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Necessary optimality conditions for optimal control problems with mixed state-control equality con-
straints are obtained. The necessary conditions are given in the form of a weak maximum principle and are
obtained under (i) a new regularity condition for problems with mixed linear equality constraints and (ii)
a constant rank type condition for the general non-linear case. Some instances of problems with equality
and inequality constraints are also covered. Illustrative examples are presented.
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1. Introduction

In general, first order necessary optimality conditions for optimal control problems are stated in the
form of the so-called Pontryagin maximum principle (PMP). Nevertheless, it is well known that it may
not be valid in the presence of mixed constraints. Regularity conditions need to be imposed on the
mixed constraints in order that the maximum principle holds true. One of the main approaches is by
means of implicit function theorems, which involves the assumption of full rankness of the Jacobian
matrix related to the constraints (with respect to the control variables). The weak maximum principle
was established under such an assumption, for example in Hestenes (1966), Milyutin & Osmolovskii
(1998), de Pinho & Ilchmann (2002) and de Pinho (2003).

Regularity conditions of the Mangasarian–Fromovitz type (also known as positive linear indepen-
dence) were used in Dmitruk (1993), Arutyunov (2000), Clarke (2005) and de Pinho & Rosenblueth
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2 J. T. PEREIRA ET AL.

(2008), where in the three first references, strong versions of the PMP were obtained. In de Pinho &
Rosenblueth (2008), a weak, but non-smooth, PMP is derived. This kind of regularity condition was
also used to establish first and second order optimality conditions by Páles & Zeidan (1994).

The strong PMP was likewise obtained in Devdariani & Ledyaev (1999) and de Pinho et al. (2001)
under a regularity condition that requires convexity assumptions.

In Clarke & Pinho (2010) a new regularity condition, called bounded slope condition, is introduced.
Necessary optimality conditions including the transversality condition, the Euler adjoint inclusion as
well as the Weierstrass condition are obtained. The optimality conditions derived under the bounded
slope condition subsume those that involve full rank assumptions or Mangasarian–Fromovitz type
conditions. In Clarke et al. (2011), the authors showed that the Schwarzkopf multiplier rule can be
obtained from the necessary conditions given in Clarke & Pinho (2010). The non-smooth maximum
principle for optimal control problems with mixed constraints stated in Clarke & Pinho (2010) is
also used in Biswas & Pinho (2015) and Boccia et al. (2016) to establish a maximum principle for
problems in which the pathwise constraints, in addition to the mixed constraints, include pure state
constraints. The results in Boccia et al. (2016) extend those in Biswas & Pinho (2015) and apply to
problems with more general mixed constraints when compared to those treated in the aforementioned
paper. Optimal control problems with differential and algebraic equations are studied in de Pinho
(2016) in which the necessary optimality conditions are obtained through the results from Clarke &
Pinho (2010).

Li & Ye (2016) introduced the weak basic constraint qualification. They showed the validity
of the maximum principle for optimal control problems with mixed constraints by assuming the
weak basic constraint qualification along with the calmness of a certain set-valued mapping (that is
defined in terms of the data of the problem). This assumption is weaker than the calibrated constraint
qualification, given in Clarke & Pinho (2010) as a specialization of the bounded slope condition.
The weak basic constraint qualification combined with the calmness conditions were also used in
Li & Ye (2018) to obtain necessary optimality conditions to optimal control problems with implicit
control systems.

A non-degenerated maximum principle is provided in Arutyunov et al. (2016) under a weak
regularity condition. This regularity condition has a different nature in comparison to those cited above.

In this work, necessary optimality conditions for optimal control problems with mixed state-control
equality constraints are given in the form of a weak maximum principle, where a regularity condition
of constant rank type is imposed on the mixed constraints. This regularity condition is weaker than full
rank assumptions found in the literature. Although the weak basic constraint qualification is implied by
the constant rank condition given here, the derivation of the maximum principle under the weak basic
constraint qualification by Li & Ye (2016) needs additional assumptions, such as a calmness condition
and the compactness of a certain set defined along the optimal trajectory, and the PMP is stated for
autonomous systems only. So their results cannot be directly compared to the necessary conditions
obtained here. It should be mentioned that the PMP in Li & Ye (2016) includes the Weierstrass condition
while the PMP developed here does not and the optimality concepts are different. Li & Ye (2016) work
with local solutions of radius R, where R is a given measurable function of t. Here we work with the
classical definition of weak local solutions.

Regarding the calibrated constraint qualification, de Pinho (2016) points out that in the smooth
context it is equivalent to the full rank condition. In this paper, the mixed constraints are assumed to be
continuously differentiable with respect to the state and control variables.

An important approach to obtaining necessary optimality conditions for optimal control problems
is via the Dubovitskii–Milyutin formalism, particularly, for mixed-constrained problems. Such a
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WEAK MAXIMUM PRINCIPLE 3

formalism is based on a unified functional-analytic approach. See Girsanov (1972) for more details.
The Dubovitskii–Milyutin formalism is a powerful tool because several instances of optimization as
well as optimal control problems can be treated. The formalism was used, for example, in Dmitruk &
Osmolovskii (2014) and Ledzewicz (1993) for optimal control problems with mixed constraints, and in
Gayte et al. (2010) and Sun (2017) for optimal control problems in which the dynamics is governed by
partial differential equations.

In this paper, a different technique is used however. It is shown that, under the constant rank
condition, some ‘redundant’ equality constraints can be discarded, resulting in a set of mixed equality
constraints for which a full rank condition holds and known results from the literature can be applied.
Problems with equality and inequality constraints are also covered by transforming the inequality
constraints into equality ones through the use of slackness variables. In this case, due to the proof
technique, only some instances of problems may satisfy the constant rank condition. For example, it is
assumed that there is at least one equality constraint along with the inequality ones. Nevertheless, the
constant rank condition is an alternative regularity condition regarding the Mangasarian–Fromovitz type
constraint qualification.

One relevant feature of the constant rank condition is that it may be satisfied even in the presence of
redundant constraints. Generally speaking, redundant constraints naturally appear during the modelling
process and may be difficult to detect, especially in the non-linear case. Moreover, some important
numerical methods of optimization are proved to converge under the constant rank condition. For
example, in Andreani et al. (2007), it is shown that an augmented Lagrangian method is globally
convergent down the constant positive linear dependence constraint qualification (which is weaker than
the constant rank condition). In von Heusinger et al. (2012), the constant rank constraint qualification
is used to prove the local quadratic convergence of a Newton type method. In Xu et al. (2004), the
convergence of a non-monotone trust-region algorithm is analysed, where a constant rank assumption on
the gradients of the active constraints is assumed. Then it is natural to expect that robust computational
methods for optimal control problems with mixed constraints may be proposed and their convergence
established under the constant rank condition. Some of these methods can be found the literature,
but their convergence is only guaranteed under full rank conditions. See Dontchev et al. (2000),
for instance.

Finally, let us comment on the linear case. The linearity of the constraints itself constitutes a
constraint qualification when we are dealing with classical mathematical programming problems.
One way to show this is via the constant rank constraint qualification, since it is naturally satisfied
in this case. Necessary optimality conditions of the Karush–Kuhn–Tucker type are always valid
for mathematical programming with linear constraints. As regards optimal control problems, the
linearity of the mixed constraints alone does not guarantee the validity of the maximum principle.
Besides, due to a technical detail, the constant rank condition introduced here is not automatically
satisfied for problems in which the mixed constraints are linear. We, then, decided to investi-
gate which further characteristics the linear constraints should have to the maximum principle
holds true. A new suitable regularity condition for optimal control problems with linear equality
constraints is, therefore, developed. This new regularity condition is weaker than the full rank
condition.

The paper is organized in the following way. Preliminaries are given in the next section. Section 3 is
devoted to some auxiliary technical results. Necessary optimality conditions for equality constrained
problems are developed in Section 4, where problems with linear equality constraints are treated
separately. Necessary optimality conditions for problems involving both equality and inequality
constraints are furnished in the last section.
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4 J. T. PEREIRA ET AL.

2. Preliminaries

This preliminary section is devoted to setting the notation and giving some basic definitions. Moreover,
here we state both the basic assumptions and the optimal control problem that the paper addresses. The
section is finalized with some auxiliary results from the literature.

2.1. Notation

Given v, w ∈ R
k, the usual inner product between v and w is denoted as v · w; |v| denotes the Euclidean

norm of v; by v � w we mean vi � wi for all i ∈ {1, 2, . . . , k}; by v < w we mean vi < wi for all
i ∈ {1, 2, . . . , k}.

Given a matrix A ∈ R
m×n, the largest and the smallest singular value of A are denoted respectively

as σ1(A) and σr(A), where r = rank(A). The induced norm of A is denoted as |A|.
B denotes the open unit ball centred at the origin, regardless of the dimension of the space. Rk+

denotes the non-negative orthant, that is, Rk+ = {v ∈ R
k : vi � 0, i = 1, . . . , k}.

L denotes the Lebesgue subsets of the interval [0, 1]; B n denotes the Borel sets of Rn; and L×B n

denotes the product σ -algebra.
Given a multifunction Γ : [S, T] → R

n, Gr(Γ ) means the graph of Γ , i.e.,

Gr(Γ ) := {(t, γ ) ∈ [S, T] × R
n : γ ∈ Γ (t)}.

The set of all absolutely continuous functions x : [0, 1] → R
n is denoted by W1,1([0, 1];Rn). The

set of all essentially bounded functions u : [0, 1] → R
k is denoted by L∞([0, 1];Rk). The set of all

integrable functions q : [0, 1] → R
m is denoted by L1([0, 1];Rm).

