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Abstract

Sequential optimality conditions have played a major role in proving stronger global convergence re-
sults of numerical algorithms for nonlinear programming. Several extensions have been described in conic
contexts, where many open questions have arisen. In this paper, we present new sequential optimality con-
ditions in the context of a general nonlinear conic framework, which explains and improves several known
results for specific cases, such as semidefinite programming, second-order cone programming, and nonlinear
programming. In particular, we show that feasible limit points of sequences generated by the Augmented
Lagrangian method satisfy the so-called Approximate Gradient Projection optimality condition, and, un-
der an additional smoothness assumption, the so-called Complementary Approximate Karush-Kuhn-Tucker
condition. The first result was unknown even for nonlinear programming while the second one was unknown,
for instance, for semidefinite programming.

Key words: Nonlinear conic optimization, Optimality conditions, Numerical methods, Constraint qualifi-
cations.

1 Introduction

We are interested in the general nonlinear conic programming (NCP) problem, which is usually presented in
the form:

Minimize
x∈Rn

f(x),

subject to G(x) ∈ K,
(NCP)

where f : Rn → R and G : Rn → E are continuously differentiable mappings, E is a finite-dimensional vector
space over R equipped with an inner product 〈·, ·〉 and the norm ‖x‖ :=

√
〈x, x〉 induced by it, and K ⊆ E is

a nonempty closed convex cone. Let us denote its feasible set by Ω. This is a general class of optimization
problems that encompasses, for instance, some well-known particular cases such as nonlinear programming
(NLP), nonlinear semidefinite programming (NLSDP), and nonlinear second-order cone programming (NSOCP).
It has applications in several areas which include, but are not restricted to, control theory [32], truss design
problems and combinatorial optimization [77], portfolio optimization [54], structural optimization [50], and
others. For more details, see [14, 77, 78] and references therein. It is worth mentioning that the content of this
paper can be straightforwardly extended to a (NCP) with separate equality constraints in the form: h(x) = 0
and G(x) ∈ K, but we stick to (NCP) as is for the sake of simplicity.

Algorithms for solving nonlinear optimization problems are mostly iterative and their convergence theories
are usually built around the limit points of their output sequences. However, numerical methods must employ
stopping criteria to properly truncate those sequences, which are often based on necessary optimality conditions.
Under a constraint qualification (CQ), every local minimizer of (NCP) satisfies the classical Karush-Kuhn-Tucker
(KKT) conditions, but even simple problems, such as minimizing x subject to x2 ∈ {0}, may have minimizers
that do not satisfy the KKT conditions. For NLP problems, a “sequential” alternative condition with high
practical appeal was proposed in [3] under the name of Approximate KKT (AKKT) condition, that holds
at local minimizers independently of CQs, similarly to the Fritz-John condition [56], but strictly stronger [3,
Theorem 2.2].
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Roughly speaking, sequential optimality conditions such as AKKT are general characterizations of feasible
limit points of an algorithm’s output sequence. It was proved in [12] that these sequential conditions imply KKT
under very weak CQs; for instance, strictly weaker than the Mangasarian-Fromovitz constraint qualification
(MFCQ). These results assemble a simple unified tool for proving global convergence of algorithms, without
assuming boundedness of the Lagrange multiplier set at the limit point. Indeed, proving global convergence of an
algorithm under such weak CQs reduces to proving that it generates limit points that satisfy a given sequential
optimality condition. This was successfully done, for instance, in [1, 20] for Augmented Lagrangian methods,
in [37] for a Shifted Primal-Dual Penalty-Barrier method, in [38, 67] for Sequential Quadratic Programming
(SQP) methods, in [8, 30, 40, 41] for Interior Point methods, and also in [8, 21] for Inexact Restoration methods
– see also [7, 11, 12] and references therein for more details. Conversely, sequential optimality conditions may
suggest adaptations for practical algorithms that ensure a better theoretical performance, for instance, in [41]
the authors analysed a sequential optimality condition satisfied by Interior Point methods, which characterized
the effects of a certain control over the feasibility of the method on its convergence. In particular, they proved
that a specific type of control guarantees that the sequence of approximate Lagrange multipliers of the method is
bounded, even in the absence of a constraint qualification. Moreover, in [62], the authors develop a complexity
analysis for an algorithm based on a log-barrier function, Newton’s method, and conjugate gradients, that
converges to second-order stationary points via sequential optimality conditions. This kind of complexity
analysis via sequential optimality conditions can be done even for some special problems such as in [42], where
the KKT conditions are not defined at the limit point due to lack of differentiability; then, the AKKT notion
serves as a natural optimality condition for it.

