say that ifA ⊂ RF is SLI and B ∈ S (A), then

there exists a real-vector q = (q1, . . . , qm) ∈ R
m such that B = ψ(q1, . . . , qm) =

q1A1 + . . .+ qmAm. In this case, B is called an S (A)-linearly correlated fuzzy

number.

Theorem 2.1 allows us to define arithmetic operations induced from iso-

morphism ψ on S (A)-linearly correlated fuzzy numbers. Let B,C ∈ S (A) and

λ ∈ R. Define
B +ψ C =̇ψ

(
ψ−1(B) + ψ−1(C)

)

λ ·ψ B =̇ψ
(
ψ−1(λB)

) . (2.8)

For B = ψ(q1, . . . , qm) and C = ψ(p1, . . . , pm), (2.8) yields the following

three well-defined operations of sum, subtraction and scalar multiplication:

B +ψ C = (q1 + p1)A1 + . . . (qm + pm)Am

B −ψ C = (q1 − p1)A1 + . . . (qm − pm)Am

λ ·ψ B = (λq1)A1 + . . . (λqm)Am

. (2.9)

We observe from equation (2.9) that computing the induced arithmetic

operations on S(A) is equivalent to computing the arithmetic operations on

the real-valued coordinates of the fuzzy numbers involved. Moreover, the space

(S (A) ,+ψ, ·ψ) turns to be a vector space, with dimension equals to m (more

details on this methodology can be seen in Esmi et al. (2022)).

We henceforth assume that R ⊆ S (A) ⊂ R
∧
F , where

R
∧
F = {A ∈ RF : [A]1 has a unique element} ⊂ RF .

Denote core(B) = [B]1 = b and core(C) = [C]1 = c with c 6= 0. Note that b

and c exist and are unique since S (A) ⊂ R
∧
F . The operations of product and

division S (A)-linearly correlated fuzzy numbers are given by

B ⊙ψ C = c ·ψ B +ψ b ·ψ C −ψ b ·ψ c

B ÷ψ C = B ⊙ψ C
−1
ψ

, (2.10)

where C−1
ψ =

(
2
a1c

− p1
c2

)

A1 −
p1
c2
A2 − . . .− pm

c2
Am and a1 = core(A1) (Laiate

et al., 2021b). The arithmetic operations defined by (2.10) can be seen as

linearized operations of product and division (Laiate et al., 2021a), an ideal

feature to make S (A) closed under the ψ−cross product ⊙ψ and the ψ−cross

division ÷ψ.

The so-called ψ−arithmetic operations ⊗ψ ∈ {+ψ,−ψ,⊙ψ,÷ψ} are di-

rect extensions of the corresponding arithmetic operations in the classical case,
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i.e., χ{a} ⊗ψ χ{b} = a⊗ b whenever a, b ∈ R, which are regarded as singletons.

The next lemma offers a different point of view to this argument:

Lemma 2.1 (Adapted from Laiate et al. (2021b)) Let A ⊂ R
∧
F be SLI, B,C ∈

S (A) and λ ∈ R. Then the following equality holds:

[B ⊗ψ C]1 = [B]1 ⊗ [C]1 and [λ ·ψ B]1 = λ[B]1

for all ⊗ψ ∈ {+ψ,−ψ,⊙ψ,÷ψ}.

For notational convenience, we henceforth omit the symbol ’·ψ’ when

the scalar multiplication is referred in S (A). The next section presents a

brief study on the Holling-type functional responses as functions of the form

f : S (A) → S (A).

3. Holling-type functional responses in S (A)

In this subsection, we assume the populations involved in the functional

response are given by S (A)-linearly correlated fuzzy functions. By hypothesis,

letA = {1, A2, . . . , Am} ⊂ R
∧
F be an SLI set, and denote core(Ai) = ai, for each

i = 1, . . . ,m. In addition, let N : [0, T ] → S (A) the population of predators

in a prey-predator dynamic. Thus, we are assuming there exists a real-vector

valued function n : [0, T ] → R
m given by

n(t) = (n1(t), . . . , nm(t)) ∈ R
m, t ∈ [0, T ]

such that

N(t) = (ψ ◦ n)(t) = n1(t) + n2(t)A2 + . . .+ nm(t)Am ∀t ∈ [0, T ],

where ψ : Rm → S (A) is given by (2.7).

