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Abstract

For a fixed, central ray in an isotropic elastic or acoustic media, traveltime moveouts of
rays in its vicinity can be described in terms of a certain number of parameters that refer to
the central ray only. The determination of these parameters out of multi-coverage data leads
to very powerful algorithms that can be used for several imaging and inversion processes.
Assuming two-dimensional propagation, the traveltime expressions depend on three param-
eters directly related to the geometry of the unknown model in the vicinity of the central
ray. We present a new method to extract these parameters out of coherency analysis applied
directly to the data. It uses (a) fast one-parameter searches on different sections extracted
from the multi-coverage data to derive initial values of the sections parameters, and (b) the
application of a recently introduced Spectral Projected Gradient optimization algorithm for
the final parameter estimation. Application of the method on a synthetic example shows an
excellent performance of the algorithm both in accuracy and efficiency. The results obtained
so far indicate that the algorithm may be a feasible option to solve the corresponding, harder,
full three-dimensional problem, in which eight parameters, instead of three, are required.

Keywords: Multi-coverage data, Common Reflection Surface method, hyperbolic travel-
time, coherency function, optimization, Spectral Projected Gradient method.

1



1 Introduction

In the framework of zero-order ray theory, traveltimes of rays in the paraxial vicinity of a fixed
central ray can be described by a certain number of parameters that refer to the central ray only.
The approximations are correct up to the second order of the distances between the paraxial
and central ray at the corresponding initial and end points. They are, thus, valid independently
of any seismic configuration.

Assuming the central ray to be the primary zero-offset ray, the number of parameters are
three and eight, for two- and three-dimensional propagation, respectively. For two-dimensional
propagation, the parameters are the emergence angle of the normal ray and the wavefront
curvatures of the normal and normal-incident-point eigenwaves, as introduced in Hubral (1983).
All parameters are defined at the point of emergence of the central ray, called the central point.
This point coincides with a common midpoint (CMP), where the simulated zero-offset trace is
to be constructed.

The use of multi-parametric traveltime approximations for imaging purposes is a well-
investigated subject. Main contributions are Multifocusing (see, e.g., Gelchinsky et al., 1997,
for a recent description), Poly StackTM (see, e.g., de Bazelaire et al., 1994) and the very recent
Common Reflection Surface (CRS) method (see, e.g., Hubral et al., 1998, and Perroud et al.,
1999). These methods vary in general on two aspects, namely, the multi-parametric traveltime
moveout formula that is used, as well as in the strategy employed to extract the traveltime
parameters from coherency analysis applied on the multi-coverage data.

The basic lines of the CRS approach are the choice of the hyperbolic traveltime function (see
Tygel et al., 1997), and the strategy of breaking the original three-parameter estimation problem
into simpler ones involving one or two unknowns. As shown in Müller (1999), quick estimations
for the three parameters can be obtained by simple one-parameter searches performed on CMP
and CMP-stacked sections out of the multi-coverage data. Direct use of these parameters in the
CRS stacking algorithms leads to very acceptable imaging results. As reported in Müller (1998),
application of the algorithm to real-data examples have produced imaging results comparable
and, in many cases, even superior to those obtained by conventional NMO/DMO.

To improve the accuracy of the parameter estimations, as needed, e.g., for the construction
of velocity models, a natural idea is to use the previously obtained parameter estimations as
initial values for an optimization scheme directly applied to the multi-coverage data problem.
Following this philosophy, Müller (1999) and Jäger (1999) were able to obtain significantly better
results on synthetic data examples, however, at a high computational cost.

In this work, we present a new optimization strategy so as to achieve more accurate results
than the ones derived by purely one-parameter searches, while maintaining the computational
effort at a reasonable level. This becomes a crucial matter when real-data applications are
envisaged. The method is illustrated by its application on a synthetic example, where the
various aspects of the algorithm can be better understood.