Naturally, such idea has been carried over for several other contexts, for example: Nash equilibrium problems
[29], mathematical programs with equilibrium constraints (MPECs) [68, 69], mathematical programs with comple-
mentarity constraints (MPCCs) [9], nonlinear vector optimization with conic constraints [76], the multiobjective
case [39], variational problems in Banach spaces [48], quasi-equilibrium problems [27], and several others. The
first extension to a conic context is due to [10] followed by [2] for NLSDP and NSOCP, respectively, which gave
rise to a more theoretical range of applications of sequential optimality conditions. For instance, there is a re-
cent work that uses sequential optimality conditions (from [10]) to prove that every local minimizer of a general
nonconvex NLSDP problem satisfies a second-order condition that depends on a single Lagrange multiplier over
the lineality space of the critical cone, without assuming neither nondegeneracy nor strict complementarity (the
common assumptions for this kind of analysis) [35]. The sequential framework has also allowed [4] to define and
study weaker variants of the nondegeneracy condition, which are designed to aid in proving global convergence
of methods that rely on spectral decompositions, or for problems that present some structural sparsity.

This paper aims at expanding the strongest known sequential optimality conditions from NLP to the general
conic framework (NCP). The most difficult aspect of such generalizations is dealing with complementarity. For
NLP constraints g(x) ≤ 0, g : Rn → Rm, g = (g1, . . . , gm), and a Lagrange multiplier λ̄ ∈ Rm, λ̄ ≥ 0,
λ̄ = (λ̄1, . . . , λ̄m), the complementarity constraint 〈λ̄, g(x̄)〉 = 0 means precisely that, for every i ∈ {1, . . . ,m},
the multiplier λ̄i is complementary with respect to the constraint gi(x) ≤ 0, in the sense that λ̄igi(x̄) = 0 at a
feasible point of interest x̄. It turns out that, when considering perturbations of x̄, the latter gives a stronger
optimality condition. In the conic case (NCP), it is not clear how to exploit a complementarity-like structure
in a statement of the form 〈Λ̄, G(x̄)〉 = 0 for a Lagrange multiplier Λ̄ ∈ K◦ (the polar of the cone K) where
G(x̄) ∈ K. In the context of NLSDP [10], the eigenvalues are heavily employed to exploit a complementarity-like
structure, where one must carefully consider how to order consistently the eigenvalues of G(x̄) and Λ̄. In [2],
this approach is extended to so-called symmetric cones, where an eigenvalue structure is still available but a
more elegant solution is given by making use of a so-called Jordan product ◦, which is inherent to the cone
K = {u ◦ u : u ∈ E}. Note that self-duality of K plays an important role in defining these optimality conditions
[2, 10].

