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Abstract. Studied here is the generalized Benjamin-Ono–Zakharov-
Kuznetsov equation

ut + upux + αH uxx + εuxyy = 0, (x, y) ∈ R2, t ∈ R+,

in two space dimensions. Here, H is the Hilbert transform and sub-
scripts denote partial differentiation. We classify when this equation
possesses solitary-wave solutions in terms of the signs of the constants
α and ε appearing in the dispersive terms and the strength of the non-
linearity. Regularity and decay properties of these solitary wave are
determined and their stability is studied.

1. Introduction

This paper is concerned with existence and non-existence, stability and
some decay properties of solitary-wave solutions of the two-dimensional,
generalized Benjamin-Ono–Zakharov-Kuznetsov equation (BO–ZK equation
henceforth),

ut + upux + αH uxx + εuxyy = 0, (x, y) ∈ R2, t ∈ R+. (1.1)
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Here, p > 0, α and ε are non-zero real constants with ε normalized to ±1 by
appropriately rescaling the y-variable while H is the Hilbert transform

H u(x, y, t) = p.v.
1

π

∫
R

u(z, y, t)

x− z
dz,

in the x-variable; p.v. denotes the Cauchy principal value.
When p = 1, this equation arises as a model for electromigration in thin

nanoconductors on a dielectric substrate (see [32]) and in modeling prop-
agation of internal waves in the presence of weak lateral dispersion of the
Zakharov-Kuznetsov variety (e.g. [38]).

Equation (1.1) may be viewed as one of the natural, two-dimensional
generalizations of the one-dimensional generalized Benjamin-Ono equation

ut + upux + αH uxx = 0, x ∈ R, t ∈ R+. (1.2)

When p = 1, this is the Benjamin-Ono equation which arose in Benjamin’s
study [5] of internal waves propagating along the interface between two fluid
layers of different densities. The BO–ZK equation can also be considered as
a non-local version of the generalized Zakharov-Kuznetsov equation

ut + upux + αuxxx + εuxyy = 0, (x, y) ∈ R2, t ∈ R+. (1.3)

Again, when p = 1, this model was introduced by Zakharov and Kuznetsov
in [52] as a higher-dimensional extension of the Korteweg-de Vries model of
surface wave propagation. It was originally derived as a model for ion acous-
tic waves in a plasma under the influence of a planar external magnetic field.
In the form (1.3), it comprises a two-dimensional version of the generalized
Korteweg-de Vries equation

ut + upux + uxxx = 0. (1.4)

Well-posedness issues for the pure initial-value problem for (1.2) began
with [9] and [1] and have attracted a lot of interest recently (see, e.g. [18, 35,
36, 47, 48, 51]). Well-posedness for (1.3) was studied in [28, 29, 30, 41, 46, 50].

Both (1.2) and (1.4) have traveling-wave solutions called solitary waves.
These special solutions appear to play a distinguished role in the long-term
asymptotics of finite energy initial disturbances. Questions about the sta-
bility or instability of solitary waves goes back to the pioneering work of
Benjamin [6] (and see also [10]) in the context of the Korteweg-de Vries
equation itself. The existence and stability of solitary waves for (1.2) has
been investigated in many subsequent works, e.g. [2, 3, 4, 9, 33]. Numerical
simulations indicating instability and singularity formation when p > 2 ap-
pear in [11]. As far as we know, the only results about existence and stability
of solitary-wave solutions of (1.3) were provided in [14].
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It is worth note that the so-called Benjamin equation (see [7, 8])

ut + upux + αH uxx + βuxxx = 0, x ∈ R, t ∈ R+, (1.5)

for propagation of internal waves, which is valid in the same deep-water
limits as is the Benjamin-Ono equation, but which takes into account surface
tension effects between the two layers of fluid, could be generalized in a
similar way. In this case, a model of the form

ut + upux + αH uxx + βuxxx + εuxyy = 0, (x, y) ∈ R2, t ∈ R+, (1.6)

would emerge. It could be derived as a model for internal waves under the
same conditions that would arise in obtaining (1.1) in this context. Existence
theory for solitary-wave solutions of (1.5) appears in [21]. A numerical study
of the spatial structure and stability of these waves can be found in [33].

Since solitary-wave solutions of equations like (1.2) and (1.4) turn out
to be important ingredients of general solutions, it seems not unlikely the
same is true for the more complex, two-spatial dimensional wave equations
mentioned here. Hence, an extended investigation of their solitary waves
will most probably provide information about solutions of the equations
emanating from general initial data.

The solitary-wave solutions of interest here have the form u(x, y, t) =
ϕ(x − ct, y), where c 6= 0 is the speed of propagation and u belongs to a
natural function space denoted Z and introduced presently. Substituting
this form into (1.1), integrating once with respect to the variable z = x− ct
and assuming ϕ(z, y) decays suitably for large values of |z|, it transpires that
ϕ must satisfy

−cϕ+ 1
p+1ϕ

p+1 + αH ϕx + εϕyy = 0, (1.7)

where we have replaced the variable z by x.

Remark 1.1. When it is convenient, it may be assumed that (1.7) has the
normalized form

−ϕ+ 1
p+1ϕ

p+1 + H ϕx ± ϕyy = 0, (1.8)

by scaling the independent and dependent variables, viz.

u(x, y, t) = av(bx, dy, et),

where ap = c, e = b = c/α and d = ε/c2. If instead, we insist that d > 0, so
ε = +1, then equation (1.7) may be taken in the form

−ϕ+ 1
p+1ϕ

p+1 ±H ϕx + ϕyy = 0. (1.9)

Of course, throughout, it will be presumed that the power p appearing in the
nonlinearity is rational and has the form k/m where k and m are relatively
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prime and m is odd. This restriction allows us to define a branch of the

mapping w 7→ w
1
m that is real on the real axis.

Attention is now turned to the structure of the paper. The theory be-
gins by examining when solitary-wave solutions of (1.1) exist. As pointed
out in [38], no exact formulas are known for solitary-wave solutions to (1.1),
so an existence theory logically precedes questions of stability. Pohozaev-
type identities are used to show that solitary-wave solutions do not exist for
certain values of p and signs of ε and α. In some of the cases where such solu-
tions are not prohibited by elementary inequalities, a suitable minimization
problem can be solved using P.-L. Lions’ concentration-compactness prin-
ciple [42, 43] (see Theorem 2.1). For example, our results imply there are
solitary-wave solutions when c > 0, α < 0, ε > 0 and 0 < p < 4. Moreover,
these solutions are shown to be ground states.

With solitary waves in hand, their orbital stability is at issue. The vari-
ational approach of Cazenave and Lions [20] comes to the fore in Section
3 in establishing stability for the case αε < 0, cα < 0, and 0 < p < 4/3.
Complementary instability results appear in [25] for the same conditions on
c, α and ε, but with 4/3 < p < 4.

The regularity and spatial asymptotics of the solitary-wave solutions
shown to exist in Section 2 are developed in Sections 4 and 5. Solitary-
wave solutions are shown to be positive and real analytic. (Of course, in
the case where p = k/m, k,m relatively prime with m odd and k even, if
φ is a solution of (1.7), then so is −φ.) They are symmetric about their
peak with respect to both the direction of propagation and the transverse
direction and decay to zero algebraically in the direction of propagation and
exponentially in the transverse direction. Some of the results in Section 4
inform the analysis of instability in [25].

In the theory developed here, the issue of well-posedness is not addressed.
The presumption throughout is that suitable well-posedness obtains for these
models. Detailed analysis of the initial-value problem that is more than
sufficient for our theory here has recently appeared in [23]. Complementary
ill-posedness results are available in [27].

Remark 1.2. The scale-invariant Sobolev spaces for the BO–ZK equation
(1.1) are Ḣs1,s2(R2), where 2s1 + s2 = 3

2 −
2
p (see the definitions below).

Hence, a reasonable framework for studying local well-posedness of the BO–
ZK equation (1.1) is the family of spaces Hs1,s2(R2) with 2s1 + s2 ≥ 3

2 −
2
p .
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Remark 1.3. An n-dimensional version of (1.1) is

ut + upux1 + αH ux1x1 +
n∑
i=2

εiux1xixi = 0, (1.10)

where t ∈ R+, (x1, x2, . . . , xn) ∈ Rn and α, εi ∈ R, i = 2, . . . , n. The
theory developed here has natural analogs for (1.10) which will be developed
elsewhere.

Notation and Preliminaries. As already mentioned, the exponent p in
(1.1) is taken to be a rational number of the form p = k/m, where m and k
are relatively prime and m is odd. This allows the nonlinearity to be given a

definition that is real-valued. The notation f̂ = f̂(ξ, η) connotes the Fourier
transform,

f̂(ξ, η) =

∫
R2

e−i(xξ+yη)f(x, y) dxdy,

of f = f(x, y). For any s ∈ R, the space Hs := Hs(R2) denotes the usual,
isotropic, L2(R2)-based, Sobolev space. For s1, s2 ∈ R, the anisotropic
Sobolev space Hs1,s2 := Hs1,s2

(
R2
)

is the set of all distributions f such
that

‖f‖2Hs1,s2 =

∫
R2

(
1 + ξ2

)s1(1 + η2
)s2 |f̂(ξ, η)|2 dξdη <∞.