2 Hyperbolic traveltime expansion

As shown in Figure 1, let us assume a fixed target reflector Σ in depth, as well as a fixed central
point X0 on the seismic line, considered to be the location of a coincident source- and -receiver
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pair S0 = G0 = X0. The corresponding zero-offset reflection ray, X0 NIP X0, will be called
from now on the central ray. It hits the reflector at the normal-incident-point (NIP). For a
source-receiver pair (S,G) in the vicinity of the central point, we consider the primary reflected
ray SRG relative to the same reflector Σ. We use the horizontal coordinates x0, xS and xG to
specify the location of the central point X0, the source S and the receiver G, respectively. We
find it convenient to introduce the midpoint and half-offset coordinates

xm = (xG + xS)/2− x0 and h = (xG − xS)/2. (1)

We consider the hyperbolic traveltime expression as in Tygel et al. (1997)

T 2(xm, h;β0,KN ,KNIP ) =
(

t0 +
2xm sinβ0

v0

)2

+
2t0 cos2 β0

v0
(KN x2

m + KNIP h2) , (2)

where t0 is the zero-offset traveltime and β0 is the angle of emergence at the zero-offset ray
with respect to the surface normal at the central point. The quantities KN and KNIP are the
wavefront curvatures of the normal N-wave and the NIP-wave, respectively, measured at the
central point.

The N- and NIP-waves are fictitious eigenwaves introduced by Hubral (1983) for the analysis
of the actual propagation of the zero-offset ray, as well as for its corresponding paraxial rays.
Their wavefront curvatures at the central point carry important information about the velocity
model in which the wave propagation takes place. The N-wave can be conceptually visualized as
the one that starts as a wavefront that coincides with the reflector and travels to the surface with
half of the medium velocity. It arrives at the central point at the same time as the zero-offset
ray. The NIP-wave can be visualized as starting as a point source at the reflection point (NIP)
of the zero-offset reflection ray and propagates upwards with half of the medium velocity. It
arrives at the central point at the same time as the zero-offset ray, too.

For particular source-receiver gathers, the hyperbolic traveltime formula (2) can be simpli-
fied. The most used configurations are:

The common-midpoint configuration: Setting the fixed midpoint to coincide with the
central point, the CMP-traveltime expression can be readily obtained from the hyperbolic trav-
eltime (2) by simply placing xm = 0 in that formula. We find the one-parameter expression

T 2
CMP (h; q) = t20 +

2t0 h2q

v0
, (3)

on the combined parameter q = cos2 β0 KNIP .

The zero-offset configuration: The zero-offset traveltime expression is readily obtained
setting h = 0 in the hyperbolic traveltime (2). We find the two-parameter expression

T 2
ZO(xm; β0,KN ) =

(
t0 +

2xm sinβ0

v0

)2

+
2t0 cos2 β0

v0
KN x2

m , (4)

on the original parameters β0 and KN .
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The common-shot configuration: Placing the common source to coincide with the central
point, the common-shot traveltime expression is derived by setting xm = h in the hyperbolic
traveltime (2). As a result, the common-shot traveltime becomes the two-parameter expression

T 2
CS(h; β0, µ) =

(
t0 +

2h sinβ0

v0

)2

+
2t0 cos2 β0

v0
µ h2 , (5)

depending on the original and combined parameters β0 and µ = KN + KNIP , respectively.

The common-offset configuration: The expression of the common-offset traveltime coin-
cides with the general hyperbolic traveltime (2) upon the consideration of h = constant.

3 Formulation of the problem and its solution

The data obtained by a multi-coverage seismic experiment, performed on a given seismic line,
consists of a multitude of seismic traces U(xm, h, t) corresponding to source-receiver pairs located
by varying coordinate pairs (xm, h) and recording time 0 < t < T . The basic problem we have
to solve is the following:

Consider a dense grid of points (x0, t0), where x0 locates a central point X0 on the
seismic line and t0 is the zero-offset traveltime. For each central point X0, let the
medium velocity v0 = v(x0) be known. From the given multi-coverage data, deter-
mine the corresponding parameters β0, KN and KNIP , for any given point (x0, t0)
and velocity v0.