In this paper we propose a much more general and unified approach for defining such conditions. Here,
we propose splitting 〈Λ̄, G(x̄)〉 = 0, by means of Moreau’s decomposition, into two complementarity-like state-
ments of the form 〈Λ̄,ΠKG(x̄)〉 = 0 and 〈Λ̄,ΠK◦G(x̄)〉 = 0, where ΠK and ΠK◦ denote orthogonal projections
onto K and its polar, respectively. Hence, no particular structure of the cone K is needed. We then show
that a primal dual sequence {(xk,Λk)} ⊂ Rn × K◦ generated by an Augmented Lagrangian method is such
that 〈Λk,ΠKG(xk)〉 → 0. In the context of NLP, an optimality condition associated with this measure of
complementarity turns out to be equivalent to the so-called Approximate Gradient Projection optimality con-
dition (AGP, [13]), which is strictly stronger than the more common AKKT [3] optimality condition. The
revelation of this property of the Augmented Lagrangian sequence is somewhat surprising, and it was achieved
as a corollary of our more general approach. Also, under an additional smoothness assumption, the other
complementarity-like statement 〈Λk,ΠK◦G(xk)〉 → 0 is also satisfied. This answers an open question of [10] in
the context of NLSDP by presenting a stronger complementarity-like structure, generated by the Augmented
Lagrangian method, which was not achieved in [10]. In [2], although an optimality condition that reveals a
strong complementarity-like structure was defined for general symmetric cones, the proof that the sequence
generated by the Augmented Lagrangian fulfills this property was only done in the context of NSOCP.
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Finally, we show that our global convergence results are strictly stronger than the ones usually employed for
conic constraints, namely, where Robinson’s CQ is employed. Note that our results do not require that K has
a nonempty interior nor self-duality, hence our results are relevant even when the constraints are linear. Also,
since Robinson’s CQ may fail, our results imply that even when the set of Lagrange multipliers is unbounded
at a feasible limit point of a sequence generated by the algorithm, a global convergence result is available, that
is, the dual sequence {Λk} may diverge.

This paper is organized as follows: Section 2 presents some basic definitions and a short literature review
on sequential optimality conditions for NLP and NLSDP. In Section 3, we define sequential conditions for NCP
and some standard properties are proven. Section 4 presents an Augmented Lagrangian algorithm and its
convergence theory in terms of sequential conditions. Section 5 is dedicated to a distinguished extension of
AKKT and its relation to the other conditions. Section 6 is focused on contextualizing our conditions when
NCP is reduced to NLP, NLSDP, and NSOCP. Section 7 introduces new constraint qualifications that can be
useful for the convergence analysis of numerical methods. Lastly, Section 8 is dedicated to summarizing our
main contributions, while presenting our prospective work.

2 Preliminaries

In this section, we recall some basic concepts and results of convex analysis and we make a more detailed review
of sequential optimality conditions for NLP and NLSDP.

2.1 Notations and convex analysis background

Our notation is standard in optimization and variational analysis: N denotes the set of natural numbers (with
0 ∈ N) and Rn stands for the n-dimensional real Euclidean space. Let x ∈ Rn, we use B[x, δ] to denote the
closed ball with center at x and radius δ > 0. For a, b ∈ Rn with components ai and bi respectively, we use
max{a, b} to represent the vector with components max{ai, bi}. The vector min{a, b} has a similar meaning.
We denote the interior of a set A by int A. Moreover, we recall that E is a finite-dimensional linear space
equipped with an inner product, which we denote by 〈·, ·〉.

Given a set-valued mapping Γ : Rs ⇒ E, the sequential (Painlevé-Kuratowski) outer limit of Γ (z) as z → z̄,
is the set {w̄ ∈ E : ∃ (zk, wk)→ (z̄, w̄), wk ∈ Γ (zk)}, which is denoted by lim sup

z→z̄
Γ (z). Moreover, we say that

Γ is outer semi continuous at z̄ when
lim sup
z→z̄

Γ (z) ⊆ Γ (z̄).

For a differentiable mapping G : Rn → E, we use DG(x) to denote the derivative of G at x, and DG(x)∗ :
E → Rn to denote the adjoint of DG(x), which is characterized by the following property: 〈DG(x)d,Λ〉 =
〈d,DG(x)∗Λ〉, for every d ∈ Rn, Λ ∈ E. For a differentiable real-valued function f : Rn → R, we use ∇f(x) to
denote the transpose of Df(x), seen as a 1× n matrix.