The fractional Sobolev-Liouville spaces H
(s1,s2)
p := H

(s1,s2)
p

(
R2
)
, 1 ≤ p <∞,

are the set of all functions f ∈ Lp(R2) such that

‖f‖
H

(s1,s2)
p

= ‖f‖Lp(R2) +
2∑
i=1

∥∥Dsi
xif
∥∥
Lp(R2)

<∞,

where Dsi
xif denotes the Bessel derivative of order si with respect to xi (see

e.g. [37], [44]). For short, H
(s)
p (R2) denotes the space H

(s,s)
p (R2).

The particular space Z := H
1
2
,0
(
R2
)
∩ H0,1

(
R2
)

= H( 1
2
,1) (R2

)
arises

naturally in the analysis to follow. It can be characterized alternatively as
the closure of C∞0 (R2) with respect to the norm

‖ϕ‖2Z = ‖ϕ‖2L2(R2) + ‖ϕy‖2L2(R2) +
∥∥D1/2

x ϕ
∥∥2
L2(R2)

, (1.11)

where D
1/2
x ϕ denotes the fractional derivative of order 1/2 with respect to

x. The operator D
1/2
x is a Fourier multiplier operator defined via its Fourier

transform by

D̂
1/2
x ϕ(ξ, η) = |ξ|1/2ϕ̂(ξ, η),
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just as the Hilbert transform can be defined by

Ĥ f(ξ, η) = −i sgn(ξ)f̂(ξ, η).

Remark 1.4. By combining fractional Gagliardo-Nirenberg and Hölder’s
inequalities, one can deduce the existence of a positive constant C such that

‖u‖p+2
Lp+2 ≤ C‖u‖

(4−p)/2
L2 ‖D1/2

x u‖pL2‖uy‖p/2L2 , 0 ≤ p < 4. (1.12)

This in turn implies the continuous embedding

Z ↪→ Lp+2
(
R2
)
, 0 ≤ p < 4. (1.13)

2. Solitary waves

This section is devoted to establishing existence and non-existence results
for solitary-wave solutions of the BO-ZK equations. We begin with a theorem
about non-existence.

Theorem 2.1. Equation (1.7) cannot have a smooth non-trivial solitary-
wave solution unless either

(i) ε = 1, c > 0, α < 0, p < 4,
(ii) ε = −1, c < 0, α > 0, p < 4,

(iii) ε = 1, c < 0, α < 0, p > 4, or
(iv) ε = −1, c > 0, α > 0, p > 4.

Remark 2.2. By ‘smooth’, we mean that the functions have sufficient reg-
ularity that all the integrals displayed below exist.

It is worth note that only the case (i) with p = 1 has known physical
relevance. Higher values of the homogeneity of the nonlinearity without
corresponding lower-order terms seem not to arise in practice. And the
model itself is derived only for unidirectional waves (see Remark 2.6), so
c > 0 is mandated.

Cases (ii) and (iv) are the same as (i) and (iii), respectively except that
the sign of the nonlinearity is reversed. The sign of the nonlinearity plays
no role in the analysis to follow.

Proof. These conclusions follow from some Pohozaev-type identities. If
(1.7) is multiplied by ϕ, xϕx and yϕy and the results integrated over R2,
then the identities∫

R2

(
− cϕ2 + αϕH ϕx − εϕ2

y +
1

p+ 1
ϕp+2

)
dxdy = 0, (2.1)∫

R2

(
cϕ2 + εϕ2

y −
2

(p+ 1)(p+ 2)
ϕp+2

)
dxdy = 0, (2.2)



Stability of solitary waves of the BO–ZK equation 807∫
R2

(
cϕ2 − αϕH ϕx − εϕ2

y −
2

(p+ 1)(p+ 2)
ϕp+2

)
dxdy = 0, (2.3)

emerge. These formulas follow from the elementary properties of the Hilbert
transform together with suitably chosen formal integrations by parts. They
can be justified for functions of the minimal regularity required for them to
make sense by first establishing them for smooth solutions and then using a
standard truncation argument as in [15].

Summing (2.1) and (2.2) leads to∫
R2

(
αϕH ϕx +

p

(p+ 1)(p+ 2)
ϕp+2

)
dxdy = 0, (2.4)

whilst adding (2.2) and (2.3) yields∫
R2

(
cϕ2 − α

2
ϕH ϕx −

2

(p+ 1)(p+ 2)
ϕp+2

)
dxdy = 0. (2.5)

If the integral of ϕp+2 is eliminated between (2.4) and (2.5), there appears∫
R2

(
2pcϕ2 + α(4− p)ϕH ϕx

)
dxdy = 0. (2.6)

On the other hand, adding (2.1) and (2.3) gives∫
R2

(
2εϕ2

y −
p

(p+ 1)(p+ 2)
ϕp+2

)
dxdy = 0. (2.7)

Finally, substituting (2.2) into (2.7), there obtains∫
R2

(
pcϕ2 + ε(p− 4)ϕ2

y

)
dxdy = 0. (2.8)

The advertised results follow immediately from (2.6) and (2.8). �

For cases (i) and (ii) of Theorem 2.1, the existence of solitary-wave solu-
tions of (1.1) is established in the next result.

Theorem 2.3. Let αε, cα < 0 and p = k
m < 4, where m ∈ N is odd and m

and k are relatively prime. Then equation (1.7) admits a non-trivial solution
ϕ ∈ Z .

Proof. The proof is based on the concentration-compactness principle [42,
43]. Suppose that α < 0 (the proof for α > 0 is similar). Without loss of
generality, assume that α = −1 and c = 1 so that ε = +1 (see Remark 1.1)
and the equation for a solitary wave has the form

−ϕ+ 1
p+1ϕ

p+1 −H ϕx + ϕyy = 0. (2.9)
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Consider the minimization problem

Iλ = inf
{
I(ϕ) ; ϕ ∈ Z , J(ϕ) =

∫
R2

ϕp+2dxdy = λ
}
, (2.10)

where λ 6= 0 and

I(ϕ) =
1

2

∫
R2

(
ϕ2 + ϕH ϕx + ϕ2

y

)
dxdy =

1

2
‖ϕ‖2Z . (2.11)

Clearly, Iλ <∞ if there are elements ϕ ∈ Z such that
∫
R2 ϕ

p+2 dxdy = λ.1

The embedding (1.13) allows us to adduce a positive constant C such that

0 < |λ| =
∣∣∣ ∫

R2

ϕp+2 dxdy
∣∣∣ ≤ C‖ϕ‖p+2

Z = CI(ϕ)
p+2
2 ,

from which one concludes that Iλ ≥ ( |λ|C )
2
p+2 > 0.

For suitable λ let {ϕn}n∈N be a minimizing sequence for Iλ. For n =
1, 2, · · · and r > 0, define the concentration function Qn(r) associated to ϕn
by

Qn(r) = sup
(x̃,ỹ)∈R2

∫
Br(x̃,ỹ)

ρn dxdy,

where

ρn = |ϕn|2 +
∣∣D1/2

x ϕn
∣∣2 + |∂yϕn|2 ,

and Br(x, y) denotes the ball of radius r > 0 centered at (x, y) ∈ R2. If
evanescence of the sequence {ϕn}n∈N occurs, which is to say, for any r > 0,

lim
n→+∞

sup
(x̃,ỹ)∈R2

∫
Br(x̃,ỹ)

ρn dxdy = 0,

then the embedding (1.13) implies that limn→∞ ‖ϕn‖Lp+2 = 0, which contra-
dicts the constraint imposed for the minimization problem. Thus, according
to the concentration-compactness theorem, either dichotomy or compactness
must occur for the sequence {ϕn}n∈N.

The splitting lemma proved next enables us to rule out the possibility of
dichotomy occurring in the present context. Suppose that

γ ∈ (0, Iλ), (2.12)

1Depending on p, this might require that λ > 0. Of course, Iλ is a number, but we will
sometimes use it to refer to the minimization problem. For example, the phrase “{φn} is a
minimizing sequence for the problem Iλ” means that J(φn) = λ for all n and I(φn) → Iλ
as n→ ∞.
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where it is assumed that

γ = lim
r→+∞

lim
n→+∞

sup
(x̃,ỹ)∈R2

∫
Br(x̃,ỹ)

ρn dxdy.

Lemma 2.4. For every ε > 0, there is an n0 ∈ N and sequences {gn}n∈N
and {hn}n∈N in Z satisfying

dist
(
supp(gn), supp(hn)

)
→ +∞, as n→ +∞, (2.13)

and, for n ≥ n0,

|I(ϕn)− I(gn)− I(hn)| ≤ Cε, (2.14)

|I(gn)− γ| ≤ Cε, |I(hn)− Iλ + γ| ≤ Cε, (2.15)

|J(ϕn)− J(gn)− J(hn)| ≤ Cε. (2.16)

The constants C > 0 appearing above are independent of ε and n ≥ n0.

The following commutator estimate is helpful in proving Lemma 2.4.

Lemma 2.5 ([19, 22]). Let g ∈ C∞(R) with g′ ∈ L∞(R). Then [H , g]∂x is
a bounded linear operator from L2(R) into L2(R) with

‖[H , g]∂xf‖L2(R) ≤ C‖g
′‖L∞(R)‖f‖L2(R).