2.2. Basic definitions

Given a closed set S ⊂ R
n and a point x ∈ S, the set of all directions v ∈ R

n such that there exists M > 0
satisfying

v · (y − x) � M‖y − x‖2 ∀ y ∈ S,

is said to be the proximal normal cone to S at x, denoted by NP
S (x). The set of all directions v ∈ R

n such

that there exist sequences xi
S→ x and vi → v satisfying vi ∈ NP

S (xi) for all i, is said to be the limiting
normal cone to S at x, denoted by NS(x).

Let f : Rn → R ∪ {+∞} be a lower semicontinuous function and x ∈ dom f . By ∂f (x) we mean the
limiting Mordukhovich subdifferential of f at x defined as the set

∂f (x) = {ζ : (ζ , −1) ∈ Nepi f (x, f (x))}.

For more details on non-smooth analysis, we refer the reader to one of the classical books on the subject,
such as Clarke (1983), Mordukhovich (2006) and Vinter (2000).

Given a matrix A ∈ R
m×n, if A = UΣVT is its singular values decomposition, the matrix A+ ∈

R
n×m defined as A+ = VΣ+UT is called the Moore–Penrose pseudo-inverse of A, where

Σ+ =
[

E 0
0 0

]
∈ R

n×m, E = diag(σ−1
i )r

i=1, r = rank(A),
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WEAK MAXIMUM PRINCIPLE 5

and σ1 � σ2 � · · · � σr > 0 are the singular values of A. The following important properties of A+
will be used later in the paper.

(i) AA+A = A and A+AA+ = A+;

(ii) (AA+)T = AA+ and (A+A)T = A+A;

(iii) (A+)T = (AT)+ and (A+)+ = A;

(iv) For all b ∈ R
m, AA+b is the orthogonal projection of b into range(A);

(v) ‖A‖2 = σ1 and ‖A+‖2 = σ−1
r ;

(vi) The singular values of A coincide with the square roots of the eigenvalues of AAT or ATA;

(vii) If n = m and A is symmetric, the singular values of A coincide with the absolute values of the
eigenvalues of A;

(viii) If n = m, then |det(A)| = Π r
i=1σi.

For more properties of the pseudo-inverse matrix, the reader is referred to Noble & Daniel (1977).

2.3. Problem statement

The optimal control problem with mixed constraints is posed as follows:

minimize l(x(0), x(1))

subject to ẋ(t) = f (t, x(t), u(t), v(t)) a.e. in [0, 1],
g(t, x(t), u(t), v(t)) � 0 a.e. in [0, 1],
h(t, x(t), u(t), v(t)) = 0 a.e. in [0, 1],
v(t) ∈ V(t) a.e. in [0, 1],
(x(0), x(1)) ∈ S,

(P)

where l : Rn × R
n → R, (f , g, h) : [0, 1] × R

n × R
ku × R

kv → R
n × R

mg × R
mh are given functions,

V(t) ⊂ R
kv for all t ∈ [0, 1] and S ⊂ R

n×R
n. Throughout the paper it is assumed that ku+kv � mg+mh.

We follow the classical nomenclature (see Vinter (2000), for example), which is set below.
A pair of measurable functions (u, v) : [0, 1] → R

ku × R
kv such that v(t) ∈ V(t) a.e. in [0, 1] is said

to be a control function.
A triple (x, u, v) consisting of a control function (u, v) and an arc x ∈ W1,1([0, 1];Rn) obeying the

differential equation above is called a process.
Given a process (x, u, v), its first component is said to be a state trajectory.
A triple (x, u, v) is said to be a feasible process if x is a trajectory corresponding to the control (u, v),

which satisfies all the constraints of (P).
A feasible process (x̄, ū, v̄) is said to be a weak local optimal process if there exists ε > 0 such that

l(x̄(0), x̄(1)) � l(x(0), x(1)) for all feasible processes (x, u, v), which satisfy (x(t), u(t), v(t)) ∈ Tε(t) a.e.
in [0, 1], where

Tε(t) := (x̄(t) + εB̄) × (ū(t) + εB̄) × ((v̄(t) + εB̄) ∩ V(t)) a.e. in [0.1].

The unmaximized Hamiltonian function H : [0, 1] × R
n × R

n × R
mg × R

mh × R
ku × R

kv → R

related to (P) is defined as

H(t, x, p, λ, μ, u, v) := p · f (t, x, u, v) + λ · g(t, x, u, v) + μ · h(t, x, u, v).
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6 J. T. PEREIRA ET AL.

2.4. Basic hypotheses

Let (x̄, ū, v̄) be a feasible process of (P). The basic hypotheses are said to be satisfied at (x̄, ū, v̄) if there
exists ε > 0 such that the following conditions are valid:

(H1) l is Lipschitz continuous on (x̄(0), x̄(1)) + εB̄;

(H2) Function f (·, x, u, v) is L measurable for each (x, u, v); for almost every t ∈ [0, 1], f (t, ·, ·, ·) is
Lipschitz continuous on (x̄(t), ū(t), v̄(t)) + εB̄ with constant kf ∈ L1([0, 1];R);

(H3) Functions g(·, x, u, v) and h(·, x, u, v) are L measurable for each (x, u, v); for almost every
t ∈ [0, 1], g(t, ·, ·, ·) and h(t, ·, ·, ·) are continuously differentiable on (x̄(t), ū(t), v̄(t)) + εB̄;
function g(·, x̄(·), ū(·), v̄(·)) is essentially bounded in [0, 1]; there exists an increasing function
θ : (0, ∞) → (0, ∞) with θ(s) ↓ 0 as s ↓ 0 such that for almost every t ∈ [0, 1],

|∇x,u,v(g, h)(t, x, u, v) − ∇x,u,v(g, h)(t, x′, u′, v′)| � θ(|(x, u, v) − (x′, u′, v′)|)

for all (x, u, v), (x′, u′, v′) ∈ (x̄(t), ū(t), v̄(t)) + εB̄; there exists kg,h > 0 such that for almost
every t ∈ [0, 1],

|∇x(g, h)(t, x̄(t), ū(t), v̄(t))| + |∇u(g, h)(t, x̄(t), ū(t), v̄(t))| + |∇v(g, h)(t, x̄(t), ū(t), v̄(t))| � kg,h;

(H4) Gr(V) is L × Bkv measurable and (v̄(t) + εB̄) ∩ V(t) is closed almost everywhere in [0, 1];

(H5) S is closed.

2.5. Auxiliary results from the literature

For the readers’ convenience, we will state some results from the literature that will be used later in the
paper.

Let us consider the optimal control problem below, where the mixed constraints were dropped and
ku = 0:

minimize l(x(0), x(1))

subject to ẋ(t) = f (t, x(t), v(t)) a.e. in [0, 1],
v(t) ∈ V(t) a.e. in [0, 1],
(x(0), x(1)) ∈ S.

(SP)

Note that in this case the Hamiltonian function takes the form

H(t, x, p, v) := p · f (t, x, u, v).

The following maximum principle is valid.

Theorem 2.1 (de Pinho & Vinter, 1995). Let (x̄, v̄) be a weak local optimal process of (SP). Assume
that the basic hypotheses (H1), (H2), (H4) and (H5) are valid at (x̄, v̄). Then there exist η � 0, p ∈
W1,1([0, 1];Rn) and ζ ∈ L1([0, 1];Rkv) such that, for almost all t ∈ [0, 1],

(i) η + ‖p‖∞ �= 0;

(ii) (−ṗ(t), ζ(t)) ∈ co ∂x,vH(t, x̄(t), p(t), v̄(t));
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WEAK MAXIMUM PRINCIPLE 7

(iii) ζ(t) ∈ co NV(t)(v̄(t));

(iv) (p(0), −p(1)) ∈ NS(x̄(0), x̄(1)) + η∂l(x̄(0), x̄(1)).

In the presence of the mixed constraints, the weak maximum principle was shown to be valid under a
uniform full rank assumption. We will reproduce here such a condition and the weak maximum principle
for (P) without inequality constraints, since this version will be used later in the paper.

(FRC) The uniform full rank condition is said to be satisfied at a feasible process (x̄, ū, v̄) if there exists
K > 0 such that

det(∇uh(t, x̄(t), ū(t), v̄(t))∇uh(t, x̄(t), ū(t), v̄(t))T) � K a.e. in [0, 1].

Now,

H(t, x, p, μ, u, v) := p · f (t, x, u, v) + μ · h(t, x, u, v).

Theorem 2.2 (de Pinho & Ilchmann, 2002). Let (x̄, v̄) be a weak local optimal process of (P) with
mg = 0. Assume that the basic hypotheses (H1)–(H5) are valid at (x̄, v̄) and FRC is satisfied. Then there

exist η � 0, p ∈ W1,1([0, 1];Rn), μ ∈ L1([0, 1];Rr) and ζ ∈ L1([0, 1];Rkv) such that

(i) ‖p‖∞ + η �= 0;

(ii) (−ṗ(t), 0, ζ(t)) ∈ co ∂x,u,vH(t, x̄(t), p(t), μ(t), ū(t), v̄(t)) a.e. in [0, 1];

(iii) ζ(t) ∈ co NV(t)(v̄(t)) a.e. in [0, 1];

(iv) (p(0), −p(1)) ∈ NS(x̄(0), x̄(1)) + η∂l(x̄(0), x̄(1)).