Since the prey density of the ecosystem only assumes positive values

in classical population dynamics, we consider that the coordinates of N(t)

in the vector space (S (A) ,+ψ, ·ψ) are positive in all instants t ∈ [0, T ], i.e.,

ni(t) > 0, i = 1, . . . ,m. A similar argument can justify the non-negativity of

the coordinates corresponding to the fuzzy rate predation, given by (3.12), and

the fuzzy half saturation constant, given by (3.17).
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3.1. Fuzzy Holling-type I functional response

Let C,A ∈ S (A) be fuzzy quantities given, or estimated according to

some data set. The fuzzy Holling-type I functional response, given as in (1.1)

for crisp populations, is described by the function f : S (A) → S (A) given by

f(N) = C ⊙ψ N, (3.11)

where the consumption rate of predator to prey is given by the S (A)-linearly

correlated fuzzy number

C = c1 + c2A2 + . . .+ cmAm ∈ S (A) (3.12)

for some positive constants c1, . . . , cm > 0 given. Let us denote c = (c1, . . . , cm) ∈

R
m. From (3.12), we have that C = ψ ◦ c = ψ (c1, . . . , cm). In addition, from

equation (2.6), we can write

[N(t)]1 = n1(t)[A1]1 + n2(t)[A2]1 + . . .+ nm(t)[Am]1 =
m∑

i=1

ni(t)ai,

that is,

[N(t)]1 = 〈n(t), a〉, (3.13)

where a = (a1, a2, . . . , am) ∈ R
m is the vector whose entries are given by ai =

core(Ai), i = 1, . . . ,m. A similar reasoning leads us to

[C]1 =

m∑

i=1

ciai = 〈c, a〉. (3.14)

Since A1 = 1 ∈ R, from (3.13) and (3.14), we can write (3.11) as

f(N) = [N(t)]1C +ψ [C]1N −ψ [N ]1[C]1

= 〈n(t), a〉C +ψ 〈c, a〉N(t)−ψ 〈n(t), a〉〈c, a〉

= 〈n(t), a〉ψ(c1, . . . , cm) +ψ 〈c, a〉ψ(n1(t), . . . , nm(t))−ψ 〈n(t), a〉〈c, a〉

Therefore, (3.11) is written, in coordinates in S (A), as

f(N) = (〈n(t), a〉c1 + 〈c, a〉n1(t)− 〈n(t), a〉〈c, a〉)

+ (〈n(t), a〉c2 + 〈c, a〉n2(t))A2

+ . . .

+ (〈n(t), a〉cm + 〈c, a〉nm(t))Am

. (3.15)
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Equation (3.15) reveals the Holling-type I functional response as a func-

tion in S (A) can be decomposed into a Minkowski sum of a crisp contribution

with a fuzzy contribution. In fact, (3.15) can be written as

f(N) = (b1(t)− 〈n(t), a〉〈c, a〉)
︸ ︷︷ ︸

∈R

+
m∑

i=2

bi(t)Ai

︸ ︷︷ ︸

∈RF\R

,

where bi(t) = (〈n(t), a〉ci + 〈c, a〉ni(t)), for each i = 1, . . . ,m. It follows that,

for each t ∈ [0, T ], we have

diam (f(N)) =

m∑

i=2

|bi(t)| diam (Ai) ,

that is, the real-valued function bi : [0, T ] → R are direct related to the diameter

of the holling-type I response. Since each bi is a function of c and a, we

conclude that the choice of the coordinates of C ∈ S (A) and the SLI set A

corresponding to the core-vector a = (a1, . . . , am) determines intrinsically the

uncertainty represented by the Holling term.