Proof of Lemma 2.4. Because of (2.12), for a given ε > 0, there exist
r0 > 0, rn > 0 with rn → +∞, as n → ∞, n0 ∈ N and {(x̃n, ỹn)}n∈N ⊂ R2

such that

γ ≥
∫
Br0 (x̃n,ỹn)

ρn dxdy > γ − ε and Qn(2rn) < γ + ε,

for n ≥ n0. It follows that∫
r0≤|(x,y)−(x̃n,ỹn)|≤2rn

ρn dxdy ≤ 2ε.

Let φ, ψ lie in C∞(R2) and suppose

• supp φ ⊂ B2(0, 0), φ ≡ 1 on B1(0, 0) and 0 ≤ φ ≤ 1,
• supp ψ ⊂ R2 \B1(0, 0), ψ ≡ 1 on R2 \B2(0, 0) and 0 ≤ ψ ≤ 1.

Define the sequences {gn}n∈N and {hn}n∈N by

gn(x, y) = φn(x, y)ϕn(x, y) and hn(x, y) = ψn(x, y)ϕn(x, y),

where

φn(x, y) = φ
((x, y)− (x̃n, ỹn)

r0

)
and ψn(x, y) = ψ

((x, y)− (x̃n, ỹn)

rn

)
.
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Clearly, the functions gn and hn lie in Z and (2.16) holds. It follows that
for all n ≥ n0,

2I(gn) =

∫
R2

φ2n

[
ϕ2
n + ϕn∂xH ϕn + (∂yϕn)2

]
dxdy

+ 2

∫
R2

φnϕn(∂yφn)(∂yϕn)dxdy

+

∫
R2

[
(∂yφn)2ϕ2

n + ϕnφnH (ϕn∂xφn)
]
dxdy

+

∫
R2

ϕnφn[H , φn]∂xϕndxdy

2I(hn) =

∫
R2

ψ2
n

[
ϕ2
n + ϕn∂xH ϕn + (∂yϕn)2

]
dxdy

+ 2

∫
R2

ψnϕn(∂yψn)(∂yϕn)dxdy

+

∫
R2

[
(∂yψn)2ϕ2

n + ϕnψnH (ϕn∂xψn)
]
dxdy

+

∫
R2

ϕnψn[H , ψn]∂xϕndxdy.

Lemma 2.5 and the definition of φn and ψn imply that∣∣∣I(gn)− 1

2

∫
R2

φ2r

[
ϕ2
n + ϕn∂xH ϕn + (∂yϕn)2

]
dxdy

∣∣∣ ≤ Cε,
and ∣∣∣I(hn)− 1

2

∫
R2

ψ2
r

[
ϕ2
n + ϕn∂xH ϕn + (∂yϕn)2

]
dxdy

∣∣∣ ≤ Cε.
These inequalities imply (2.13); inequality (2.14) can be established in a sim-
ilar way. Inequality (2.15) follows from (2.13), the fact supp(gn)∩supp(hn) =
∅ for large enough n and the injection of Z into Lp+2. �

Attention is now returned to the proof that dichotomy cannot occur. By
Lemma 2.4, it may be presumed that there is a ρ(ε) and ρ̃(ε) such that

lim
n→+∞

J(gn) = ρ(ε), lim
n→+∞

J(hn) = ρ̃(ε),

with limε↓0 |λ − ρ(ε) − ρ̃(ε)| = 0. If limε↓0 ρ(ε) = 0, then for ε sufficiently
small and n large enough, it must be that J(hn) > 0. Hence, by considering(
ρ̃(ε)J(hn)−1

) 1
p+2 hn, and noting that

J
((
ρ̃(ε)J(hn)−1

) 1
p+2 hn

)
= ρ̃(ε),
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it transpires that

Iρ̃(ε) ≤ lim inf
n→+∞

I(hn) ≤ Iλ − γ + Cε,

which leads to a contradiction since limε↓0 ρ̃(ε) = λ. Therefore we must have
limε↓0 |ρ(ε)| > 0 and similarly limε↓0 |ρ̃(ε)| > 0. It follows that

I|ρ| + I|ρ̃| ≤ lim inf
n→+∞

I(gn) + lim inf
n→+∞

I(hn) ≤ Iλ + Cε.

But Iλ = λ
2
p+2 I1 from which it follows that Iλ is subadditive as a function

of λ. However, upon letting ε ↓ 0 in the last display, it is concluded that Iλ
cannot be subadditive. This contradiction rules out dichotomy.

The remaining case in the concentration-compactness principle is local
compactness. Thus, there exists a sequence {(xn, yn)}n∈N ⊂ R2 such that
for any ε > 0, there are finite values R > 0 and n0 > 0 with∫

BR(xn,yn)
ρn dxdy ≥ ιλ − ε,

for all n ≥ n0, where

ιλ = lim
n→+∞

∫
R2

ρn dxdy.

This in turn implies that for n large enough,∫
BR(xn,yn)

|ϕn|2dxdy ≥
∫
R2

|ϕn|2dxdy − 2ε.

Since ϕn is bounded in the Hilbert space Z , there exists ϕ ∈ Z and a subse-
quence of {ϕn(·− (xn, yn))}n∈N (denoted by {ψn(x, y)}n∈N) which converges
weakly in Z and in L2(R2) to ϕ. It follows that∫

R2

|ϕ|2dxdy ≤ lim inf
n→+∞

∫
R2

|ϕn|2dxdy

≤ lim inf
n→+∞

∫
BR(xn,yn)

|ϕn|2dxdy + 2ε = lim inf
n→+∞

∫
BR(0,0)

∣∣ψn∣∣2dxdy + 2ε.

But, when restricted to the bounded set BR((0, 0) in R2, Z is compactly
embedded into L2. Consequently, a further subsequence of {ψn}n∈N may
be presumed to converge strongly to ϕ in L2(BR((0, 0))). Consequently, as
n→ +∞, we have∫

R2

|ϕn|2dxdy ≤
∫
BR((0,0))

|ψn|2dxdy + 2ε −→
∫
BR((0,0))

|ϕ|2dxdy + 2ε

≤
∫
R2

|ϕ|2dxdy + 2ε ≤ lim inf
n→+∞

∫
R2

|ϕn|2dxdy + 4ε,
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It follows that {ψn}n∈N = {ϕn(·−(xn, yn))}n∈N converges strongly in L2(R2).
Because of inequality (1.12), it also converges to ϕ strongly in Lp+2(R2),
whence J(ϕ) = λ. In consequence,

Iλ ≤ I(ϕ) ≤ lim inf
n→+∞

I(ϕn) = Iλ,

which is to say, ϕ is a solution of the minimization problem Iλ.
The Lagrange Multiplier Theorem asserts there exists θ ∈ R such that

ϕ+ H ϕx − ϕyy = θ(p+ 2)ϕp+1, (2.17)

as an equation in Z ′ (the dual space of Z in L2−duality). Multiplying the
last equation by ϕ̃ and integrating over R2 yields, after an integration by
parts, ∫

R2

(
ϕ2 + ϕ2

y + ϕH ϕx
)
dxdy =

θ

p+ 1
J(ϕ). (2.18)

Thus, θ 6= 0 and a simple change of scale yields a ϕ̃ which satisfies (2.9). �

Remark 2.6. Theorem 2.3 shows the existence of solitary-wave solutions of
(1.1) in the cases (i) and (ii) in Theorem 2.1. The question of existence or
nonexistence of solitary waves in cases (iii) and (iv) is currently open.

We point out that in the original work of Zakharov and Kuznetsov [52],
their equation for propagation of ion acoustic waves in a plasma in the
presence of a magnetic field has the form

ut + aux + buux + duxxx + euxyy = 0,

where a > 0 is the speed of sound in the environment and b, d and e are
positive constants determined by various properties of the medium of propa-
gation and the orientation and strength of the magnetic field. This equation
governs only waves propagating to the right, as interactions between right-
and left-going waves have been ignored. The equation one usually sees in
the mathematical literature is written, as in (1.1), in traveling coordinates.
The physically relevant version of the BO equation (1.2) has α < 0. Hence,
a physically relevant version of BO-ZK, written in laboratory coordinates,
will have an aux–term, p = 1, α < 0 while ε > 0. It follows from Theo-
rems 2.1 and 2.3 that solitary waves exist in this situation exactly when the
solitary-wave speed c is larger than the ‘sound speed’ a.

The next lemma shows that there exists a λ > 0 such that every element
in the set of minimizers

Mλ = {ϕ ∈ Z ; I(ϕ) = Iλ, J(ϕ) = λ}, (2.19)

exactly satisfies (2.9). This will be useful presently.
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Lemma 2.7. If λ =
(
2(p + 1)I1

) p+2
p in the minimization problem (2.10),

then any ϕ ∈Mλ is a solitary-wave solution of (2.9).

Proof. As above, if u is a member of Mλ, then Lagrange’s Theorem implies
there is a real value θ such that

u− uyy + H ux =
θ

p+ 1
up+1. (2.20)

As in (2.18), it must be the case that θ 6= 0. Because u satisfies (2.20) with
θ 6= 0, it follows that for an appropriate choice of the constant γ, u = γΦ
where Φ ∈ M1. Consequently, we must have λ = J(u) = γp+2J(Φ) = γp+2

and Iλ = γ2I1. Equation (2.18), in terms of γ, is

2γ2I1 = θ(p+ 2)γp+1.