Furthermore, there exists M > 0 such that |μ(t)| � kf (t)Mkh,g|p(t)| a.e. in [0, 1].

Below the so-called uniform inverse mapping theorem is presented.

Theorem 2.3 (de Pinho & Vinter, 1997). Consider a set A ⊂ R
k, a number α > 0, n-vectors x0 and y0

and a family of functions {Fa : Rn → R
n}a∈A satisfying y0 = Fa(x0) for all a ∈ A. It is assumed that

(i) Fa is continuously differentiable on x0 + αB for all a ∈ A;

(ii) there exists a monotone increasing function θ : (0, ∞) → (0, ∞), with θ(s) ↓ 0 as s ↓ 0, such
that

|∇Fa(x) − ∇Fa(x̃)| � θ(|x − x̃|) ∀x, x̃ ∈ x0 + αB, a ∈ A;

(iii) ∇Fa(x0) is non-singular for each a ∈ A and there exists c > 0 such that

|[∇Fa(x0)]
−1| � c ∀a ∈ A.

Then there exist numbers ε ∈ (0, α) and δ > 0, and a family of continuously differentiable functions
{Ga : y0 + δB → x0 + αB}a∈A, which are Lipschitz continuous with a common Lipschitz constant K
such that

Fa(Ga(y)) = y ∀y ∈ y0 + δB, a ∈ A,

Ga(Fa(x)) = x ∀x ∈ x0 + εB, a ∈ A.
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8 J. T. PEREIRA ET AL.

The numbers ε and δ depend only on α, θ(·) and c. Furthermore, if A is a Borel set and a �→ Fa(x) is
Borel measurable for each x ∈ x0 + αB, then a �→ Ga(y) is Borel measurable for each y ∈ y0 + δB.

Remark 2.1 As can be seen in Step 1 of the proof of the uniform inverse mapping theorem in de Pinho
& Vinter (1997), ∇Fa(x) is non-singular in x0 + εB for each a ∈ A.

Now, a corollary of Weyl’s theorem. Specifically, Corollary 4.3.12 on page 242 of Horn & Johnson
(2013).

Theorem 2.4 (Horn & Johnson, 2013). Let A, B ∈ R
n×n be symmetric matrices and let the eigenvalues

of A and A + B be {λi(A)}n
i=1 and {λi(A + B)}n

i=1, each algebraically ordered in non-decreasing order.
Assume that B is positive semi-definite. Then λi(A) � λi(A + B), i = 1, . . . , n.

3. Auxiliary technical results

In this section, three technical lemmas are presented, the last one being of fundamental importance in
the paper. These results are generalizations of two lemmas given in Andreani et al. (2010) in the context
of non-linear programming.

Lemma 3.1 Consider a set A ⊂ R
k, a number α > 0, n-vectors x0 and y0 and a family of functions

{Fa = (f a
1 , . . . , f a

n ) : R
n → R

n}a∈A satisfying y0 = Fa(x0) for all a ∈ A and all the assumptions
of Theorem 2.3. Let {f a : R

n → R}a∈A be a second family of functions, which are continuously
differentiable on x0 + αB for all a ∈ A. Assume that, for each a ∈ A, ∇f a(x) is a linear combination of
∇f a

1 (x), . . . , ∇f a
q (x) for all x ∈ x0 + αB, for some integer 0 < q � n. Then there exists δ > 0 such that

ϕa : y0 + δB → R, given by

ϕa(u) = f a(F−1
a (u)), a ∈ A, (3.1)

satisfies

∂ϕa

∂uj
(u) = 0 ∀u ∈ y0 + δB, j = q + 1, . . . , n, a ∈ A. (3.2)

Proof. By Theorem 2.3, there exist 0 < ε < α and δ > 0 and a family of continuously differentiable
functions {Ga = F−1

a : y0 + δB → x0 + εB}a∈A such that Ga(Fa(x)) = x for all x ∈ x0 + εB, a ∈ A.
Then, by the chain rule and Remark 2.1,

∇Ga(Fa(x))∇Fa(x) = I ∀x ∈ x0 + εB ⇒ ∇Ga(y) = ∇Fa(Ga(y))
−1 ∀y ∈ y0 + δB, a ∈ A.

Applying the chain rule in (3.1) one has, for u ∈ y0 + δB,

∇ϕa(u) = ∇Ga(u)T∇fa(Ga(u)) = ∇Fa(Ga(u))−T∇fa(Ga(u)),

so that

∇Fa(Ga(u))T∇ϕa(u) = ∇fa(Ga(u)), a ∈ A.

Thence,

∂ϕa

∂u1
(u)∇f a

1 (Ga(u)) + · · · + ∂ϕa

∂un
(u)∇f a

n (Ga(u)) = ∇f a(Ga(u)) ∀u ∈ y0 + δB, a ∈ A.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/advance-article-abstract/doi/10.1093/im

am
ci/dnz036/5722300 by guest on 14 February 2020



WEAK MAXIMUM PRINCIPLE 9

Notice that ∇f a
1 (Ga(u)), . . . , ∇f a

n (Ga(u)) are linearly independent for all u ∈ y0 + δB, for each a ∈ A,
since ∇Fa(Ga(u)) is non-singular (see Remark 2.1). On the other hand, if u ∈ y0 + δB, then Ga(u) ∈
x0 + εB ⊂ x0 + αB, for all a ∈ A, so that, by hypothesis, ∇f a(Ga(u)) can only be written as a linear
combination of ∇f a

1 (Ga(u)), . . . , ∇f a
q (Ga(u)). Therefore, one sees that (3.2) does hold. �

Lemma 3.2 Consider a set A ⊂ R
k, a number α > 0, n-vectors x0 and y0 and a family of functions

{F̃a = (f a
1 , . . . , f a

q ) : R
n → R

q}a∈A, 0 < q � n, satisfying F̃a(x0) = z0 for all a ∈ A, where
y0 = (z0, w0) ∈ R

q × R
n−q. Suppose that the following conditions hold:

(a) F̃a is continuously differentiable on x0 + αB for all a ∈ A;

(b) There exists θ : (0, ∞) → (0, ∞), θ(s) ↓ 0 when s ↓ 0, such that

|∇F̃a(x) − ∇F̃a(x̄)| � θ(|x − x̄|),

for all x, x̄ ∈ x0 + αB, a ∈ A; there exists K̃ > 0 such that

|∇F̃a(x0)| � K̃, a ∈ A;

(c) There exists K > 0 such that

det{[∇F̃a(x0)][∇F̃a(x0)]
T} � K, a ∈ A.

Then there exists a family of continuously differentiable functions {F̂ : R
n → R

n−q}a∈A such that
Fa = (F̃a, F̂a) satisfies Fa(x0) = y0 for all a ∈ A and all assumptions of Theorem 2.3.

Proof. For each a ∈ A, let Ma be a matrix whose columns form an orthonormal basis for the orthogonal
complement to the subspace generated by the rows of ∇F̃a(x0).

For each a ∈ A, define F̂a : Rn → R
n−q and Fa : Rn → R

n respectively as

F̂a(x) = Ma
T(x − x0) + w0 and Fa(x) = (F̃a(x), F̂a(x)).

Then,

Fa(x0) = (F̃a(x0), F̂a(x0)) = (z0, w0) = y0, a ∈ A,

and

∇Fa(x)
T = [∇F̃a(x)

T∇ F̂a(x)
T ] = [∇F̃a(x)

TMa] ∀ x, a ∈ A.

Moreover,

(i) from assumption (a) and the definition of F̂a, it follows that Fa is continuously differentiable
on x0 + αB for all a ∈ A;

(ii) from (b), for x, x̄ ∈ x0 + αB one has

|∇Fa(x) − ∇Fa(x̄)| = |∇F̃a(x) − F̃a(x̄)| � θ(|x − x̄|),

where θ : (0, ∞) → (0, ∞), θ(s) ↓ 0 when s ↓ 0;
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10 J. T. PEREIRA ET AL.

(iii) by construction, |∇F̂a(x0)| = |Ma
T | = 1. Thence,

|∇Fa(x0)| =
∣∣∣∣
[ ∇F̃a(x0)

Ma
T

]∣∣∣∣ �
√

|∇F̃a(x0)|2 + |Ma
T |2 �

√
K̃2 + 1.

Also by construction,

det([∇Fa(x0)][∇Fa(x0)]
T) = det([∇F̃a(x0)][∇F̃a(x0)]

T) � K, a ∈ A,

implying that det(∇Fa(x0)) �
√

K > 0, a ∈ A. Therefore, ∇Fa(x0) is non-singular. It follows
that there exists M > 0 such that

|[∇Fa(x0)]
−1| � M, a ∈ A.

Thus, the family {Fa}a∈A satisfies all the assumptions of Theorem 2.3. �
Lemma 3.3 Consider a set A ⊂ R

k, a number α > 0, n-vectors x0 and y0 ∈ R
n and families of functions

{f a : Rn → R}a∈A and {F̃a = (f a
1 , . . . , f a

q ) : Rn → R
q}a∈A, 0 < q � n, satisfying F̃a(x0) = z0 for all

a ∈ A, where y0 = (z0, w0) ∈ R
q × R

n−q. Assume that f a is continuously differentiable on x0 + αB for
all a ∈ A, and that {F̃a}a∈A satisfies assumptions (a)–(c) of Lemma 3.2. In addition, assume that ∇f a(x)
is a linear combination of ∇f a

1 (x), . . . , ∇f a
q (x) for all a ∈ A and x ∈ x0 + αB. Specifically, for x = x0,

∇f a(x0) =
q∑

i=1

λa
i ∇f a

i (x0), a ∈ A.