3.2. Fuzzy Holling-type II functional response

Similarly to the previous case, the fuzzy Holling-type II functional re-

sponse, given as in (1.2) for crisp populations, is described by the function

f : S (A) → S (A) given by

f(N) = C ÷ψ (H +ψ N) , (3.16)

where C ∈ S (A) is given as in (3.12) and the half saturation constant is given

by the S (A)-linearly correlated fuzzy number

H = h1 + h2A2 + . . .+ hmAm ∈ S (A) , (3.17)

for some positive constants h1, . . . hm > 0 given. Let us denote h = (h1, . . . , hm) ∈

R
m, so that, from (3.17), we have H = ψ ◦ h = ψ (h1, . . . , hm). From (2.10),

we have that (3.16) is equivalent to

f(N) = C ⊙ψ (H +ψ N)
−1
ψ

=
[

(H +ψ N(t))
−1
ψ

]

1
C +ψ [C]1 (H +ψ C)

−1
ψ

−
[

(H +ψ N(t))
−1
ψ

]

1
[C]1 .

(3.18)
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Using the fact that

[

(H +ψ N(t))
−1
ψ

]

1
=

1

[H +ψ N(t)]1
=

1

[H]1 + [N(t)]1
,

a reasoning similar to that used in section 3.1 leads us to

[H]1 = 〈h, a〉,

and hence, from the linearity of the inner product 〈 · , · 〉, we have

[

(H +ψ N(t))
−1
ψ

]

1
=

1

〈h, a〉+ 〈n(t), a〉
=

1

〈h+ n(t), a〉
.

Equation (2.10) assures that

(H +ψ N(t))
−1
ψ

= ψ

(
2

〈h+ n(t), a〉
−

h1 + c1

〈h+ n(t), a〉2
, . . . , −

hm + cm

〈h+ n(t), a〉2

)

.

Since A1 = 1 ∈ R and Ai ∈ R\R for i = 2, . . . ,m, equation (3.18) can

be written, in coordinates in S (A), as

f(N) =
1

〈h+ n(t), a〉
ψ (c1, . . . , cm)

+ψ 〈c, a〉ψ

(
2

〈h+ n(t), a〉
−

h1 + c1

〈h+ n(t), a〉2
, , . . . , −

hm + cm

〈h+ n(t), a〉2

)

−ψ ψ

(
〈c, a〉

〈h+ n(t), a〉
, 0, . . . , 0

)

or, equivalently,

f(N) =

(
c1 + 〈c, a〉

〈h+ n(t), a〉
−

h1 + c1

〈h+ n(t), a〉2

)

−
h2 + c2

〈h+ n(t), a〉2
A2 − . . .−

hm + cm

〈h+ n(t), a〉2
Am

. (3.19)

In resemblance to fuzzy Holling-type I functional response, equation (3.19) re-

veals the Holling-type II functional response as a function in S (A) can be

decomposed in a Minkowski sum of a crisp contribution with a fuzzy contribu-

tion. In fact, (3.19) can be written as

f(N) =

(
c1 + 〈c, a〉

〈h+ n(t), a〉
− w1(t)

)

︸ ︷︷ ︸

∈R

−

m∑

i=2

wi(t)Ai

︸ ︷︷ ︸

∈RF\R

,
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where wi(t) = hi+ci
〈h+n(t),a〉2 for each i = 1, . . . ,m. It follows that, for each

t ∈ [0, T ], we have

diam (f(N)) =

m∑

i=2

|wi(t)| diam (Ai) , (3.20)

that is, the real-valued function wi : [0, T ] → R are direct related to the

diameter of the holling-type I response. Since each wi is a function of c, h, and

a, we conclude that the choice of the coordinates of C and H ∈ S (A), as well

as the SLI set A corresponding to the core-vector a = (a1, . . . , am) determines

intrinsically the uncertainty represented by the Holling term.