Given a closed convex cone K ⊂ E, the polar of K is the set Ko := {w ∈ E : 〈w, k〉 ≤ 0, ∀k ∈ K} and
(Ko)o = K. The distance of w ∈ E to K is defined as distK(w) := min{‖w − v‖ : v ∈ K} and the orthogonal
projection of w onto K, denoted by ΠK(w), is the point where the minimum is attained. Moreover, it can be
proved that ΠK(w) is nonexpansive, that is,

‖ΠK(w)−ΠK(v)‖ ≤ ‖w − v‖,∀v,∀w,

so it is a Lipschitz continuous function, and it can also be proved that dist2
K(w) is a continuously differentiable

function whose derivative is given by (1). For a proof, see [34].

D(dist2
K)(w) = 2(w −ΠK(w)),∀w. (1)

The following lemma (see, e.g., [47, Theorems 3.2.3 and 3.2.5]) encompasses other well-known properties of
projections:

Lemma 2.1. Let K ⊂ E be a closed convex cone and w ∈ E. Then:

1. v = ΠK(w) if, and only if, v ∈ K, w − v ∈ Ko, and 〈w − v, v〉 = 0;

2. ΠK(αw) = αΠK(w), for every α ≥ 0, and ΠK(−w) = −Π−K(w);

3. (Moreau’s decomposition) For every w ∈ E, we have w = ΠK(w) + ΠKo(w) and 〈ΠK(w),ΠKo(w)〉 = 0.
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2.2 Sequential optimality conditions for NLP and NLSDP

In order to start a deeper discussion on sequential optimality conditions, we will make a brief exposition of the
most important results around them in NLP, where it has been extensively studied, and a summary of some
recent advances in NLSDP.

Consider the following NLP problem in standard form:

Minimize
x∈Rn

f(x),

subject to G(x) ≤ 0,
(NLP)

which is (NCP) with E = Rm and K = Rm− := {z ∈ Rm : ∀i ∈ {1, . . . ,m}, zi ≤ 0}. Following [3], we say that

the Approximate KKT (AKKT) condition holds at a feasible point x̄ when there exist sequences {xk}k∈N → x̄
and {Λk}k∈N ⊂ Rm+ := −Rm− such that

∇f(xk) +

m∑
i=1

Λki∇Gi(xk)→ 0, (2)

and Λki = 0, whenever Gi(x̄) < 0, for sufficiently large k. Note that AKKT allows divergence of the multiplier
sequences associated with active constraints. It has been proved that under some constraint qualifications
weaker than the linear independence constraint qualification (LICQ) and MFCQ, for example, every AKKT
point also satisfies the KKT conditions (see [11, 7, 8]). Then, as mentioned in the Introduction, since many
algorithms generate AKKT sequences, this improves their convergence theory in a unified manner. Another
practical advantage of sequential conditions is their relation to natural choices of stopping criteria for algorithms,
for example, it is elementary to verify that AKKT holds at x̄ if, and only if, for every ε > 0 there is some
xε ∈ B[x̄, ε] and some approximate multiplier Λε ≥ 0 such that

‖max{0, G(xε)}‖ ≤ ε, ‖∇f(xε) +

m∑
i=1

(Λε)i∇Gi(xε)‖ ≤ ε, ‖min{Λε,−G(xε)}‖ ≤ ε. (3)

The properties that made AKKT useful motivate the following general description of a “good” sequential
optimality condition, that provides guidelines for defining new ones:

1. It must be a necessary optimality condition independently of the fulfillment of any CQ;

2. There must be meaningful numerical methods that generate sequences whose limit points satisfy it;

3. It must imply optimality conditions in the form “KKT or not-CQ” for very weak CQs.

The third property measures the strength of such sequential optimality condition in comparison with stan-
dard ones, while the first one guarantees that no local minimizer will be censured by it. In addition, the second
property means that one must be able to employ it to formalize the convergence theory of at least one algorithm.
It should be observed that, as long as they satisfy those three properties, the stronger the condition (in the
logical implication sense), the better. The ability of strengthening global convergence results is of paramount
importance, since otherwise stronger optimality conditions could be derived without resorting to the sequential
approach.

For improving the AKKT condition for (NLP), it was proposed in [13] the so-called Complementary AKKT
(CAKKT) condition, that holds at a feasible point x̄ when there are sequences {xk}k∈N → x̄ and {Λk}k∈N ⊂ Rm+
such that (2) holds and

ΛkiGi(x
k)→ 0,∀i ∈ {1, . . . ,m}.