Then there exist σ ∈ (0, α), ρ > 0 and a family of continuously differentiable functions {χa : z0 +
ρB → R}a∈A such that for all x ∈ x0 + σB and each a ∈ A,

(f a
1 (x), . . . , f a

q (x)) = F̃a(x) ∈ z0 + ρB

and

f a(x) = χa(F̃a(x)) = χa(f a
1 (x), . . . , f a

q (x)).

The numbers σ and ρ depend only on α, θ , K̃ and K. Furthermore,

∂χa

∂ui
(F̃a(x0)) = λa

i , i = 1, . . . , q, a ∈ A.

Proof. By Lemma 3.2, for each a ∈ A, one can define n − q functions f a
q+1, . . . , f a

n in such a way that

Fa = (F̃a, F̂a) = (f a
1 , . . . , f a

q , f a
q+1, . . . , f a

n ) satisfies the hypothesis of Lemma 3.1. Then, by (3.2), the
function ϕa as defined in (3.1) does not depend on the variables uq+1, . . . , un, for all a ∈ A. Provided
f a
1 , . . . , f a

n are continuous for all a ∈ A, there exist open balls x0 + σB ⊂ x0 + αB and (z0 + ρ1B) ×
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WEAK MAXIMUM PRINCIPLE 11

(w0 + ρ2B) ⊂ (z0, w0) + δB = y0 + δB such that

( f a
1 (x), . . . , f a

q (x)) = F̃a(x) ∈ z0 + ρ1B∀x ∈ x0 + σB. (3.3)

For each a ∈ A, define χa : z0 + ρ1B → R as

χa(u) = ϕa(u, F̂a(x0)) = ϕa(u1, . . . , uq, f a
q+1(x0), . . . , f a

n (x0)).

Clearly, χa is continuously differentiable for all a ∈ A. Putting ρ = ρ1, one has, by (3.3), for all
x ∈ x0 + σB and each a ∈ A, that

( f a
1 (x), . . . , f a

q (x)) = F̃a(x) ∈ z0 + ρB

and, by the fact that ϕa does not depend on the last n − q variables,

χa(F̃a(x)) = χa(f a
1 (x), . . . , f a

q (x))

= ϕa(f a
1 (x), . . . , f a

q (x), f a
q+1(x0), . . . , f a

n (x0))

= ϕa(f a
1 (x), . . . , f a

q (x), f a
q+1(x), . . . , f a

n (x))

= ϕa(Fa(x)) = f a(x),

where (3.1) was used in the last inequality. By applying the chain rule in f a(x) = χa(F̃a(x)) =
χa(f a

1 (x), . . . , f a
q (x)) one gets

∇f a(x) =
q∑

i=1

∂χa

∂ui
(F̃a(x))∇f a

i (x)∀x ∈ x0 + σB, a ∈ A.

On the other hand, by assumption,

∇f a(x0) =
q∑

i=1

λa
i ∇f a

i (x0), a ∈ A,

and ∇f a
1 (x0), . . . , ∇f a

q (x0) are linearly independent for all a ∈ A. It follows that

∂χa

∂uj
(F̃a(x0)) = λa

j , j = 1, . . . , q, a ∈ A.

�

4. Problems with mixed equality constraints

The weak maximum principle is obtained in this section for problems with mixed equality constraints
only. We start, in Section 4.1, by treating problems with linear equality constraints. We then turn, in
Section 4.2, to the general non-linear case, establishing the maximum principle under a constant rank
condition.
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12 J. T. PEREIRA ET AL.

4.1. The linear case

It is well known in non-linear programming that linearity is itself a constraint qualification. This fact
can be checked (i) directly; (ii) as a consequence of the linear independence constraint qualification (by
discarding redundant constraints and obtaining a full rank coefficient matrix); or (iii) as a consequence
of the constant rank constraint qualification (since the rank of the Jacobian of the constraints does not
change in any neighbourhood of the optimal point). In optimal control, this is not the case. We will
see in this subsection that the maximum principle may not be valid for problems with linear equality
constraints, and we give conditions under which it is valid.

The following optimal control problem with mixed linear equality constraints is treated here:

minimize l(x(0), x(1))

subject to ẋ(t) = f (t, x(t), u(t), v(t)) a.e. in [0, 1],
h(t, x(t), u(t), v(t)) = 0 a.e. in [0, 1],
v(t) ∈ V(t) a.e. in [0, 1],
(x(0), x(1)) ∈ S,

(LP)

with

h(t, x, u, v) = A(t)x + B(t)u + C(t)v − b(t),

where (A, B, C) : [0, 1] → R
m×n × R

m×ku × R
m×kv and b : [0, 1] → R

m are L measurable functions.
We now present a simple example of an optimal control problem with mixed linear equality

constraints in which the maximum principle is not valid.

Example 4.1 Let us examine the following problem:

minimize l(x(0), x(1)) = x(1)

subject to ẋ(t) = u1(t) a.e. in [0, 1],
x(t) + u1(t) + 2u2(t) = 0 a.e. in [0, 1],
u1(t) + 2u2(t) = 0 a.e. in [0, 1].

The only feasible process is (x, u1, u2) = (0, 0, 0), so that it is optimal. The conditions from the weak
maximum principle (see Theorem 2.2) are written as

‖p‖∞ + η �= 0;

−ṗ(t) = μ1(t) a.e. in [0, 1],

p(t) + μ1(t) + μ2(t) = 0 a.e. in [0, 1],

2μ1(t) + 2μ2(t) = 0 a.e. in [0, 1],

(p(0), −p(1)) = η(0, 1).

The system above does not have any solution.

The example above shows us that regularity conditions on the mixed constraints are necessary to the
validity of the weak maximum principle, even in the linear case, where the rank of the Jacobian of the
constraints is constant (in function of points in Tε(t) a.e. in [0, 1]).
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WEAK MAXIMUM PRINCIPLE 13

Definition 4.1 The regularity condition (RC) is said to be satisfied if

(a) range([ A(t) C(t) ]) ⊂ range(B(t)) a.e. in [0, 1];

(b) there exists kB > 0 such that σr(t)(B(t)) � kB a.e. in [0, 1],

where r(t) = rank(B(t)) a.e. in [0, 1].

Remark 4.1

(i) It is easy to see that RC is valid when det(B(t)B(t)T) � K a.e. in [0, 1] for some K > 0, that is,
the full rank condition (FRC) implies the regularity condition (RC).

(ii) Condition RC-(a) is equivalent to range(A(t)) ⊂ range(B(t)) and range(C(t)) ⊂ range(B(t))
a.e. in [0, 1].

Next, we have simple cases in which RC holds true while FRC does not.

Example 4.2 Let us consider

A(t) =
[

1
2

]
and B(t) =

[
1 1
2 2

]
a.e. in [0, 1].

It is clear that FRC is not valid and RC holds (with kB = √
10).

Example 4.3 Let

A(t) =
[

1
t

]
a.e. in [0, 1],

B(t) =

⎧⎪⎪⎨
⎪⎪⎩

[
1 1
1 t

]
a.e. in [0, 1/2],[

1 1
t t

]
a.e. in (1/2, 1],

C(t) =

⎧⎪⎪⎨
⎪⎪⎩

[
1 0
0 1

]
a.e. in [0, 1/2],[

2 0
2t 0

]
a.e. in (1/2, 1].

It is easy to see that RC-(a) holds true and FRC does not. Condition RC-(b) is valid with kB = 1/4.

In this subsection,

H(t, x, p, μ, u, v) := p · f (t, x, u, v) + μ · h(t, x, u, v).

Theorem 4.1 Let (x̄, ū, v̄) be a weak local optimal process of (LP). Assume that the basic hypotheses
(H1)–(H5) are valid at (x̄, ū, v̄) and the regularity condition (RC) is satisfied. Then there exist η � 0, p ∈
W1,1([0, 1];Rn), μ ∈ L1([0, 1];Rm) and ζ ∈ L1([0, 1];Rkv) such that, for almost all t ∈ [0, 1],

(i) η + ‖p‖∞ �= 0;

(ii) (−ṗ(t), 0, ζ(t)) ∈ co ∂x,u,vH(t, x̄(t), p(t), μ(t), ū(t), v̄(t));
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14 J. T. PEREIRA ET AL.

(iii) ζ(t) ∈ co NV(t)(v̄(t));

(iv) (p(0), −p(1)) ∈ NS(x̄(0), x̄(1)) + η∂l(x̄(0), x̄(1)).

Moreover,

|μ(t)| � k−1
B kf (t)|p(t)| a.e. in [0, 1].

Proof. If (x̄, ū, v̄) is a weak local optimal process of (LP), there exists ε > 0 such that l(x̄(0), x̄(1)) �
l(x(0), x(1)) for all feasible processes (x, u, v), which satisfy (x(t), u(t), v(t)) ∈ Tε(t) a.e. in [0, 1]. Let us
consider the auxiliary problem below:

minimize l(x(0), x(1))

subject to ẋ(t) = φ(t, x(t), u(t), v(t)) a.e. in [0, 1],

(u(t), v(t)) ∈ Uε(t) × Vε(t) a.e. in [0, 1],

(x(0), x(1)) ∈ S,

(4.1)

where

φ(t, x, u, v) = f (t, x, u + ψ(t, x, u, v), v),

ψ(t, x, u, v) = B(t)+[A(t)(x̄(t) − x) + B(t)(ū(t) − u) + C(t)(v̄(t) − v)],

and

Uε(t) × Vε(t) = (ū(t) + εB̄) × ((v̄(t) + εB̄) ∩ V(t)) a.e. in [0, 1].