One approach to solve this problem could be the application of a multi-parameter coherency
analysis to the data, using the traveltime formula (2) to a number of selected traces U(xm, h, t) in
the vicinity of the central ray X0 and for a suitable time window around the time t0. Depending
on the choice of seismic traces and gathers involved, the desired values of the sought-for param-
eters are expected to be very close to the ones for which the maximum coherence is achieved
when applying the traveltime (2) to the data.

Given the seismic traces U(xm, h, t), and the vector of parameters P = (β0,KN ,KNIP ), the
coherency measure called semblance, as introduced by Taner and Koehler (1969), is given by

S =
∑

[
∑

U(xm, h, T (xm, h;P ))]2

M
∑ ∑

[U(xm, h, T (xm, h; P ))]2
, (6)

where T (xm, h; P ) = T (xm, h; β0,KN ,KNIP ) is the traveltime expression (2) and M is the total
number of selected traces. The inner summation is performed over all selected traces, and
the outer one is performed over a given time window around t0. For each given pair (x0, t0),
the objective is to find the global maximum of the semblance function (6) with respect to the
parameters β0, KN and KNIP . These parameters are restricted to the ranges −π/2 < β0 < π/2
and −∞ < KN , KNIP < ∞.

To compute the global maximum of the semblance function, we propose the strategy de-
scribed by the flow chart in Figure 2. In the first part we obtain initial values of the parameters.

4



In the second part, an optimization process employs these parameters as initial values to produce
the final estimations. Following the same lines as Müller (1999), the first part consists of two
steps, namely, (a) a one-parameter search of the combined parameter q, performed on the CMP
sections with the help of the traveltime expression (3), and (b) two one-parameter searches for
β0 and KN , performed on the CMP-stacked section realized using the previous q-parameter.
The CMP-stacked section is considered as an approximate zero-offset section, so the traveltime
expression (4) is used in these computations.

The optimization process of the second part determines the two parameters β0 and µ =
KN + KNIP . For this purpose, we use the recently introduced Spectral Projected Gradient
(SPG) method applied to common-source sections extracted from the multi-coverage data. The
explanation of the SPG method exceeds the scope of this work. We refer the interested reader
to Birgin et al. (1999) for a comprehensive description of the method, including convergence
results and numerical experiments that prove the efficiency of the method. We use the traveltime
expression (5) to obtain the original parameter β0 and the combined parameter µ. Finally, using
the relationships KNIP = q/ cos2 β0 and KN = µ − KNIP all the desired parameters can be
determined.

The SPG method maintains the basic features of gradient-type methods (easy-to-implement,
low-memory requirements) and is also naturally suited to bound constrained problems. These
good features lead us to use the SPG method in the present work.

4 A synthetic example

Referring to Figure 3, we consider the synthetic two-dimensional model of three smoothly curved
reflectors separating different homogeneous acoustic media. Assuming unit density, the constant
velocities are: c1 = 1400m/s above the first reflector, c2 = 2000m/s between the first and
the second reflector, c3 = 3400m/s between the second and the third reflector, and, finally,
c4 = 5500m/s below the deepest reflector.

The input data for our experiment are a collection of 334 CMP seismic sections, centered at
coordinates x0 varying from 3010m to 13000m. Each CMP gather has 84 traces with half-offsets
varying from 0m to 2490m. All traces are sampled within the range of 0s ≤ t ≤ 6s, at a sample
rate of 4ms. Noise was added to the data with a ratio signal:noise of 7:1. Figure 4 shows the
CMP gather centered at coordinate x0 = 9910m.