The choice λ =
(
2(p+ 1)I1

) p+2
p causes (2.20) to agree with (2.9). �

Definition 2.8. A solution ϕ of equation (1.7) is called a ground state, if ϕ
minimizes the action S(u) = E (u) + cF (u) among all non-trivial solutions
of (1.7), where

F (u) =
1

2

∫
R2

u2 dxdy, (2.21)

and

E (u) =
1

2

∫
R2

(
εu2y − αuH ux −

2

(p+ 1)(p+ 2)
up+2

)
dxdy. (2.22)

The functionals in (2.22) and (2.21) are invariants of the motion when
applied to solutions u of BO–ZK which lie at least in C(0, T ; Z ).

Next, it is established that the minima obtained in Theorem 2.3 are pre-
cisely the ground-state solutions of (1.7). The proof is inspired by that of
Lemma 2.1 in the work of de Bouard and Saut in [16]. The result is stated
for the scaled version (2.9) of (1.7).

Theorem 2.9. In the context of equation (2.9) for solitary-wave solutions
of the BO-ZK equation, let

K(u) =
1

2

∫
R2

(u2 + u2y)dxdy −
1

(p+ 1)(p+ 2)
J(u),

with

J(u) =

∫
up+2dxdy,
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as in (2.10). Then, the positive value λ∗ =
(
2(p+ 1)I1

) p+2
p is such that the

following assertions about a function u∗ ∈ Z are, up to a change of scale,
equivalent:

(i) The functional J has the value J(u∗) = λ∗ and u∗ is a minimizer of
Iλ∗,

(ii) K(u∗) = 0 and

inf

{∫
R2

uH ux dxdy : u ∈ Z , u 6= 0, K(u) = 0

}
=

∫
R2

u∗H u∗x dxdy,

(iii) u∗ is a ground state,
(iv) K(u∗) = 0 and

inf

{
K(u) : u ∈ Z , u 6= 0,

∫
R2

uH ux dxdy =

∫
R2

u∗H u∗x dxdy

}
= 0.

Proof. (i) V (ii) : Assume that (i) holds for u∗. Then K(u∗) = 0 because
of (2.2) and the fact that u∗ satisfies (2.9) by Lemma 2.7. It follows that
J(u∗) > 0. Let u ∈ Z with u 6= 0 and K(u) = 0, so that J(u) > 0 also. Let
µ be given by

µ =
J(u∗)

J(u)
and define uµ(x, y) = u(xµ , y).

The constant µ is arranged so that J(uµ) = J(u∗) = λ∗ and K(uµ) = 0.
Since u∗ is a minimum of Iλ∗ ,

K(u∗) + CpJ(u∗) +
1

2

∫
R2

u∗H u∗x dxdy = I(u∗)

≤ I(uµ) = K(uµ) + CpJ(uµ) +
1

2

∫
R2

uµH (uµ)x dxdy,

where Cp = 1
(p+1)(p+2) . This in turn implies that∫

R2

u∗H u∗x dxdy ≤
∫
R2

uH ux dxdy,

and (ii) holds.
(ii)V (iii): The identity

S(u) = K(u) +
1

2

∫
R2

uH uxdxdy,

shows that if u is a solution of (2.9), then

S(u) =
1

2

∫
R2

uH ux dxdy ≥
1

2

∫
R2

u∗H u∗x dxdy = S(u∗), (2.23)
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because of (ii). Also, since u∗ satisfies (ii), there is a Lagrange multiplier θ
such that

u∗ − u∗yy + θH u∗x −
1

p+ 1
(u∗)p+1 = 0. (2.24)

By multiplying the above equation by u∗ , integrating by parts as in (2.18)
and using that K(u∗) = 0, it is deduced that θ is positive. Hence, the scale
change

u∗(x, y) = u∗(x/θ, y), (2.25)

will satisfy equation (2.9). On the other hand, this change of scale has the
property that ∫

R2

u∗H u∗xdx =

∫
R2

u∗H u∗xdx.

Hence, up to the change of scale (2.25), u∗ is a ground state.
(iii)V (i) : From (2.2) in Theorem 2.1, one sees that if u is a solution of

(2.9), then K(u) = 0. Moreover, equation (2.4) and the fact that α = −1
here implies

I(u) = 1
2(1 + 2

p)

∫
R2

uH ux dxdy. (2.26)

Hence, if u∗ is a ground state, then u∗ minimizes both I(u) and∫
R2

uH uxdxdy,

among all non-trivial solutions of (2.9). Let λ = J(u) and ũ be a minimum
of Iλ. Then

Iλ = I(ũ) ≤ I(u∗), (2.27)

and there is a positive number θ such that

ũ− ũyy + H ũx =
θ

p+ 1
ũp+1.

Using the equations satisfied by ũ and u∗, inequality (2.27) is written as

Iλ =
λθ

p+ 1
≤ λ

p+ 1
,

from which it is deduced immediately that θ ≤ 1. On the other hand,
u∗ = θpũ satisfies equation (2.9), and since u∗ is a ground state, it must be
the case that

I(u∗) ≤ I(u∗) = θ2pI(ũ),

so that θ ≥ 1. In consequence, u∗ = ũ is a minimum of Iλ. The fact that
λ = λ∗ now follows as in the proof of Lemma 2.7.
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(ii)V (iv) : Let u ∈ Z with∫
R2

uH uxdxdy =

∫
R2

u∗H u∗xdxdy.

Suppose that K(u) < 0. Since K(τu) > 0 for τ > 0 sufficiently small, there
is a τ0 ∈ (0, 1) such that K(τ0u) = 0. By setting ũ = τ0u, one has ũ ∈ Z ,
K(ũ) = 0 and∫

R2

ũH ũx dxdy <

∫
R2

uH ux dxdy =

∫
R2

u∗H u∗x dxdy,

which contradicts (ii) and shows that u∗ satisfies (iv) because K(u∗) = 0.
(iv)V (ii) : Let u ∈ Z with K(u) = 0 and u 6= 0. Suppose that∫

R2

uH ux dxdy <

∫
R2

u∗H u∗x dxdy.

Since K(τu) < 0 for τ > 1, there is a τ0 > 1 with∫
R2

(τ0u)H (τ0u)x dxdy =

∫
R2

u∗H u∗x dxdy,

and K(τ0u) < 0. This contradicts (iv). Hence,∫
R2

uH ux dxdy ≥
∫
R2

u∗H u∗x dxdy,

and (ii) holds. �

Remark 2.10. In fact, what is true is that (i) and (iii) are equivalent and
imply (ii) and (iv), which are also equivalent. The converse holds modulo a
change of scale. To see this, we simply need to check that (i)V (iii) without
a change of scale. This follows readily from (2.23), (2.24) and Lemma 2.7.

3. Stability

This section is devoted to establishing the stability of solitary-wave solu-
tions of the BO-ZK equations in the case where we are assured they exist
on account of the theory in the preceding section.

Some of the arguments below can be found in [4] where the stability of
solitary waves for the generalized BO equation has been established. Here-
after, without loss of generality, we take α = −1 so that ε = +1. However,
we leave the wave speed c > 0 unscaled. The equation for the solitary wave
now has the form

−cϕ+
1

p+ 1
ϕp+1 −H ϕx + ϕyy = 0, (3.1)
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while the functional I = Ic whose minima subject to the constraint J = λ
provides solitary-wave solutions is

Ic(ϕ) =
1

2

∫
R2

(
cϕ2 + ϕH ϕx + ϕ2

y

)
dxdy. (3.2)

The following theorem is a consequence of Theorem 2.3. It will be used
presently.

Theorem 3.1. Let λ 6= 0 and c > 0.

(i) Every minimizing sequence for the problem Iλ = Ic,λ converges, up to
translations, in the topology of Z to an element in the set

Mc,λ = {ϕ ∈ Z ; Ic(ϕ) = Ic,λ, J(ϕ) = λ},

of minimizers for Ic.
(ii) Let {ϕn} be a minimizing sequence for Ic,λ. Then, it must be the case

that

lim
n→+∞

inf
ψ∈Mc,λ, z∈R2

‖ϕn(·+ z)− ψ‖Z = 0, (3.3)

lim
n→+∞

inf
ψ∈Mc,λ

‖ϕn − ψ‖Z = 0. (3.4)

Proof. Part (i) follows immediately from the proof of Theorem 2.3. The
equality (3.3) is proved by contradiction. Indeed, if (3.3) does not hold,
then there exists a subsequence of the sequence {ϕn}, denoted again by
{ϕn}, and an ε > 0 such that

$ = inf
ψ∈Mc,λ,r∈R2

‖ϕn(·+ r)− ψ‖Z ≥ ε,

for all n sufficiently large. On the other hand, since {ϕn} is a minimizing
sequence for Iλ, part (i) implies that there exists a sequence {rn} ⊂ R2 such
that, up to a subsequence, ϕn(· + rn) → ϕ in Z , as n → ∞. Hence, for n
large enough, it is inferred that

ε

2
≥ ‖ϕn(·+ rn)− ϕ‖Z ≥ $ ≥ ε,

which is a contradiction. The proof of (3.4) follows from (3.3), the fact that
if ψ ∈Mc,λ, then ψ(·+ r) ∈Mc,λ for all r ∈ R2, and the equalities

inf
ψ∈Mc,λ

‖ϕn−ψ‖Z = inf
ψ∈Mc,λ,r∈R2

‖ϕn−ψ(·−r)‖Z = inf
ψ∈Mc,λ,r∈R2

‖ϕn(·+r)−ψ‖Z .