Indeed, the CAKKT condition is strictly stronger than the AKKT condition, but an additional property (the so-
called generalized  Lojasiewicz inequality) is needed in order to prove that the Augmented Lagrangian algorithm
generates CAKKT sequences.

Another interesting sequential condition was introduced in [60] under the name Approximate Gradient Pro-
jection (AGP), that holds at a feasible point x̄ when there exists some sequence {xk}k∈N → x̄ such that

‖ΠL(Ω,xk)(−∇f(xk))‖ → 0, (4)

where L(Ω, x) := {d ∈ Rn : min{0, Gi(x)} + ∇Gi(x)T d ≤ 0, for all i such that Gi(x̄) = 0}. One of the most
highlighted features of AGP is its lack of Lagrange multiplier approximations, using projections instead. This
makes it useful for supporting the global convergence of numerical optimization methods where multiplier ap-
proximations are not explicitly available; for example, algorithms based on Inexact Restoration (IR) procedures.
See [58, 59, 60, 33, 28] and references therein for details.
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Now, consider the following NLSDP problem:

Minimize
x∈Rn

f(x),

subject to G(x) ∈ Sm− ,
(NLSDP)

which is a particular case of (NCP) where E = Sm is the linear space of m×m symmetric matrices, K = Sm− is
the cone of m×m symmetric negative semidefinite matrices. The AKKT extension for (NLSDP) presented in
[10, Definition 3.1] holds at a feasible point x̄ when there are sequences {xk}k∈N → x̄ and {Λk}k∈N ⊂ Sm+ := −Sm−
such that

∇f(xk) +DG(xk)∗Λk → 0 (5)

and λU
k

i (Λk) = 0 whenever λUi (G(x̄)) < 0 and k is sufficiently large, for some sequence of orthogonal matrices
{Uk}k∈N → U , where Uk diagonalizes Λk, for each k, and U diagonalizes G(x̄). The notation λUi (G(x̄)) stands

for the i-th eigenvalue in the diagonal of UTG(x̄)U , and the same goes for λU
k

i (Λk). This is done for imbuing
the notion of ordering into the eigenvalues of the multipliers and for establishing a proper correspondence with
the eigenvalues of G(x̄), which makes this extension natural from the NLP context, but very dependent on the
structure of Sm. Still under the same analogy, the most natural extension of CAKKT, discussed in [10], would
simply require (5) and

λS
k

i (G(xk))λU
k

i (Λk)→ 0, (6)

where {Sk}k∈N → U is a sequence of orthogonal matrices that diagonalizes G(xk), for each k. However, although
this is an actual optimality condition, it was not possible at the moment to provide an algorithm capable of
generating sequences with these properties, even under generalized  Lojasiewicz. Then, instead of using the
eigenvalue product, the authors of [10] used the canonical inner product of Sm (given by the trace of the matrix
product) to define a new condition called Trace AKKT (TAKKT), that requires (5) and

〈Λk, G(xk)〉 → 0.

Surprisingly, TAKKT has been proven to be completely independent of AKKT (see [10, Example 5.2] and [2,
Example 3.1]) and it also requires the generalized  Lojasiewicz inequality to hold for it to be generated by the
Augmented Lagrangian algorithm. However, observe that TAKKT can be equivalently stated in NLP using
diagonal matrices, and in this context, it is strictly implied by CAKKT.

3 New optimality conditions for nonlinear conic programming

In this section, we propose new sequential optimality conditions for general optimization problems, we prove
some of their properties, and we clarify the relations among them.