Then (x̄, ū, v̄) is a weak local optimal process of (4.1). Indeed, it is clear that (x̄, ū, v̄) is feasible for (4.1).
Let one assume the contrary, that given 0 < δ < min{ε/4, kBε/(4kg,h)}, there exists a feasible process
(x̃, ũ, ṽ) of (4.1) with (x̃(t), ũ(t), ṽ(t)) ∈ Tδ(t) a.e. in [0, 1] and l(x̃(0), x̃(1)) < l(x̄(0), x̄(1)). Take

û(t) = ũ(t) + ψ(t, x̃(t), ũ(t), ṽ(t)) a.e. in [0, 1].

One has that

|û(t) − ū(t)| � |ũ(t) − ū(t)| + |B(t)+A(t)| · |x̄(t) − x̃(t)|
+|B(t)+B(t)| · |ū(t) − ũ(t)| + |B(t)+C(t)| · |v̄(t) − ṽ(t)|

� δ + [σr(t)(B(t))]−1|A(t)|δ + δ + [σr(t)(B(t))]−1|C(t)|δ

� δ + kg,h

kB
δ + δ + kg,h

kB
δ < ε.

Thence, (x̃(t), û(t), ṽ(t)) ∈ Tε(t) a.e. in [0, 1]. It is clear that

˙̃x(t) = f (t, x̃(t), û(t), ṽ(t)) a.e. in [0, 1].
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WEAK MAXIMUM PRINCIPLE 15

Furthermore,

A(t)x̃(t) + B(t)û(t) + C(t)ṽ(t) = A(t)x̃(t) + B(t)ũ(t) + B(t)B(t)+A(t)(x̄(t) − x̃(t))

+B(t)B(t)+B(t)(ū(t) − ũ(t)) + B(t)B(t)+C(t)(v̄(t) − ṽ(t))

+C(t)ṽ(t)

= A(t)x̃(t) + B(t)ũ(t) + A(t)(x̄(t) − x̃(t))

+B(t)(ū(t) − ũ(t)) + C(t)(v̄(t) − ṽ(t)) + C(t)ṽ(t)

= A(t)x̄(t) + B(t)ū(t) + C(t)v̄(t) = b(t),

where RC-(a) and the fact that B(t)B(t)+ is a orthogonal projector into the range(B(t)) a.e. in [0, 1]
were used in the penultimate equality above. Therefore, (x̃, û, ṽ) is a feasible process of (LP) with
(x̃(t), û(t), ṽ(t)) ∈ Tε(t) a.e. in [0, 1] and l(x̃(0), x̃(1)) < l(x̄(0), x̄(1)). This contradicts the optimality
of (x̄, ū, v̄) in (LP).

The standard maximum principle (Theorem 2.1) will be applied. It follows that there exist η �
0, p ∈ W1,1([0, 1];Rn) and ζ ∈ L1([0, 1];Rkv) such that, for almost every t ∈ [0, 1],

η + ‖p‖∞ �= 0;

(−ṗ(t), ζ1(t), ζ2(t)) ∈ co ∂x,u,v{p(t) · φ(t, x̄(t), ū(t), v̄(t))};
(ζ1(t), ζ2(t)) ∈ co NUε(t)(ū(t)) × co NVε(t)(v̄(t));

(p(0), −p(1)) ∈ NS(x̄(0), x̄(1)) + η∂l(x̄(0), x̄(1)).

By making use of the non-smooth chain rule (see Theorem 2.3.9 in Clarke, 1983), one has

co ∂x,u,v{p · φ(t, x, u, v)} = co ∂x,u,v{p · f (t, x, u + ψ(t, x, u, v), v)}
⊂

{(
ν − (B(t)+A(t))Tρ, ρ − (B(t)+B(t))Tρ, π − (B(t)+C(t))Tρ

)
:

(ν, ρ, π) ∈ co ∂x,u,v{p · f (t, x, u, v)}} .

Therefore, through a suitable selection theorem, one sees that there exist measurable functions ν, ρ and
π such that

(−ṗ(t), ζ1(t), ζ2(t)) =
(
ν(t) + A(t)Tμ(t), ρ(t) + B(t)Tμ(t), π(t) + C(t)Tμ(t)

)
a.e. in [0, 1]

with

(ν(t), ρ(t), π(t)) ∈ co ∂x,u,v{p(t) · f (t, x̄(t), ū(t), v̄(t))} a.e. in [0, 1],

where μ(t) = −(B(t)+)Tρ(t) a.e. in [0, 1]. Moreover, NUε(t)(ū(t)) = {0} and NVε(t)(v̄(t)) = NV(t)(v̄(t)).
Thus, ζ1(t) = 0 a.e. in [0, 1], and defining ζ(t) = ζ2(t) a.e. in [0, 1], one obtains

(−ṗ(t), 0, ζ(t)) ∈ co ∂x,u,vH(t, x̄(t), p(t), μ(t), ū(t), v̄(t)) a.e. in [0, 1]
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16 J. T. PEREIRA ET AL.

and

ζ(t) ∈ co NV(t)(v̄(t)) a.e. in [0, 1].

From (H2) and RC-(b) it follows that

|μ(t)| � k−1
B kf (t)|p(t)| a.e. in [0, 1].

�
Below we have some illustrative examples. In both of them, the full rank condition is not satisfied,

and the weak basic constraint qualification is not applied since the problems are non-autonomous.

Example 4.5 Let us consider the following optimal control problem:

minimize l(x(0), x(1)) = x(1)

subject to ẋ(t) = tu1(t)
2 + u2(t)

2 a.e. in [0, 1],
x(t) + u1(t) + u2(t) = 0 a.e. in [0, 1],
2x(t) + 2u1(t) + 2u2(t) = 0 a.e. in [0, 1],
(x(0), x(1)) ∈ {0} × R.

Since ẋ(t) � 0 a.e. in [0, 1] and x(0) = 0, we have x(1) � 0. Then (x̄, ū1, ū2) = (0, 0, 0) is the
only optimal process. As we saw in Example 4.2, RC is valid. The maximum principle is verified with
η = 1, p(t) = −1 and μ1(t) = μ2(t) = 0 a.e. in [0, 1].

Example 4.6 Let us consider the optimal control problem below:

minimize l(x(0), x(1)) = x(1)

subject to ẋ(t) = x(t) + 2u1(t) + 2u2(t) a.e. in [0, 1],
A(t)x(t) + B(t)u(t) = b(t) a.e. in [0, 1],
(x(0), x(1)) ∈ {1} × R+,

where matrices A(t) and B(t) are given in Example 4.3 and

b(t) =
[
(1 − 2t) exp(t)/2
(t − 2t2) exp(t)/2

]
a.e. in [0, 1].

Let (x̄(t), ū1(t), ū2(t)) = ((1 − t) exp(t), 0, − exp(t)/2) a.e. in [0, 1]. It is clear that this is a feasible
process. Since x̄(1) = 0, we can see that it is optimal. As we saw in Example 4.3, RC holds true. The
conditions of the maximum principle are fulfilled, for example, with η = 1, p(t) = exp(t − 1), μ1(t) =
−2 exp(t − 1) and μ2(t) = 0 a.e. in [0, 1].

4.2. The non-linear case

Different from what might be expected, we will not use the result from the last section as a basis for the
study of the non-linear case. The approach used here is independent.
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WEAK MAXIMUM PRINCIPLE 17

We consider the optimal control problem with non-linear equality constraints:

minimize l(x(0), x(1))

subject to ẋ(t) = f (t, x(t), u(t), v(t)) a.e. in [0, 1],
h(t, x(t), u(t), v(t)) = 0 a.e. in [0, 1],
v(t) ∈ V(t) a.e. in [0, 1],
(x(0), x(1)) ∈ S.

(P=)

Definition 4.2 The constant rank condition (CRC) is said to be satisfied at a feasible process
(x̄, ū, v̄) if

rank(∇uh(t, x̄(t), ū(t), v̄(t))) = r(t) = r a.e. in [0, 1]

and there exist K > 0 and a sub-matrix containing r rows of ∇uh(t, x̄(t), ū(t), v̄(t)), say

Γ (t)T = [ ∇uhi1(t, x̄(t), ū(t), v̄(t)) · · · ∇uhir (t, x̄(t), ū(t), v̄(t))
]

,

such that

(i) det(Γ (t)Γ (t)T) � K a.e. in [0, 1];

(ii) {∇x,u,vhi(t, x, u, v)} ∪ {∇x,u,vhij(t, x, u, v)}r
j=1 has constant rank equal to r in Tε(t) a.e. in [0, 1],

for each i ∈ {1, . . . , mh} \ {i1, . . . , ir}.
As we have already mentioned, in mathematical programming, the constant rank constraint

qualification is automatically verified in the case of linear constraints. If the r(t) above is not assumed
to be constant, it is an easy task to verify that the regularity condition RC is satisfied when CRC is valid.
For technical reasons, such an assumption is necessary, and we cannot compare these two regularity
conditions.

As in the last subsection, the Hamiltonian function is

H(t, x, p, μ, u, v) := p · f (t, x, u, v) + μ · h(t, x, u, v).