This completes the proof of the theorem. �
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For λc =
(
2(p+ 1)Ic,1

) p+2
p as in Lemma 2.7, define the set

Nc = {ϕ ∈ Z ; J(ϕ) = 2(p+ 1)Ic(ϕ) = λc} .

It is clear from the choice of λc that Mc,λ = Nc; the latter notation empha-
sizes the dependence upon the wave speed c. Next, for any c > 0 and any
ϕ ∈ Nc, define the function d : R→ R by

d(c) = E (ϕ) + cF (ϕ). (3.5)

Lemma 3.2. The function d in (3.5) is constant on Nc. As a function
of c, it is twice differentiable and strictly increasing for c > 0. Moreover,
d′′(c) > 0 if and only if 0 < p < 4

3 .

Proof. It is straightforward to check that

d(c) = Ic(ϕ)− 1

(p+ 1)(p+ 2)
J(ϕ) =

p

2(p+ 1)(p+ 2)
J(ϕ)

=
p
(
2(p+ 1)

) 2
p

p+ 2
I
p+2
p

c,1 .

(3.6)

It is plain from this formula that d is constant on Nc. From the second
equality in (3.6) and the definition of J , one obtains

d(c) =
p

2(p+ 1)(p+ 2)
c

2
p
− 1

2J(ψ), (3.7)

where ψ(x, y) = c
− 1
pϕ(xc ,

y√
c
). Note that ψ satisfies (3.1), with c = 1. But,

from (2.4) and (2.6), one infers that

1

(p+ 1)(p+ 2)
J(ϕ) =

4c

4− p
F (ϕ).

Thus, from (3.7) follows the formula d′(c) = c
( 2
p
− 3

2
)F (ψ), which is strictly

positive. This further entails that

d′′(c) = (2p −
3
2)c

( 2
p
− 5

2
)F (ψ),

thereby proving the lemma. �

A study is initiated of the behavior of d in a neighborhood of the set Nc.
As d is C1 and strictly increasing, it has a C1 inverse. Formula (3.7) shows
that the mapping d : (0,+∞)→ (0,+∞) is a surjection when 0 < p < 4

3 .
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Lemma 3.3. Let c > 0. Then, there exists a positive number ε and a C1-
map v : Bε(Nc)→ (0,+∞) defined by

v(u) = d−1
( p

2(p+ 1)(p+ 2)
J(u)

)
,

such that v(ϕ) = c for every ϕ ∈ Nc. Here,

Bε (Nc) =
{
ϕ ∈ Z ; inf

ψ∈Nc

‖ϕ− ψ‖Z < ε
}
.

Proof. By definition, Nc is a bounded set in Z . Let r > 0 be such that
Nc ⊂ Br(0) ⊂ Z . where Br(0) is the ball of radius r > 0 centered at
the origin in Z . Since the function u 7→ J(u) is uniformly continuous on
bounded subsets of Z , given ι > 0, say ι < 1

2d(c), there exists ε > 0 such that
if u, v ∈ Br(0) and ‖u− v‖Z < 2ε, then |J(u)− J(v)| < ι. Considering the
neighborhoods I = (d(c)−ι, d(c)+ι) of d(c) and Bε(Nc) of Nc, respectively,
it transpires that if u ∈ Bε(Nc), then p

2(p+1)(p+2)J(u) ∈ I . Hence, v is well

defined on Bε(Nc) and satisfies v(ϕ) = c, for all ϕ ∈ Nc. �

Here is the crucial inequality in the study of stability.

Lemma 3.4. Let c > 0 and suppose that d′′(c) > 0. Then for ε > 0
sufficiently small, u ∈ Bε(Nc) and any ϕ ∈ Nc,

E (u)− E (ϕ) + v(u)
(
F (u)−F (ϕ)

)
≥ 1

4d
′′(c)|v(u)− c|2.

Proof. First, let ε > 0 be small enough that v is well defined on Bε(Nc). As
in (3.2), for ω > 0, let Iω be the functional

Iω(ϕ) =
1

2

∫
R2

(
ωϕ2 + ϕH ϕx + ϕ2

y

)
dxdy.

It follows that

E (u) + v(u)F (u) = Iv(u)(u)− 1

(p+ 1)(p+ 2)
J(u).

Let ϕω stand for any element of Nω. Notice that

J(u) = J
(
ϕv(u)

)
,

because d(v(u)) = p
2(p+1)(p+2)J(u) for u ∈ Bε(Nc) and also d(v(u)) =

p
2(p+1)(p+2)J

(
ϕv(u)

)
from (3.6). Since ϕω minimizes Iω over elements u ∈ Z

with J(u) = J (ϕω), it transpires that

Iv(u)(u) ≥ Iv(u)
(
ϕv(u)

)
.
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Thus, for ε small enough, a Taylor expansion of d around c and the fact that
d′′(c) > 0 implies that

E (u) + v(u)F (u) ≥ Iv(u)
(
ϕv(u)

)
− 1

(p+ 1)(p+ 2)
J
(
ϕv(u)

)
= d(v(u)) ≥ d(c) + F (ϕ)(v(u)− c) +

1

4
d′′(c)|v(u)− c|2

= E (ϕ) + v(u)F (ϕ) +
1

4
d′′(c)|v(u)− c|2,

thereby establishing the lemma. �

Before proving stability, a well-posedness result for (1.1) is stated. This
can be proved in several standard ways, for example by using a parabolic
regularization (see [31] and [23]). It is worth noting that Hs(R2) ↪→ Z , for
all s ≥ 1.

Theorem 3.5. Let s > 2. Then for any u0 ∈ Hs(R2), there exist T =
T (‖u0‖Hs) > 0 and a unique solution u ∈ C([0, T ];Hs(R2)) of equation
(1.1) with u(0) = u0. In addition, u(t) depends continuously on u0 in the
Hs−norm and satisfies E (u(t)) = E (u0), F (u(t)) = F (u0), for all t ∈
[0, T ). Moreover, if p < 4/3, the solution exists on [0, T ] for any T > 0 and

sup
t>0
‖u(t)‖Z ≤ C(F (u0),E (u0)).

When 0 < p < 4
3 , the stability in Z of the set of minimizers Nc is the

next topic of conversation.

Theorem 3.6. Let c > 0, s > 2, 0 < p < 4
3 and λ =

(
2(p + 1)Ic,1

) p+2
p .

Then the set Nc = Mc,λ is Z -stable with regard to the flow of the BO-ZK
equation. That is, for any positive ε, there is a positive δ = δ(ε) such that
if u0 ∈ Hs and infϕ∈Nc ‖u0 − ϕ‖Z ≤ δ, then the solution u(t) of (1.1) with
u(0) = u0 satisfies

inf
ϕ∈Nc

‖u(t)− ϕ‖Z ≤ ε,

for any t ∈ [0, T ].

Proof. The proof follows standard lines. Assume that Nc is Z -unstable
with regard to the flow of the BO-ZK equation. Then, there is an ε > 0 and
a sequence of initial data uk(0) such that

inf
ϕ∈Nc

‖uk(0)− ϕ‖Z ≤
1

k
, (3.8)
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and positive times {tk} such that

inf
ϕ∈Nc

‖uk (tk)− ϕ‖Z =
ε

2
. (3.9)

Here, uk(t) denotes the solution of (1.1) with initial data uk(0). Since E and
F are conserved quantities, (3.8) implies that there are ϕk ∈ Nc such that
that

|E (uk(tk))− E (ϕk)| = |E (uk(0))− E (ϕk)| → 0, (3.10)

|F (uk(tk))−F (ϕk)| = |F (uk(0))−F (ϕk)| → 0, (3.11)

as k → +∞. In this circumstance, Lemma 3.4 implies that

E (uk(tk))−E (ϕk)+ v(uk(tk))
(
F (uk(tk))−F (ϕk)

)
≥ 1

4d
′′(c)|v(uk(tk))−c|2,

for all k large enough. Since {uk(tk)} is uniformly bounded in k, the left-
hand side of the last inequality goes to zero as k → +∞ on account of (3.10)
and (3.11). This in turn implies that v(uk(tk))→ c as k → +∞. Hence, by
the definition of v and continuity of d, we must have

lim
k→+∞

J(uk(tk)) =
2(p+ 1)(p+ 2)

p
d(c). (3.12)

On the other hand, Lemma 3.2 implies that

Ic(uk(tk)) = E (uk(tk)) + cF (uk(tk)) +
1

(p+ 1)(p+ 2)
J(uk(tk))

= d(c) + E (uk(tk))− E (ϕk) + c (F (uk(tk))−F (ϕk))

+
1

(p+ 1)(p+ 2)
J(uk(tk)).