Before we begin, recall (from [25, 70], for example) that the Karush-Kuhn-Tucker (KKT) conditions hold
at a feasible point x̄ of (NCP) when there exists some Lagrange multiplier Λ̄ ∈ Ko such that

∇f(x̄) +DG(x̄)∗Λ̄ = 0, (7)

〈Λ̄, G(x̄)〉 = 0. (8)

By taking the natural relaxation of (7) and (8), we obtain a trivial extension of the TAKKT condition [10] from
NLSDP to NCP, replacing the trace product with an arbitrary inner product:

Definition 3.1 (TAKKT). Let x̄ be a feasible point of (NCP). We say that x̄ satisfies the TAKKT condition
if there exist sequences {xk}k∈N → x̄ and {Λk}k∈N ⊂ Ko such that

∇f(xk) +DG(xk)∗Λk → 0, (9)

〈Λk, G(xk)〉 → 0. (10)

Points that satisfy TAKKT are usually called “TAKKT points” and the sequences associated with them are
called “TAKKT sequences”. Similar names hold for the other sequential conditions. At the end of this section,
we prove that TAKKT is an optimality condition for (NCP) as well. Before that, note that at a KKT pair
(x̄, Λ̄) ∈ Rn ×Ko, we also have

〈Λ̄,ΠK(G(x̄))〉 = 〈Λ̄, G(x̄)〉 − 〈Λ̄,ΠKo(G(x̄))〉 = 〈Λ̄, G(x̄)〉 = 0,

by Moreau’s decomposition, so (8) can be equivalently stated as 〈Λ̄,ΠK(G(x̄))〉 = 0. Relaxing this alternative
expression leads to the following:
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Definition 3.2. (AGP) Let x̄ be a feasible point of (NCP). We say that x̄ satisfies the Approximate Gradient
Projection (AGP) condition if there exist sequences {xk}k∈N → x̄ and {Λk}k∈N ⊂ Ko such that (9) holds and

〈Λk,ΠK(G(xk))〉 → 0. (11)

A similar optimality condition has appeared in [48, Definition 5.2], where the authors deal with a version of
(NCP) over infinite-dimensional Banach spaces where K is contained in a Hilbert lattice. However, the authors
refer to it as “Asymptotic KKT (AKKT)”, which does not make it clear how strong their results are. We point
out that AGP might be a more appropriate name, for when Definition 3.2 is reduced to NLP, it is equivalent to
the concept with the same name introduced in [60], which is given by (4). What follows is a proof of our claim:

Theorem 3.1. Consider (NLP), which is (NCP) with E = Rm and K = Rm− . Let x̄ be a feasible point for it.
Then, AGP as in Definition 3.2 holds at x̄ if, and only if, AGP as in (4) holds at x̄.

Proof. Let x̄ satisfy Definition 3.2. Then, there exist sequences xk → x̄ and {Λk}k∈N ⊂ Rm+ such that (9) and

(11) hold. Now, define dk := ΠL(Ω,xk)(−∇f(xk)), ∀k ∈ N. By definition, dk is a solution of

Minimize
d∈Rn

1

2
‖ − ∇f(xk)− d‖2,

subject to min{0, Gi(xk)}+DGi(x
k)d ≤ 0,∀i ∈ A(x̄),

(12)

where A(x̄) := {i ∈ {1, . . . ,m} : Gi(x̄) = 0}. Since the constraints are linear, by the KKT conditions, there

exists some Λ̂k ∈ R|A(x̄)|
+ such that the first-order conditions hold for it. Define Λ̄ki ∈ Rm+ such that

Λ̄ki :=

{
Λ̂ki , if i ∈ A(x̄),
0, otherwise.

Hence,
∇f(xk) + dk +DG(xk)∗Λ̄k = 0 and 〈Λ̄k,min{0, G(xk)}+DG(xk)dk〉 = 0. (13)

Multiplying (13) by dk, we obtain

‖dk‖2 = −〈∇f(xk), dk〉 − 〈dk, DG(xk)∗Λ̄k〉
= −〈∇f(xk), dk〉 − 〈DG(xk)dk, Λ̄k〉
= −〈∇f(xk), dk〉 − 〈DG(xk)dk + min{0, G(xk)}, Λ̄k〉+

+〈min{0, G(xk)}, Λ̄k〉
≤ −〈∇f(xk), dk〉
= −〈∇f(xk) +DG(xk)∗Λk, dk〉+ 〈DG(xk)dk + min{0, G(xk)},Λk〉−
−〈min{0, G(xk)},Λk〉