Initial estimation – the combined parameter q: Our process starts with the estimation
of the combined parameter q. This is performed as a one-parameter search on the CMP gathers
extracted from the multi-coverage data. The situation is similar to a conventional NMO-velocity
analysis. For each midpoint x0, taken as a central point, we consider its corresponding CMP
gather. Setting the central point x0 fixed, we determine, for each time sample t0, the value of
q that yields the best semblance in the CMP gather. For this computation, we use the CMP-
traveltime formula (3) that depends on the q-parameter only. The above procedure leads to
the construction of two auxiliary CMP-related sections, namely, the q-section, which consists of
assigning to each (x0, t0) its corresponding q-parameter, and the semblance section in which the
semblance values, instead of the q-values, are assigned. An extensive use of semblance sections,
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as well as other auxiliary sections, is described in Gelchinsky et al. (1997).
The q-search may be refined for greater accuracy. We consider the estimated q-parameters

for which the current semblance values exceed a threshold that is interactively selected by the
user. This provides an ensemble of q-values concentrated on a smaller range (in our case three
orders of magnitude less than the original range search). It allows us to perform a new search,
restricted to this smaller range divided into a much finer grid. As a consequence, for comparable
computational costs, we gain orders of magnitude in the accuracy of the estimated parameter.
Figure 5 shows the semblance section obtained after the use of the above-described refinement
strategy. The employed threshold semblance values were 0.13 and 0.15 for the time intervals
0s < t0 < 2.5s and 2.5s < t0 < 6s, respectively. The very clear semblance section of Figure 5
can be looked upon as a simulated zero-offset section. The theoretical and estimated values
of the combined parameter q along the reflectors are shown in Figure 6. The highly accurate
results confirm the expectations of employing an exhaustive search to solve a one-parameter
problem. As a consequence, the obtained values of the q-parameter will be retained during the
whole process.

Initial estimation – the parameters β0, KN and KNIP : Using the just estimated q-
values in the CMP-traveltime formula (3), we construct (like in conventional NMO-stacking) the
corresponding CMP-stacked section (see Figure 7). This will now be used as an approximation
of a zero-offset section.

To extract the emergence angles β0 and the N-wave curvatures KN , we proceed as follows:
(a) Using the zero-offset traveltime expression (4), we first set KN = 0 and perform, for each
pair (x0, t0), a one-parameter search for β0 between −π/2 and π/2; (b) Setting the obtained
value of the β0 parameter in the same zero-offset traveltime expression (4), we perform a further
one-parameter search, this time for the parameter KN . Use of the above results, together with
the relationship KNIP = q/ cos2 β0, completes the initial estimations of the three parameters
β0, KN and KNIP .

Optimization procedure – Final estimations: The second part of our method consists of
the application of an optimization algorithm to common-shot sections extracted from the multi-
coverage data. For that matter, we use the common-shot traveltime formula (5), depending on
the two parameters β0 and µ = KN + KNIP . Using the initial estimation of the parameters
obtained in the first step, we apply the Spectral Projected Gradient method (see Birgin et al.,
1999) to achieve the final estimations.

Figures 8, 9 and 10 show the comparison between the theoretical and optimized parameters.
We can recognize that the method provides generally accurate parameter estimations in most of
the section. We note, however, that the method also yields inaccurate results at various points
within the range [6000m,8000m]. These points are characterized by small coherence measures
and, for that matter, have not been displayed in Figures 8, 9 and 10. The reasons for those small
coherence values may be (a) Lack of illumination: The use of end-on, common-shot gathers may
not be the most adequate choice of illumination for the whole section. This holds, in particular,
for the first, shallowest reflector, where accentuated dips are present in the “problematic region”.
(b) Caustics: The same region contains a caustic due to the second reflector. This is expected
to introduce problems, not only to this reflector, but also to the third one below it.
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A possible improvement of the results could be obtained upon the combined use of traces
that belong to different gathers (e.g, split-spread common-shot and common-offset gathers) that
are available in the multi-coverage data. The use of additional gathers may be recommended to
overcome these difficulties. These important aspects are under current investigation.

5 Some considerations and remarks

The application of the proposed method relies on some choices to be made by the user on a
more or less a priori manner. We mention these choices and also pose some related questions.

1. The optimization procedure of our implementation could be alternatively carried out on
common-offset or split-spread common-shot sections extracted from the multi-coverage
data, instead of the common-shot sections as actually performed. A natural question to
be posed is what are the differences in the obtained results.