The limit (3.12) then yields

lim
k→+∞

Ic(uk(tk)) =
p+ 2

p
d(c) =

(
2(p+ 1)

) 2
p I

p+2
p

c,1 . (3.13)

Define

ϑk(tk) =
(
J
(
uk(tk)

))− 1
p+2

uk(tk),

so that J (ϑk(tk)) = 1. Combining (3.12), (3.13) and Lemma 3.2 leads to

lim
k→+∞

Ic(ϑk(tk)) = Ic,1. (3.14)

Hence, {ϑk(tk)} is a minimizing sequence for Ic,1. Theorem 3.1 allow us to
adduce a sequence {ψk} ⊂Mc,1 such that

lim
k→+∞

‖ϑk(tk)− ψk‖Z = 0. (3.15)
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Lagrange’s theorem then implies there is a sequence {θk} ⊂ R such that

H (ψk)x + cψk − (ψk)yy = θk(p+ 2)ψp+1
k . (3.16)

In other words, 2Ic,1 = θk(p + 2), which implies that there is θ such that
θk = θ for all k. Write ϕk = µψk with

µp = θ(p+ 1)(p+ 2) = 2(p+ 1)Ic,1.

Then the ϕk satisfy (1.7) and 2(p+1)Ic(ϕk) = J(ϕk) = µp+2 so that ϕk ∈ Nc

for all k. Additionally, (3.12)-(3.15) and Lemma 3.2 together allow the
conclusion

‖uk(tk)− ϕk‖Z = J
(
uk(tk)

) 1
p+2

∥∥∥J(uk(tk))− 1
p+2
(
uk(tk)− ϕk

)∥∥∥
Z

≤ J
(
uk(tk)

) 1
p+2

(∥∥ϑk(tk)− µ−1ϕk∥∥Z
+ ‖ϕk‖Z |µ−1 − J

(
uk(tk)

)− 1
p+2 |

)
.

This in turn implies that

lim
k→+∞

‖uk(tk)− ϕk‖Z = 0,

which contradicts (3.9) and completes the proof of the theorem. �

4. Symmetry, Decay and Regularity

To investigate the regularity and the spatial asymptotics of the solitary-
wave solutions of (1.1), it is convenient to take the Fourier transform of
equation (1.7) for the solitary-wave in both x and y. If (ξ, η) are the variables
dual to (x, y) by way of the Fourier transform, then (1.7) implies that

ϕ̂ =
ĝ

c− α|ξ|+ εη2
, where g = − 1

p+ 1
ϕp+1. (4.1)

Taking the inverse Fourier transform then yields

ϕ = − 1

p+ 1

∫
R2

K
(
x− s, y − t

)
ϕp+1(s, t) dsdt. (4.2)

Properties of the integral kernel K in (4.2) will be central in the analysis
to follow. Here are few standard properties of anisotropic Sobolev spaces
that will be helpful in expressing useful aspects of K.

Lemma 4.1. If si > 1/2, for i = 1, 2, then Hs1,s2 is a Banach algebra.

Lemma 4.2. Let sij , 1 ≤ i, j ≤ 2 and θ ∈ [0, 1] be given real numbers with
s1j ≤ s2j, j = 1, 2. Define %j = θs1j+(1−θ)s2j for j = 1, 2. Then, H%1,%2 is
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an interpolation space between Hs11,s12 and its subspace Hs21,s22. Moreover,
if f ∈ Hs21,s22, then

‖f‖H%1,%2 ≤ ‖f‖θHs11,s12 ‖f‖1−θHs21,s22 . (4.3)

Remark 4.3. Since K̂(ξ, η) = 1
c−α|ξ|+η2 , the Residue Theorem allows us to

write the kernel K as an integral, namely,

K(x, y) = Kc(x, y) = C

∫ +∞

0

|α|
√
t

α2t2 + x2
e−(ct+

y2

4t
) dt, (4.4)

where C > 0 is independent of α, x and y. Fubini’s theorem can then be
used to show that

‖K‖L1 = C

∫ +∞

0

∫
R2

|α|
√
t

α2t2 + x2
e−(ct+

y2

4t
)dxdydt = C(α)

∫ +∞

0
e−ctdt.

In consequence of the representation (4.4), the following facts about K be-
come clear.

Lemma 4.4. The kernel K is positive, an even function of both x and y,
monotone decreasing in both |x| and |y|, tends to zero as |(x, y)| → ∞ and is

C∞ away from the origin. Furthermore, K̂ ∈ Lp(R2) for any p ∈ (3/2,+∞]
and K ∈ Lp(R2), for any p ∈ [1, 3). (However, while K(x, y) is symmetric
in both x and y, it is not radially symmetric.)

Lemma 4.5. K ∈ Hs1,0
(
R2
)
∩ H0,s2

(
R2
)

for any s1 < 1
4 and s2 < 1

2 .

Moreover, K ∈ Hr,s
(
R2
)
∩Hs1,s2

(
R2
)
, where rs2 +ss1 = s1s2 and r ∈ [0, 1].

Lemma 4.6. The kernel K and its Fourier transform K̂ have the following
detailed properties:

(i) K̂ ∈ Hs1,0
(
R2
)
∩ H0,s2

(
R2
)
, for any s1 <

3
2 and s2 ∈ R. Moreover,

K̂ ∈ Hr,s
(
R2
)
∩H(s1,s2)

(
R2
)
, where rs2 + ss1 = s1s2 and r ∈ [0, 1].

(ii) For p ≥ 2, K̂ ∈ H(s1,s2)
p

(
R2
)
, for any s1 < 1 + 1

p and s2 ∈ R.

(iii) For 1 ≤ p ≤ ∞, |x|s1 |y|s2K ∈ Lp
(
R2
)
, for any s1, s2 ≥ 0 such that

s1 < 2− 1
p and 2s1 + s2 > 1− 3

p .

With these facts about K in hand, the solitary-wave solutions of the BO-
ZK equation (1.1) now become the focus of attention.

Theorem 4.7. Let p be a positive integer. Any solitary-wave solution ϕ of

(1.1) with such a value of p belongs to H
(k)
r , for all k ∈ N and all r ∈ [1,+∞].

In particular, the solitary-wave solutions of the BO-ZK equation are C∞ and
the solution and all its derivatives are bounded and tend to zero at infinity.



824 Amin Esfahani, Ademir Pastor, and Jerry L. Bona

Proof. Formula (4.1) implies that ϕ ∈ H
1
2
,1(R2) ∩ H0,2(R2) ∩ H1,0(R2).

Lemma 4.2 and the embedding (1.13) then imply that ϕ ∈ Hs,2(1−s)(R2), for
any s ∈ [0, 1]. A bootstrapping argument and the use of Lemmas 4.1 and
4.2 complete the proof. �

More detailed aspects of the solitary-wave solutions of (1.1) are now
addressed. Interest will focus first upon their symmetry properties. For
u : R2 → R+, u] will denote the Steiner symmetrization of u with respect
to {x = 0} and u∗ the Steiner symmetrization of u with respect to {y = 0}
(see, for example, [17, 34, 49]). Notice that u]∗ = u∗] is a function symmetric
with respect to both the x- and y-axis.

Lemma 4.8. If f ∈ Z , then |f | lies in Z and I(|f |) ≤ I(f).

Proof. If g = |f |, then for any c > 0, 〈f,K ∗ f〉 ≤ 〈g,K ∗ g〉 , since K =
Kc ≥ 0. It thus transpires that∫

R2

K̂(ξ, η)
∣∣f̂(ξ, η)

∣∣2dξdη = 〈f,K ∗ f〉 ≤ 〈g,K ∗ g〉

=

∫
R2

K̂(ξ, η) |ĝ(ξ, η)|2 dξdη.

Since
∥∥f̂∥∥

L2 =
∥∥ĝ∥∥

L2 , it follows that∫
R2

c(1− cK̂) |ĝ(ξ, η)|2 dξdη ≤
∫
R2

c(1− cK̂)|f̂(ξ, η)|2dξdη. (4.5)

Taking the limit as c → +∞ on both sides of (4.5), the Monotone Conver-
gence Theorem yields∫

R2

(
|ξ|+ η2

)
|ĝ(ξ, η)|2dξdη ≤

∫
R2

(
|ξ|+ η2

)
|f̂(ξ, η)|2dξdη, (4.6)

which shows that |f | ∈ Z and I(|f |) ≤ I(f). �

Corollary 4.9. For c > 0, there is always a non-negative solitary-wave
solution ϕc of the BO-ZK equation.

Proof. Theorem 2.9 assures that there are solitary-wave solutions ψ, say.
The last result shows that if ψ ∈Mc,λ, then so is ϕ = |ψ|. �

If p = k
m where m is odd and k and m relatively prime it follows from the

formula
ϕ = 1

p+1K ∗ ϕ
p+1, (4.7)

that if k is odd, then necessarily all solitary-wave solutions are non-negative.
This is false if k is even, however. Indeed, in this case, if ϕ is a solitary
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wave, then so is −ϕ. Hence, when k is even, there are always at least two
solitary-wave solutions, one positive and one negative. Of course, when k is
even, it is also the case that J(|f |) = J(f).

Lemma 4.10. If f ∈ Z is non-negative, its Steiner symmetrizations f ] and
f∗ also lie in Z . Moreover, I(f ]) ≤ I(f) and I(f∗) ≤ I(f).