4. Analysis on the choice of SLI sets

SLI sets of fuzzy numbers can be built using the power hedges of a non-

symmetric trapezoidal fuzzy number via fuzzy modifiers or Zadeh’s Extension

Principle. In fact, for a given fuzzy number A ∈ RF trapezoidal and non-

symmetric, the sets given by

{
Ai

}

i=0,1,...,m
and

{

f̂i(A)
}

i=0,1,...,m
(4.21)

are SLI for all m ∈ N (Esmi et al., 2021).

We can say that (4.21) shows us that vector spaces generated by linear

combinations of SLI sets can be seen as a structure completely determined by

a single fuzzy number A ∈ RF , when it is choosen to be non-symmetric. In

this case, the following definition holds:

Definition 4.1 (Adapted from Laiate et al. (2023)) Let A ⊂ RF be an SLI

set given as in equation (4.21), for some A ∈ RF , and consider the first-order

system of FIVPs
{

X ′
i(t) = fi (t,X1, . . . , Xp)

Xi(t0) = X0 ∈ S(A)
, (4.22)

where Xi : [a, b] → S (A) for i = 1, . . . , p. Then the fuzzy number A ∈ RF is

called a fuzzy basal number of (4.22).

The Holling-type functional responses, presented as functions in S (A)

in (3.11) and (3.16), aim to be a tool to be used in fuzzy differential equations

for S (A)-linearly correlated fuzzy functions. Thus, assuming the SLI sets are
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generated for some fuzzy basal number A ∈ RF , we observe from (3.1) and

(3.20) that the choice of A determines the fuzziness of Holling-term of both

types. Moreover, the fuzzy basal number determinates the core-vector a ∈ R
m

which, intuitively, shall be considered in first place from possible data set given.

Note that the curve corresponding to the core of the fuzzy curve of a FDE

under the ψ−arithmetic operations coincides with the classical solution to the

corresponding differential equation. It is noteworthy that, in this case, the fuzzy

basal number represents the source of uncertainty of an ecological phenomena

in which the Holling-type functional response acts.

5. Final considerations

This manuscript provided a brief study on Holling-type functional re-

sponses as functions of the form f : S (A) → S (A), where

A = {A1, . . . , Am}

is a given finite SLI set. The expressions of the functional responses were

deduced using the ψ−arithetic operations, well defined in the space of S (A)-

linearly correlated fuzzy numbers.

Both Type I and Type II Holling terms were expressed in an expression

decomposable into a Minkowski sum of a crisp term with a fuzzy term. Analyt-

ical relations between these expressions and the coordinates of the parameters

involved were made. Here, the parameters and the population were considered

as fuzzy quantities. In addition, an introductory analysis on the underlying SLI

set was made from the point of view of the fuzzy basal number (Laiate et al.,

2023). In this case, the fuzzy basal number appeared to be the source of un-

certainty of the ecological phenomenon known as Holling-functional responses,

widely studied in the literature in the last decades.

This work brings some theoretical novelties from the point of view of

fuzzy arithmetic. The ψ−arithmetic operations maintain the relation called

S (A)-linearly correlation, well-defined between some families of fuzzy numbers.

Thus, fuzzy differential equations associated to these families of functions can

model ecological phenomena using the content of this paper, either from the

point of view of Fréchet derivative (Esmi et al., 2022; Laiate, 2023), Hilger

derivative in time scales (Shahidi et al., 2023), fuzzy fractional derivative (Son

et al., 2021), or from control theory (Son et al., 2023).
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Lastly, from the point of view of ecological modeling, a contribution

is provided since some uncertainties and imprecisions associated with natural

phenomena are partially described by parameters and/or populations given by

fuzzy quantities. Future papers should include different Holling-types func-

tional responses with numerical simulations to solutions of fuzzy differential

equations associated to S (A)-linearly correlated fuzzy functions.
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