Theorem 4.7 Let (x̄, ū, v̄) be a weak local optimal process of (P=). Assume that the basic hypotheses
(H1)–(H5) are valid and the constant rank condition (CRC) is satisfied at (x̄, ū, v̄). Then there exist
η � 0, p ∈ W1,1([0, 1];Rn), μ ∈ L1([0, 1];Rm) and ζ ∈ L1([0, 1];Rkv) such that, for almost all
t ∈ [0, 1],

(i) η + ‖p‖∞ �= 0;

(ii) (−ṗ(t), 0, ζ(t)) ∈ co ∂x,u,vH(t, x̄(t), p(t), μ(t), ū(t), v̄(t));

(iii) ζ(t) ∈ co NV(t)(v̄(t));

(iv) (p(0), −p(1)) ∈ NS(x̄(0), x̄(1)) + η∂l(x̄(0), x̄(1)).

Moreover, there exists M > 0 such that

|μ(t)| � kf (t)Mkg,h|p(t)| a.e. in [0, 1].

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/advance-article-abstract/doi/10.1093/im

am
ci/dnz036/5722300 by guest on 14 February 2020



18 J. T. PEREIRA ET AL.

Proof. Let T0 be the largest subset of [0, 1] in which conditions (H1)–(H5) and CRC do not hold for
every t ∈ T0. Provided T0 has Lebesgue measure zero, it follows that there exists a Borel set T1 (being
the intersection of a countable family of open sets) with T0 ⊂ T1 such that T1 \ T0 is of measure zero
(see Rudin, 1964). Set T = [0, 1] \ T1.

If (x̄, ū, v̄) is a weak local optimal process of (P=), there exists ε > 0 such that l(x̄(0), x̄(1)) �
l(x(0), x(1)) for all feasible processes (x, u, v) which satisfy (x(t), u(t), v(t)) ∈ Tε(t) a.e. in [0, 1].

Consider the auxiliary problem below:

minimize l(x(0), x(1))

subject to ẋ(t) = f (t, x(t), u(t), v(t)) a.e. in [0, 1],
ĥ(t, x(t), u(t), v(t)) = 0 a.e. in [0, 1],
v(t) ∈ V(t) a.e. in [0, 1],
(x(0), x(1)) ∈ S,

(4.2)

where ĥ : [0, 1] × R
n × R

ku × R
kv → R

r is defined as

ĥj(t, x, u, v) = hij(t, x, u, v), j = 1, . . . , r.

Process (x̄, v̄, ū) is feasible for (4.2), since it is for (P=). It will be shown that (x̄, v̄, ū) is a weak local
optimal process of (4.2). On the contrary, assume that given 0 < δ < ε, there exists a feasible process
(x̃, ũ, ṽ) of (4.2) with (x̃(t), ũ(t), ṽ(t)) ∈ Tδ(t) a.e. in [0, 1] and l(x̃(0), x̃(1)) < l(x̄(0), x̄(1)). If one has
that (x̃, ũ, ṽ) is a feasible process of (P=), a contradiction to the optimality of it will follow. It is enough
to show that hi(t, x̃(t), ũ(t), ṽ(t)) = 0 a.e. in [0, 1], i ∈ {1, . . . , mh} \ {i1, . . . , ir}.

Let i0 ∈ {1, . . . , mh} \ {i1, . . . , ir}. In Lemma 3.3, let us identify t with a, T with A, (0, 0, 0) with
x0, εB with x0 + αB, (x, u, v) with x, and

f t
0(x, u, v) = hi0(t, x̄(t) + x, ū(t) + u, v̄(t) + v),

f t
j (x, u, v) = hij(t, x̄(t) + x, ū(t) + u, v̄(t) + v), j = 1, . . . , r.

In order to apply Lemma 3.3, assumptions (a)–(c) of Lemma 3.2 should be satisfied. Assump-
tions (a) and (b) follow directly from (H3). Assumption (c) follows from CRC-(i) and an appli-
cation of Weyl’s Theorem 2.4. Furthermore, from the definition of Γ (t) and CRC-(i) one has
that {∇uf t

j (0, 0, 0) = ∇uhij(t, x̄(t), ū(t), v̄(t))}r
j=1, t ∈ T , is linearly independent. Then, the set

{∇x,u,vf t
j (0, 0, 0)}r

j=1, t ∈ T , is also linearly independent. So, from CRC-(ii) it comes that the set
{∇f t

i0
(x, u, v)} ∪ {∇f t

j (x, u, v)}r
j=1 has constant rank equal to r in εB, t ∈ T , that is, ∇f t

0(x, u, v) is a
linear combination of ∇f t

1(x, u, v), . . . , ∇f t
r (x, u, v), t ∈ T , for all (x, u, v) ∈ εB. It follows from Lemma

3.3 that there exist σ ∈ (0, ε), ρ > 0 and a family of continuously differentiable functions χ t : ρB → R

such that, for all (x, u, v) ∈ σB, one has that

(f t
1(x, u, v), . . . , f t

r (x, u, v)) ∈ ρB, t ∈ T ,

and

f t
0(x, u, v) = χ t(f t

1(x, u, v), . . . , f t
r (x, u, v)), t ∈ T .
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WEAK MAXIMUM PRINCIPLE 19

Therefore, diminishing δ if necessary,

hi0(t, x̃(t), ũ(t), ṽ(t))

= f t
0(x̃(t) − x̄(t), ũ(t) − ū(t), ṽ(t) − v̄(t))

= χ t(f t
1(x̃(t) − x̄(t), ũ(t) − ū(t), ṽ(t) − v̄(t)), . . . , f t

r (x̃(t) − x̄(t), ũ(t) − ū(t), ṽ(t) − v̄(t)))

= χ t(hi1(t, x̃(t), ũ(t), ṽ(t)), . . . , hir (t, x̃(t), ũ(t), ṽ(t)))

= χ t(0, . . . , 0)

= χ t(hi1(t, x̄(t), ū(t), v̄(t)), . . . , hir (t, x̄(t), ū(t), v̄(t)))

= χ t(f t
1(0, 0, 0), . . . , f t

r (0, 0, 0))

= f t
0(0, 0, 0) = hi0(t, x̄(t), ū(t), v̄(t)) = 0 a.e. in [0, 1].

It follows from Theorem 2.2 that there exist η � 0, p ∈ W1,1([0, 1];Rn), μ ∈ L1([0, 1];Rr) and
ζ ∈ L1([0, 1];Rkv) such that

(i) ‖p‖∞ + η �= 0;

(ii) (−ṗ(t), 0, ζ(t)) ∈ co ∂x,u,vH(t, x̄(t), p(t), μ(t), ū(t), v̄(t)) a.e. in [0, 1];

(iii) ζ(t) ∈ co NV(t)(v̄(t)) a.e. in [0, 1];

(iv) (p(0), −p(1)) ∈ NS(x̄(0), x̄(1)) + η∂l(x̄(0), x̄(1)).

Furthermore, there exists M > 0 such that |μ(t)| � kf (t)Mkh,g|p(t)| a.e. in [0, 1]. The result follows
defining μ̃ : [0, 1] → R

mh almost everywhere in [0, 1] as

μ̃i(t) =
{

μi(t), i ∈ {1, . . . , r},
0, i ∈ {1, . . . , mh} \ {1, . . . , r}.

�
Below we have an instance of a non-linear problem in which CRC is satisfied while the full rank

condition is not valid. The weak basic constraint qualification is not applied in as much as the problem
is not autonomous.

Example 4.8 We analyse the problem presented next.

Minimize l(x(0), x(1)) = −x(1)

subject to ẋ(t) = x(t) + u1(t)u2(t) a.e. in [0, 1],
(t + 1)u1(t) − t2 − t = 0 a.e. in [0, 1],
u1(t)

2 − t2 = 0 a.e. in [0, 1],
(x(0), x(1)) ∈ {0} × [−1, 1].

Let (x̄(t), ū1(t), ū2(t)) = (t2 exp(t − 1), t, 2 exp(t − 1)) a.e. in [0, 1]. We have x̄(1) = 1, so that this
feasible process is optimal. CRC is satisfied at (x̄, ū1, ū2). Indeed,

∇uh(t, x̄(t), ū1(t), ū2(t)) =
[

t + 1 0
2t 0

]
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20 J. T. PEREIRA ET AL.

and rank(∇uh(t, x̄(t), ū1(t), ū2(t))) = 1 a.e. in [0, 1]. Taking Γ (t) = [t + 10] a.e. in [0, 1], we have
det(Γ (t)Γ (t)T) = (t + 1)2 � 1 a.e. in [0, 1]. It is clear that

{∇x,u1,u2
h2(t, x, u1, u2)} ∪ {∇x,u1,u2

h1(t, x, u1, u2)} = {(0, 2u1, 0), (0, t + 1, 0)}
has constant rank equal to 1 in Tε(t) a.e. in [0, 1]. By Theorem 4.7, the maximum principle is valid. In
fact, conditions (i)–(iv) are verified with η = 1, p(t) = μ1(t) = μ2(t) = 0 a.e. in [0, 1].

5. Problems with mixed equality and inequality constraints

In this last section, the weak maximum principle is established for some instances of the general
problem, which we restate here for the readers’ convenience:

minimize l(x(0), x(1))

subject to ẋ(t) = f (t, x(t), u(t), v(t)) a.e. in [0, 1],
g(t, x(t), u(t), v(t)) � 0 a.e. in [0, 1],
h(t, x(t), u(t), v(t)) = 0 a.e. in [0, 1],
v(t) ∈ V(t) a.e. in [0, 1],
(x(0), x(1)) ∈ S.

(P)

The proof technique employed here to demonstrate the weak maximum principle for (P) consists
in transforming the inequality constraints into equality ones, by introducing slackness variables, and
adapting CRC to the obtained equality constrained problem. We, then, apply Theorem 4.7.