Proof. Remark first that K] = K = K∗. The Riesz-Sobolev rearrangement
inequality (see [17, 34, 49]) implies that∫

R4

f(x, y)f(s, t)K(x− s, y − t)ds dt dx dy

≤
∫
R4

f ](x, y)f ](s, t)K(x− s, y − t)ds dt dx dy.

In the Fourier transformed variables, this amounts to∫
R2

K̂(ξ, η)
∣∣∣f̂(ξ, η)

∣∣∣2 dξdη ≤ ∫
R2

K̂(ξ, η)
∣∣∣f̂ ](ξ, η)

∣∣∣2 dξdη.
On the other hand, the fact that symmetrization does not change the mea-
sure theoretic properties of f implies that∥∥f̂∥∥

L2(R2)
=
∥∥f∥∥

L2(R2)
=
∥∥f ]∥∥

L2(R2)
=
∥∥f̂ ]∥∥

L2(R2)
.

This together with the analysis in Lemma 4.8 shows that f ] ∈ Z and that
I(f ]) ≤ I(f). The same argument applies to f∗. �

Corollary 4.11. There are non-negative, solitary-wave solutions of the BO-
ZK equation (1.1) that are symmetric with respect to both the propagation
direction and the transverse direction and are monotone decreasing in both
|x| and |y|.
Proof. By Theorems 2.3 and 4.7, there is a non-negative function ϕ satisfy-
ing (1.7). Since Steiner symmetrization preserves the Lp+2−norm, it follows
that J(ϕ) = J(ϕ]) = J(ϕ]∗). On the other hand, because of Lemma 4.10,
the double rearrangement ϕ]∗ has the property that

Ic,λ ≤ Ic(ϕ]∗) ≤ Ic(ϕ]) ≤ I(ϕ) = Ic,λ.

Therefore, ϕ]∗ is a non-negative solitary-wave solution of equation (1.1)
which is symmetric with respect to both {x = 0} and {y = 0} and which is
monotone decreasing with respect to both |x| and |y|. �

Remark 4.12. One may also obtain symmetry properties of the solitary-
wave solutions of (1.1) by using the reflection method and a unique contin-
uation argument (see [45] and [26]).
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5. Spatial Asymptotics

Attention is now turned to the spatial decay properties of the solitary-
wave solutions of (1.1). In this analysis, we rely upon the ideas put forward
in [13].

Lemma 5.1. Let j ∈ N. Suppose also that ` and m are two constants
satisfying 0 < ` < m− j. Then there exists C > 0, depending only on ` and
m, such that for all ε ∈ (0, 1],∫

Rj

|a|`

(1 + ε|a|)m(1 + |b− a|)m
da ≤ C |b|`

(1 + ε|b|)m
, ∀ b ∈ Rj , |b| ≥ 1, (5.1)∫

Rj

da

(1 + ε|a|)m(1 + |b− a|)m
≤ C

(1 + ε|b|)m
, ∀ b ∈ Rj . (5.2)

The proof of this elementary lemma is essentially the same as the proof
of Lemma 3.1.1 in [13] (see also [24]).

Theorem 5.2. Let ϕ be a solitary-wave solution of (1.7).

(i) For all q ∈ (3/2,+∞), ` ∈ [0, 1) % ≥ 0, |x|`|y|%ϕ(x, y) ∈ Lq
(
R2
)
.

(ii) For all q ∈ (3/2,+∞) and any θ ∈ [0, 1), |(x, y)|θϕ(x, y) ∈ Lq
(
R2
)
.

(iii) And finally, ϕ ∈ L1
(
R2
)
.

Proof. (i) For q ∈ (1, 3) and 1− 1
q < s1 < 2− 1

q , let ` ∈ [0, s1 − 1 + 1
q ). For

s2 > 1− 1
q , choose % ∈ [0, s2 − 1 + 1

q ). For 0 < ε < 1, define hε by

hε(x, y) = A(x, y) ϕ(x, y),

where

A(x, y) =
|x|`|y|%

(1 + ε|x|)s1(1 + ε|y|)s2
.

Then, by using the explicit representation of hε, it is straightforward to
ascertain that hε ∈ Lq

′ (R2
)
, where q′ = q

q−1 . Hölder’s inequality and (4.2)

then imply that

|ϕ(x, y)| ≤ C(s1, s2, q)
(∫

R2

|Gx,y(z, w)|q′ dzdw
) 1
q′
,

where

Gx,y(z, w) =
g(ϕ)(z, w)(

1 + |x− z|
)s1(1 + |y − w|

)s2 ,
g(t) = tp+1

p+1 and C := C(s1, s2, p) =
∥∥(1 + |x|)s1(1 + |y|)s2K

∥∥
Lq(R2)

< ∞.
This last constant is finite thanks to Lemma 4.6. Since the solitary wave ϕ



Stability of solitary waves of the BO–ZK equation 827

converges to the rest state as |(x, y)| → +∞, it follows that for every δ > 0,
there exists Rδ > 1 such that if |(x, y)| ≥ Rδ, then∣∣g(ϕ)(x, y)

∣∣ ≤ δ|ϕ(x, y)|.
Another application of Hölder’s inequality yields∫

R2\B(0,Rδ)
|hε(x, y)|q′dxdy =

∫
R2\B(0,Rδ)

|hε(x, y)|q′−rArg(x, y)|ϕ(x, y)|rdxdy

≤ Cr
∫
R2\B(0,Rδ)

|hε(x, y)|q′−rAr(x, y) ‖Gx,y‖rLq′ (R2)
(x, y) dxdy

≤ Cr‖hε‖q
′−r
Lq
′
(R2\B(0,Rδ))

∥∥∥ A ‖Gx,y‖Lq′ (R2)

∥∥∥r
Lq′ (R2\B(0,Rδ))

.

Because hε ∈ Lq
′ (R2

)
, the latter inequality implies

‖hε‖rLq′ (R2\B(0,Rδ))
≤ Cr

∥∥∥ A ‖Gx,y‖Lq′ (R2)

∥∥∥r
Lq′ (R2\B(0,Rδ))

,

which is to say,∫
R2\B(0,Rδ)

|hε(x, y)|q′dxdy ≤ Cq′
∫
R2\B(0,Rδ)

Aq′(x, y)‖Gx,y‖q
′

Lq
′
(R2)

dxdy.

Fubini’s Theorem and Lemma 5.1 combine to reveal that∫
R2\B(0,Rδ)

Aq′(x, y)‖Gx,y‖q
′

Lq′ (R2)
(x, y) dxdy =

∫
R2

∣∣g(ϕ)(z, w)
∣∣q′ (5.3)

×
(∫

R2\B(0,Rδ)

Aq′(x, y)

(1 + |x− z|)q′s1(1 + |y − w|)q′s2
dxdy

)
dzdw

≤ C
∫
R2\B(0,Rδ)

∣∣g(ϕ)(z, w)
∣∣q′ Aq′(z, w) dzdw +

∫
B(0,Rδ)

∣∣g(ϕ)(z, w)
∣∣q′

×
(∫

R2\B(0,Rδ)

Aq′(x, y)

(1 + |x− z|)q′s1(1 + |y − w|)q′s2
dxdy

)
dzdw,

where we used (5.1) (with j = 1) to show that for |(z, w)| large,∫
R2\B(0,Rδ)

Aq′(x, y)

(1 + |x− z|)q′s1(1 + |y − w|)q′s2
dxdy ≤ CAq′(z, w).

The second integral on the right-hand side of (5.3) is bounded by a constant,
say C ′, depending on ϕ and Rδ, but independent of ε. Therefore, by using
the fact that |g(ϕ)(x, y)| ≤ δ|ϕ(x, y)| on R2 \B(0, Rδ), there obtains∫

R2\B(0,Rδ)
|hε(x, y)|q′dxdy ≤ Cq′

(
Cδq

′
∫
R2\B(0,Rδ)

|hε(x, y)|q′ dxdy + C ′
)
.
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Choosing δ such that CδC
1
q′ < 1, the last inequality entails that∫

R2\B(0,Rδ)
|hε(x, y)|q′dxdy ≤ C ′′ , (5.4)

where C
′′

is a constant independent of ε. Letting ε→ 0 in (5.4) and applying
Lebesgue’s Dominated Convergence Theorem, one deduces∫

R2\B(0,Rδ)
|x|`q′ |y|%q′ |ϕ(x, y)|q′dxdy ≤ C.

Hence, |x|`|y|%ϕ(x, y) ∈ Lq′
(
R2
)

with q′ = q
q−1 ∈ (32 ,+∞). This proves part

(i) of the theorem.
(ii) This follows directly from (i).
(iii) Let s > 1 and g , δ and Rδ be as defined in the proof of (i). For

ε > 0 let A be

Aε(x, y) =
1

(1 + ε|(x, y)|)s
.