2. Concerning the optimization solver, another alternative could be to combine SPG with
a Newton-type method to speed up the convergence. The idea is that SPG (as well as
any gradient-projection type algorithm) can be used to get a closer approximation to the
solution, so that a Newton-type method can be applied ignoring the constraints. This
implicitly assumes that the stationary point is an interior point of the feasible region.

3. The strategy of using particular configurations to reduce the number of parameters to be
estimated has definite advantages, but may have also hide some disadvantages. The main
advantage is the significant reduction of computational effort and simplification of the
optimization procedures. A possible disadvantage is the use of less redundancy, because
many available traces that do not conform to the selected configuration have to be left out.
In some situations, this could lead to a decrease in the accuracy of the final estimation
of the parameters. An alternative to overcome this possible shortcomings would be to
consider more configurations, e.g., common-shot and common-offset sections, and average
the corresponding parameter estimation results.

4. Given a pair (x0, t0), the selection of the traces and the time window required for the
evaluation of the coherency function is an important a priori decision to be made by the
user. The situation is similar to the one encountered in the application of velocity analysis
in conventional NMO/DMO stacking. Investigations on the accuracy of the hyperbolic
and other traveltime moveout approximation expressions would certainly help to get the
most of these formulas.

5. The semblance section obtained by the one-parameter search for the combined parame-
ter q (see Figure 5) provides a valuable initial indication of the regions where primary
zero-offset reflections are to be located. As a consequence, for each central-point location
x0, the number of zero-offset traveltimes t0 connected to actual reflections can be dramat-
ically reduced. This means that, in principle, we could restrict the subsequent searches
and optimization procedures to those “promising” points only, leading to a significant re-
duction of computational costs. If the number of points is sufficiently reduced, maybe an
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optimization procedure can be applied to an ensemble of sections of various configurations
or even to the whole multi-coverage data.

6 Conclusions

We have proposed a new algorithm to determine the traveltime parameters out of coherency
analysis applied to 2-D multi-coverage seismic data. Following the general philosophy of the CRS
approach, we used the hyperbolic traveltime moveout together with a sequential application of
one-parameter searches, followed by a two-parameter optimization scheme. The restriction of
the two-parameter optimization to common-shot sections, together with the use of the recently
introduced Spectral Projected Gradient method, lead us to a fast and generally accurate estima-
tion of all three parameters. We also observed that some inaccuracies on the estimations may
be due to non-sufficient illumination from the selected gathers, as well as from usual complica-
tions associated with caustical regions. We have addressed a number of questions concerning
alternatives to improve the accuracy, as well as to reduce computational costs.

The proposed approach to perform the three-parameter estimation is the main contribution
of the present work. We applied the algorithm to a three-reflector synthetic example. Although
this is a simple model, it presents already some of the basic complications of more realistic
situations. The obtained results were very encouraging, confirming our expectations concerning
accuracy improvements at reasonable computational costs, as compared with currently available
search methods. Next steps will be to test the new algorithm on more complex models and to
real data sets.
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Figure 1: Physical interpretation of the hyperbolic traveltime formula parameters: Emergence
angle, β0, normal-wave curvature, KN , and normal-incident-point-wave curvature, KNIP .
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Initial Estimation Process

ZO Search

Step 1: one-dimensional search 
for β0 (using KN=0).

Step 2: one-dimensional search
for KN (using β0 from Step 1).

Step 3: compute KNIP = q / cos2(β0).

CMP Search

One-dimensional search for
the combined parameter q.

Optimization Process

CS Optimization

Step 1: optimization on β0 and 
µ = KN + KNIP.

Step 2: compute KNIP = q / cos2(β0) 
and KN = µ - KNIP.

CMP gathers

CS gathers

Simulated ZO stack

Intermediate β0, KN
and KNIP sections

q section

Multicoverage Data

Final β0, KN and 
KNIP sections

Coherency section

q section

Figure 2: Flow-chart description of the parameter-estimation strategy. First part: Computation
of initial estimations by one-parameter searches. Second part: Optimization method applied to
common-shot sections for final parameter estimation.
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