We assume throughout this section that mh � 1, that is, at least one equality constraint is present.
We start with some definitions related to the inequality constraints. Let (x̄, ū, v̄) be a feasible process.

We will denote I = {1, . . . , mg} and J = {1, . . . , mh}. The index set of the active constraints is defined as

Ia(t) = {i ∈ I : gi(t, x̄(t), ū(t), v̄(t)) = 0} a.e. in [0, 1].

Its complement will be denoted by Ic(t), that is, Ic(t) = I \ Ia(t) a.e. in [0, 1].
Given any set of indices I ⊂ N, its cardinality will be denoted by |I |. Given any matrix A ∈ R

m×k

and a subset of indices I ⊂ {1, . . . , m}, the matrix obtained from A after removing the rows with indices
not belonging to I will be denoted as AI.

The following notation will be used in the sequel:

G(t) = diag{−gj(t, x̄(t), ū(t), v̄(t))}mg
j=1 a.e. in [0, 1].

Definition 5.1 The constant rank condition (CRC) is said to be satisfied at a feasible process
(x̄, ū, v̄) if

rank

([ ∇ugIa(t)(t, x̄(t), ū(t), v̄(t))
∇uh(t, x̄(t), ū(t), v̄(t))

])
= r(t) a.e. in [0, 1]

and there exist K > 0 and index subsets J1(t) = {i1, . . . , ir1(t)} ⊂ Ia(t) and J2(t) = {j1, . . . , jr2(t)} ⊂
J, J2(t) �= ∅, with |J1(t)| + |J2(t)| = r(t) and |Ic(t)| + r(t) = ρ(t) = ρ a.e. in [0, 1], such that
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WEAK MAXIMUM PRINCIPLE 21

(i) det(Γ (t)Γ (t)T) � K a.e. in [0, 1], where

Γ (t) =
⎡
⎣ ∇ugIc(t)(t, x̄(t), ū(t), v̄(t)) GIc(t)(t)

∇ugJ1(t)(t, x̄(t), ū(t), v̄(t)) 0
∇uhJ2(t)(t, x̄(t), ū(t), v̄(t)) 0

⎤
⎦ a.e. in [0, 1];

(ii) for each i ∈ Ia(t) \ J1(t), {∇x,u,vgi(t, x, u, v)} ∪ {∇x,u,vhj(t, x, u, v)}j∈J2(t) and for each i ∈ J \
J2(t), {∇x,u,vhi(t, x, u, v)} ∪ {∇x,u,vhj(t, x, u, v)}j∈J2(t) have constant rank equal to |J2(t)| in Tε(t)
a.e. in [0, 1].

In the presence of equality and inequality constraints, the Hamiltonian is

H(t, x, p, λ, μ, u, v) := p · f (t, x, u, v) + λ · g(t, x, u, v) + μ · h(t, x, u, v).

Theorem 5.1 Let (x̄, ū, v̄) be a weak local optimal process of (P). Assume that the basic hypotheses
(H1)–(H5) are valid at (x̄, ū, v̄) and the constant rank condition CRC is satisfied. Then there exist η �
0, p ∈ W1,1([0, 1];Rn), λ ∈ L1([0, 1];Rmg), μ ∈ L1([0, 1];Rmh) and ζ ∈ L1([0, 1];Rkv) such that, for
almost all t ∈ [0, 1],

(i) η + ‖p‖∞ �= 0;

(ii) (−ṗ(t), 0, ζ(t)) ∈ co ∂x,u,vH(t, x̄(t), p(t), λ(t), μ(t), ū(t), v̄(t));

(iii) ζ(t) ∈ co NV(t)(v̄(t));

(iv) λi(t) � 0 and λi(t)gi(t, x̄(t), ū(t), v̄(t)) = 0 a.e. in [0, 1], i = 1, . . . , mg;

(v) (p(0), −p(1)) ∈ NS(x̄(0), x̄(1)) + η∂l(x̄(0), x̄(1)).

Moreover, there exists M > 0 such that

| (λ(t), μ(t)) | � kf (t)Mkg,h|p(t)| a.e. in [0, 1].

Proof. For each j ∈ {1, . . . , mg} we define the auxiliary function δj : [0, 1] → R as

δj(t) =
{

1 if j ∈ J1(t),
0 otherwise,

and Δ : [0, 1] → R
mg×mg as

Δ(t) = diag{δj(t)}mg
j=1.

Consider the auxiliary optimal control problem posed as

minimize l(x(0), x(1))

subject to ẋ(t) = f (t, x(t), u(t), v(t)) a.e. in [0, 1],
g(t, x(t), u(t), v(t)) + G(t)w(t) + Δ(t)z(t) = 0 a.e. in [0, 1],
h(t, x(t), u(t), v(t)) = 0 a.e. in [0, 1],
(u(t), v(t), w(t), z(t)) ∈ R

ku × V(t) × R
mg × R

mg
+ a.e. in [0, 1],

(x(0), x(1)) ∈ S,

(5.1)

where w, z : [0, 1] → R
mg are auxiliary control functions, which are supposed to be measurable.
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22 J. T. PEREIRA ET AL.

If (x̄, ū, v̄) is a weak local optimal process of (P), there exists 0 < ε < 1 such that l(x̄(0), x̄(1)) �
l(x(0), x(1)) for all feasible processes (x, u, v) that satisfy (x(t), u(t), v(t)) ∈ Tε(t) a.e. in [0, 1].

For each j ∈ {1, . . . , mg}, defining w̄j(t) = 1 and z̄j(t) = −gj(t, x̄(t), ū(t), v̄(t)) a.e. in [0, 1], the
process (x̄, ū, v̄, w̄, z̄) is a weak local optimal process of (5.1). Indeed, it is clear that it is feasible in
(5.1). Let (x̃, ũ, ṽ, w̃, z̃) be an arbitrary feasible process of (5.1) with (x̃(t), ũ(t), ṽ(t), w̃(t), z̃(t)) ∈ Tε(t) ×
(w̄(t)+εB̄)×

(
(z̄(t) + εB̄) ∩ R

mg
+

)
a.e. in [0, 1]. Let us show that (x̃, ũ, ṽ) is feasible in (P). It is enough to

show that the inequality constraints are satisfied, since all other constraints clearly are. Fix an arbitrary
t ∈ [0, 1]. For j ∈ J1(t), one has

gj(t, x̃(t), ũ(t), ṽ(t)) − gj(t, x̄(t), ū(t), v̄(t))w̃j(t) + δj(t)z̃j(t) = 0 ⇔ gj(t, x̃(t), ũ(t), ṽ(t)) = −z̃j(t) � 0.

For j ∈ Ia(t) \ J1(t), one has

gj(t, x̃(t), ũ(t), ṽ(t)) − gj(t, x̄(t), ū(t), v̄(t))w̃j(t) + δj(t)z̃j(t) = 0 ⇔ gj(t, x̃(t), ũ(t), ṽ(t)) = 0.

For j ∈ Ic(t), one has

gj(t, x̃(t), ũ(t), ṽ(t)) − gj(t, x̄(t), ū(t), v̄(t))w̃j(t) + δj(t)z̃j(t) = 0

⇔ gj(t, x̃(t), ũ(t), ṽ(t)) = gj(t, x̄(t), ū(t), v̄(t))w̃j(t) < 0,

since w̃(t) ∈ w̄(t) + εB̄ together with w̄j(t) = 1, j ∈ {1, . . . , mg}, and 0 < ε < 1 imply that w̃j(t) >

0, j ∈ {1, . . . , mg}. Thence, (x̃, ũ, ṽ) is feasible in (P) with (x̃(t), ũ(t), ṽ(t)) ∈ Tε(t) a.e. in [0, 1]. By the
local optimality of (x̄, ū, v̄), one has l(x̄(0), x̄(1)) � l(x̃(0), x̃(1)).

We will apply Theorem 4.7. Hypotheses (H1)–(H5) and CRC (Definition 4.2) should be satisfied at
(x̄, ū, v̄, w̄, z̄) for (5.1). Define ψ : [0, 1] × R

n × R
ku × R

kv × R
mg × R

mg → R
mh+mg as

ψ(t, x, u, v, w, z) =
(

g(t, x, u, v) + G(t)w + Δ(t)z
h(t, x, u, v)

)
.

Hypothesis (H1)–(H5) are immediate. Let us check CRC. We have that

∇u,wψ(t, x̄(t), ū(t), v̄(t), w̄(t), z̄(t)) =
[ ∇ug(t, x̄(t), ū(t), v̄(t)) G(t)

∇uh(t, x̄(t), ū(t), v̄(t)) 0

]

and

∇x,u,v,w,zψ(t, x, u, v, w, z) =
[ ∇x,u,vg(t, x, u, v) G(t) Δ(t)

∇x,u,vh(t, x, u, v) 0 0

]
.

From Definition 5.1, we have that

rank(∇u,wψ(t, x̄(t), ū(t), v̄(t), w̄(t), z̄(t))) = |Ic(t)| + r(t) = ρ(t) = ρ a.e. in [0, 1].