Fubini’s Theorem, Lemma 5.1 and the fact that ϕ, Aε ∈ L2
(
R2
)

so that the

product ϕAε ∈ L1
(
R2
)

allow us to infer the inequalities∫
R2\B(0,Rδ)

|ϕ(x, y)|Aε(x, y) dxdy

≤
∫
R2

∣∣g(ϕ)(z, w)
∣∣ ( ∫

R2\B(0,Rδ)
Aε(x, y)K(x− z, y − w) dxdy

)
dzdw

≤
∫
R2

∣∣g(ϕ)(z, w)
∣∣ ( ∫

R2\B(0,Rδ)
A−21 (x− z, y − w)K2(x− z, y − w) dxdy

) 1
2

×
(∫

R2\B(0,Rδ)
A2
1 (x− z, y − w)A2

ε (x, y) dxdy
) 1

2
dzdw

≤ C(s)C
1
2

∫
R2

∣∣g(ϕ)(z, w)
∣∣Aε(z, w) dzdw

≤ C(s)C
1
2 δ

∫
R2\B(0,Rδ)

|ϕ(z, w)|Aε(z, w) dzdw

+ C(s)C
1
2

∫
B(0,Rδ)

∣∣g(ϕ)(z, w)
∣∣ dzdw.

Letting ε→ 0, Fatou’s lemma together with the restriction on δ leads to the
conclusion that ϕ ∈ L1

(
R2
)
. �
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Theorem 5.2, identity (4.7) and the elementary inequality

|t|θ ≤ C
(
|t− s|θ + |s|θ

)
, for θ ≥ 0. (5.5)

imply the following.

Corollary 5.3. Suppose that ϕ ∈ L∞
(
R2
)

satisfies (1.7) and ϕ → 0 at
infinity. Then

(i) |x|`|y|%ϕ(x, y) ∈ L∞
(
R2
)
, for all ` ∈ [0, 1) and any % ≥ 0,

(ii) |(x, y)|θϕ(x, y) ∈ L∞
(
R2
)
, for all θ ∈ [0, 1).

The aim now is to display even stronger decay properties in the x-variable
for solitary-wave solutions of the BO-ZK equation. These results are devel-
oped in a sequence of lemmas.

Lemma 5.4. |x|2|y|%K ∈ L∞
(
R2
)
, for any % ≥ 0.

Proof. This is a straightforward consequence of the explicit form of K. �

In the next few results, ϕ always refers to a solitary-wave solution of the
BO-ZK equation.

Corollary 5.5. For any ` with 0 ≤ ` ≤ 2 and any % ≥ 0, |x|`|y|%ϕ(x, y) ∈
L∞

(
R2
)
.

Proof. The proof is based on a standard bootstrapping argument. Decay
in the y-variable is not in question, so without loss of generality, take it that
that % = 0. Setting γ1 = min{2, p+ 1} and making use of the inequality

|x|γ1 |ϕ| . |x|γ1 |K| ∗ |g(ϕ)|+ |K| ∗ ||x|γ1 |g(ϕ)||, (5.6)

where g(t) = tp+1

p+1 , we obtain from Corollary 5.3, Lemma 5.4 and Theorem

5.2 that |x|γ1ϕ ∈ L∞(R2). The proof is compete if γ1 = 2. If γ1 < 2,
then define γ2 = min{2, (p + 1)2} and repeat the above argument to show
|x|γ2ϕ ∈ L∞(R2). Continuing in this manner, one concludes that |x|2ϕ ∈
L∞(R2) after a finite number of steps. �

The following corollary follows from (5.5), Corollary 5.3 and Theorem 5.2.

Corollary 5.6. (i) |x|`|y|%ϕ(x, y) ∈ L1
(
R2
)
, for all ` ∈ [0, 1) and any

% ≥ 0,
(ii) |(x, y)|θϕ(x, y) ∈ L1

(
R2
)
, for all θ ∈ [0, 1).

Lemma 5.7. For any r and q with 1 ≤ r, q <∞, there is σ0 > 0 such that
for all σ ∈ [0, σ0) and s ∈ (12 −

1
r −

1
2q , 2−

1
r ), we have

|x|seσ|y|K ∈ LrxLqy(R2) ∩ LqyLrx(R2).



830 Amin Esfahani, Ademir Pastor, and Jerry L. Bona

Proof. It suffices to choose σ0 =
√

c
q , where c is the wave velocity and use

(4.4). �

The next result is a consequence of another of Young’s inequalities, namely

‖f ∗ g‖LqyLrx(R2) ≤ ‖f‖Lq1y Lr1x (R2)‖g‖Lq2y Lr2x (R2),

where 1 ≤ r, q, r1, q1, r2, q2 ≤ ∞, 1 + 1
r = 1

r1
+ 1

r2
and 1 + 1

q = 1
q1

+ 1
q2

.

Corollary 5.8. Let q and r lie in the range 1 ≤ r, q ≤ +∞ and suppose
that 1

r + 1
2q >

1
2 . Then, solitary-wave solutions ϕ of BO-ZK lie in the class

LrxL
q
y(R2) ∩ LqyLrx(R2).

Here is the main result about the spatial decay of the solitary-wave solu-
tions.

Theorem 5.9. Let ϕ be a solitary-wave solution of BO-ZK and let σ0 > 0
be as in Lemma 5.7. Then, for any σ ∈ [0, σ0) and any s with 0 ≤ s < 3/2,

it transpires that |x|seσ|y|ϕ(x, y) ∈ L1
(
R2
)
∩ L∞

(
R2
)
.

Proof. Without loss of generality, assume that s = 0. By using Lemma 5.7
and the proof of Corollary 3.14 in [13], with natural modifications, it may be

seen that there is a σ̃ ≥ σ0 such that eσ|y|ϕ(x, y) ∈ L1
(
R2
)
, for any σ < σ̃.

The inequality

|ϕ(x, y)|eσ|y| ≤
∫
R2

|K(x− z, y − w)|eσ|y−w||ϕ(z, w)|eσ|w||ϕ(z, w)|p dzdw,

(5.7)

and the facts ϕ(x, y)eσ|y| ∈ L1(R2), ϕ ∈ L∞(R2) and K(x, y)eσ|y| ∈ L2(R2),

for any σ < σ0 imply that ϕ(x, y)eσ|y| ∈ L∞(R2), for the same range of
σ. �

Finally, the following theorem deals with the analyticity of the solitary-
wave solutions. Of course, for this, one needs to restrict p so that z 7→ zp is
analytic in a full neighborhood of the origin in C.

Theorem 5.10. Let 1 ≤ p < 4 be an integer and let ϕ be a solitary-wave
solution of BO-ZK for this value of p. Then, there is a σ > 0 and a holo-
morphic function f of two variables z1 and z2, defined in the domain

Hσ =
{

(z1, z2) ∈ C2 ; |Im(z1)| < σ, |Im(z2)| < σ
}

such that f (x, y) = ϕ(x, y) for all (x, y) ∈ R2.
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Similar results are obtained by the same method for related evolution
equations in [39] and [13]. Theory of this nature for dispersive equations
made via analysis in Gevrey spaces analysis appear in [12] (and see also the
references therein).

Proof. By the Cauchy-Schwarz inequality, Theorem 4.7 implies that ϕ̂ ∈
L1
(
R2
)
. Equation (1.7) implies in turn that

|ξ| |ϕ̂| (ξ, η) ≤
p+1︷ ︸︸ ︷

|ϕ̂| ∗ · · · ∗ |ϕ̂|(ξ, η), (5.8)

|η| |ϕ̂| (ξ, η) ≤ |ϕ̂| ∗ · · · ∗ |ϕ̂|︸ ︷︷ ︸
p+1

(ξ, η). (5.9)

Denote by T1 the correspondence T1(|ϕ̂|) = |ϕ̂| and, for m ≥ 1, Tm+1(|ϕ̂|) =
Tm(|ϕ̂|) ∗ |ϕ̂|. A straightforward induction yields

rm|ϕ̂|(ξ, η) ≤ (m− 1)! (p+ 1)m−1Tmp+1(|ϕ̂|)(ξ, η), (5.10)

where r = |(ξ, η)|. It follows that

rm|ϕ̂|(ξ, η) ≤ (m− 1)! (p+ 1)m−1 ‖Tmp+1(|ϕ̂|)‖L∞(R2)

≤ (m− 1)! (p+ 1)m−1 ‖Tmp(|ϕ̂|)‖L2(R2) ‖ϕ̂‖L2(R2)

≤ (m− 1)! (p+ 1)m−1‖ϕ̂‖mp
L1(R2)

‖ϕ̂‖2L2(R2).

Let am =
(p+1)m−1‖ϕ̂‖mp

L1(R2)
‖ϕ̂‖2

L2(R2)
m , so that am+1

am
−→ (p + 1)‖ϕ̂‖p

L1(R2)
, as

m→ +∞. In consequence, the series
∑∞

m=0 t
mrm|ϕ̂|(ξ, η)/m! converges uni-

formly in L∞(R2) provided 0 < t < σ = 1
p+1‖ϕ̂‖

−p
L1(R2)

. Hence, etrϕ̂(ξ, η) ∈
L∞(R2), for t < σ. Now, define the function

f (z1, z2) =

∫
R2

ei(ξz1+ηz2)ϕ̂(ξ, η) dξdη.

By the Paley-Wiener Theorem, f is well defined and analytic in Hσ while
Plancherel’s Theorem assures that f (x, y) = ϕ(x, y) for all (x, y) ∈ R2. This
proves the theorem. �
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