Note that matrix Γ (t) in Definition 5.1 is a sub-matrix containing ρ rows of ∇u,wψ(t, x̄(t), ū(t), v̄(t),
w̄(t), z̄(t)) a.e. in [0, 1]. Then condition (i) in Definition 4.2 for problem (5.1) follows from condition (i)
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in Definition 5.1. Let us denote by J(t) the set of indices of rows of ∇x,u,v,w,zψ(t, x, u, v, w, z) correspond-
ing to the rows in Γ (t), that is, corresponding to Ic(t) ∪ J1(t) ∪ J2(t). If {∇x,u,v,w,zψi(t, x, u, v, w, z)} ∪
{∇x,u,v,w,zψj(t, x, u, v, w, z)}j∈J(t) has rank equal to ρ + 1 for some i ∈ {1, . . . , mg + mh} \ J(t) and some

(x, u, v, w, z) ∈ Tε(t) × (w̄(t) + εB̄) ×
(
(z̄(t) + εB̄) ∩ R

mg
+

)
a.e. in [0, 1], then this contradicts condition

(ii) in Definition 5.1. Thence, condition (ii) in Definition 4.2 is satisfied.
It follows from Theorem 4.7 that there exist η � 0, p ∈ W1,1([0, 1];Rn), λ ∈ L1([0, 1];Rmg), μ ∈

L1([0, 1];Rm) and (ζ1, ζ2) ∈ L1([0, 1];Rkv × R
mg) such that, for almost all t ∈ [0, 1],

η + ‖p‖∞ �= 0; (5.2)

(−ṗ(t), 0, ζ1(t), 0, ζ2(t)) ∈ co ∂x,u,v,w,z{p(t) · f (t, x̄(t), ū(t), v̄(t)) + λ(t) · [g(t, x̄(t), ū(t), v̄(t))

+G(t)w̄(t) + Δ(t)z̄(t)] + μ(t) · h(t, x̄(t), ū(t), v̄(t))}; (5.3)

(ζ1(t), ζ2(t)) ∈ co NV(t)(v̄(t)) × co N
R

mg
+

(z̄(t)); (5.4)

(p(0), −p(1)) ∈ NS(x̄(0), x̄(1)) + η∂l(x̄(0), x̄(1)). (5.5)

Moreover, there exists M > 0 such that

|(λ(t), μ(t))| � kf (t)Mkg,h|p(t)| a.e. in [0, 1]. (5.6)

Deriving with respect to w and z, one sees, from (5.3), that G(t)λ(t) = 0, so that λi(t)gi(t, x̄(t), ū(t),
v̄(t)) = 0, i ∈ I, and Δ(t)λ(t) = ζ2(t) a.e. in [0, 1]. From (5.4), one sees that ζ2(t) � 0 a.e. in [0, 1].
Then λi(t) � 0 for i ∈ J1(t) a.e. in [0, 1]. Furthermore, one knows from the proof of Theorem 4.7 that
λi(t) = 0 for I \ J1(t) and μj(t) = 0 for j ∈ J \ J2(t) a.e. in [0, 1]. Therefore, conditions (i) to (v) follow
from (5.2)–(5.6). �
Remark 5.1 If mh = 0, this proof technique works only if ∇ugIa(t)(t, x̄(t), ū(t), v̄(t)) has full rank a.e.
in [0, 1].

The constant rank condition CRC is satisfied at the optimal solution of the optimal control problem
in the next example, while the full rank (de Pinho, 2003) as well as the Mangasarian–Fromovitz (de
Pinho & Rosenblueth, 2008) conditions are not.

Example 5.2 We will verify the constant rank condition at the optimal solution of the problem below:

minimize l(x(0), x(1)) = exp(x(1))

subject to ẋ(t) = x(t) − v(t) a.e. in[0, 1],
2u1(t) − v(t) � 0 a.e. in[0, 1],
u1(t) + u2(t) + v(t) = 0 a.e. in[0, 1],
−u1(t) + u2(t) + 2v(t) = 0 a.e. in[0, 1],
v(t) ∈ R+ a.e. in[0, 1],
(x(0), x(1)) ∈ {1} × R+.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/advance-article-abstract/doi/10.1093/im

am
ci/dnz036/5722300 by guest on 14 February 2020



24 J. T. PEREIRA ET AL.

Let (x̄(t), ū1(t), ū2(t), v̄(t)) = ((1−t) exp(t), exp(t)/2, −3 exp(t)/2, exp(t)) a.e. in [0, 1]. We have x̄(1) =
0, so then this feasible process is optimal. In this case, Ia(t) = {1} a.e. in [0, 1]. We have that

rank

([ ∇ugIa(t)(t, x̄(t), ū(t), v̄(t))
∇uh(t, x̄(t), ū(t), v̄(t))

])
= rank

⎛
⎝

⎡
⎣ 2 0

1 1
−1 1

⎤
⎦

⎞
⎠ = 2 a.e. in [0, 1].

Let us take J1(t) = ∅ and J2 = {1, 2} a.e. in [0, 1]. Then,

Γ (t) =
⎡
⎣ ∇ugIc(t)(t, x̄(t), ū(t), v̄(t)) GIc(t)(t)

∇ugJ1(t)(t, x̄(t), ū(t), v̄(t)) 0
∇uhJ2(t)(t, x̄(t), ū(t), v̄(t)) 0

⎤
⎦ =

[
1 1 0

−1 1 0

]
a.e. in [0, 1]

and det(Γ (t)Γ (t)T) = 4 a.e. in [0, 1], so that condition (i) in CRC is satisfied. Let us check condition
(ii). Let i ∈ Ia(t) \ J1(t), that is, let i = 1. Then {∇x,u,vg1(t, x, u, v)} ∪ {∇x,u,vhj(t, x, u, v)}j∈J =
{(0, 2, 0, −1), (0, 1, 1, 1), (0, −1, 1, 2)} has constant rank equal to |J2(t)| = 2 in Tε(t) a.e. in [0, 1].
Therefore, CRC is satisfied. The weak maximum principle is verified with η = 1, p(t) = λ(t) =
μ1(t) = μ2(t) = 0 a.e. in [0, 1].

6. Concluding remarks

The paper is dedicated to obtaining the weak maximum principle for optimal control problems involving
mixed state-control equality constraints under a new regularity condition of constant rank type (CRC).
In fact, the constant rank constraint qualification is not new. It was introduced by Janin (1984) for
mathematical programming problems. To the best of our knowledge, it is new however in the optimal
control context. As in the mathematical programming setting, the constant rank condition is weaker than
the full rank one and this is an alternative regularity condition to the Mangasarian–Fromovitz constraint
qualification.

Optimal control problems in which mixed inequality constraints are present together with at least
one equality constraint were also considered. The general case, including problems with inequality
constraints only, was not covered, due to the proof technique. Analysing the proof of the last theorem,
we see that CRC is never satisfied at the optimal solution of (5.1) when J2(t) = ∅ a.e. in [0, 1]. When
mh = 0, CRC to (5.1) is satisfied only if the full rank condition holds, as we already mentioned in
Remark 5.1.

The example below shows that the weak maximum principle may be valid when CRC is not satisfied,
from where we conjecture that it is possible to formulate another constraint qualification, possibly of
constant rank type, which is weaker than CRC. That is going to be a topic for future research.

Example 6.1 Let us consider the optimal control problem given in what follows:

minimize l(x(0), x(1)) = x(1)

subject to ẋ(t) = (v(t) + t)2 a.e. in [0, 1],
−u1(t) � 0 a.e. in [0, 1],
u2(t) + v(t) � t a.e. in [0, 1],
−u1(t)

2 + u2(t) + v(t) = t a.e. in [0, 1],
v(t) ∈ R− a.e. in [0, 1],
(x(0), x(1)) ∈ {0} × R.
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The feasible process (x̄(t), ū1(t), ū2(t), v̄(t)) = (0, 0, 2t, −t) a.e. in [0, 1] is clearly optimal. In this case,
Ia(t) = {1, 2} a.e. in [0, 1]. We have that

rank

([ ∇ugIa(t)(t, x̄(t), ū(t), v̄(t))
∇uh(t, x̄(t), ū(t), v̄(t))

])
= rank

⎛
⎝

⎡
⎣ −1 0

0 1
0 1

⎤
⎦

⎞
⎠ = 2 a.e. in [0, 1].

The possible choices for the sets J1 and J2 are J1(t) = {1} and J2(t) = {1}, J1(t) = {1, 2} and J2(t) = ∅
or J1(t) = {2} and J2(t) = {1} a.e. in [0, 1]. In the first option, condition (ii) is not satisfied. The second
one is not allowed, since J2 = ∅. In the third one, condition (i) fails. Note that neither the full rank
nor the Mangasarian–Fromovitz conditions are satisfied. The weak basic constraint qualification is not
applied due to the fact that the problem is not autonomous. Nevertheless, the weak maximum principle
holds, for example, with η = 1, p(t) = −1, λ1(t) = 0, λ2(t) = −t and μ(t) = t a.e. in [0, 1].

Another topic for future work is related to the implications of constant rank type conditions in the
convergence study of numerical methods for mixed constrained optimal control problems. We have
successfully applied the ICLOCS (Imperial College London Optimal Control Software) package (see
Falugi et al., 2010) to solve all the examples presented in the paper. The fact that full rank is not valid
in any of them led us to think that convergence of computational algorithms to solve optimal control
problems with mixed constraints is likely to occur under constant rank assumptions.

A last comment concerns the assumption that rank(∇uh(t, x̄(t), ū(t), v̄(t))) = r(t) = r a.e. in [0, 1] in
CRC (Definition 4.2), that is, the rank of the Jacobian is assumed to be constant with respect to t. In the
linear case, in Definition 4.1, this kind of assumption was unnecessary, so we think it may be possible
to remove it in the non-linear case. This is going to be another topic for future research as well.
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