≤ ‖∇f(xk) +DG(xk)∗Λk‖‖dk‖+
+
∑

i 6∈A(x̄)

(DGi(x
k)dk + min{0, Gi(xk)})Λki − 〈min{0, G(xk)},Λk〉,

where in the last inequality we used the Cauchy-Schwarz inequality and that dk is feasible for (12). Moreover,
since ‖dk‖ ≤ ‖∇f(xk)‖ and (9) and (11) hold, we obtain dk → 0 and (4) holds, because Λki → 0 for every
i 6∈ A(x̄).

Conversely, assume that x̄ satisfies AGP as in (4) and set dk := ΠL(Ω,xk)(−∇f(xk)). Analogously, since dk

is a global minimizer of (12), there is an analogous choice of Λ̄k ∈ Rm+ such that (13) holds. Then,

〈Λ̄k,min{0, G(xk)}〉 = −〈Λ̄k, DG(xk)dk〉 = −〈DG(xk)∗Λ̄k, dk〉 = 〈∇f(xk) + dk, dk〉. (14)

By (4), (13) and (14), we obtain ∇f(xk)+DG(xk)∗Λ̄k = −dk → 0 and 〈Λ̄k,min{0, G(xk)}〉 → 0. Consequently,
Definition 3.2 holds at x̄.

Surprisingly, although AGP and TAKKT look like twins, they are completely independent. The following
counterexample shows that TAKKT does not imply AGP:

Example 3.1. (TAKKT does not imply AGP) In R2, consider the nonlinear programming problem to minimize
−x2 subject to G(x1, x2) ∈ K, where G(x1, x2) := (−x1, x1 exp(x2)), K := R2

−, and the feasible point x̄ = (0, 1).

In this case, Λk := (λk1 , λ
k
2) ∈ R2

+ and ∇f(xk) + DG(xk)∗Λk → 0 reduces to −λk1 + λk2 exp(xk2) → 0 and

−1 + λk2x
k
1 exp(xk2)→ 0.

TAKKT holds at x̄: Take xk1 := 1/k, xk2 := 1, λk2 := (xk1 exp(xk2))−1, λk1 := exp(xk2)λk2 . It is elementary to
verify that {xk = (xk1 , x

k
2)} is a TAKKT sequence.
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AGP fails at x̄: Assume that there is an AGP sequence {xk}. We observe that the approximate complemen-
tarity condition 〈Λk,ΠK(G(xk))〉 → 0 implies that λk1 min{−xk1 , 0}+ λk2 exp(xk2) min{xk1 , 0} → 0. If there is an
AGP sequence with xk1 > 0 for an infinite set of indices, from the complementarity condition we will have that
−xk1λk1 → 0, and thus xk1λ

k
2 exp(xk2)→ 0, which is a contradiction with −1 + λk2x

k
1 exp(x2)→ 0. Similar results

are obtained if there is an AGP sequence with xk1 < 0 (or xk1 = 0), for an infinite set of indices.

Now, we show that AGP does not imply TAKKT either:

Example 3.2 (AGP does not imply TAKKT). Consider the nonlinear programming problem in R2 to minimize
x2 subject to G(x1, x2) := x2h(x1) ∈ K = {0} ⊂ R, where h : R → R is the C1 function introduced in [13],
defined as

h(z) :=

{
z4 sin(z−1) if z 6= 0;
0 if z = 0.

(15)

Consider the point x̄ := (0, 1). Following [13], we see that there exists a sequence {zk}k∈N ⊂ R such that zk → 0,
h′(zk) = −(zk)5 and sin(1/zk)→ 1.
AGP holds at x̄. First, choose a sequence xk := (zk, 1) with Λ := −(zk)−4 ∈ Ko = R. Now, observe that
∇f(xk) +DG(xk)Λk goes to zero, because(

0
1

)
+ Λk

(
h′(zk)

h(zk)

)
=

(
0
1

)
+
−1

(zk)4

(
−(zk)5

(zk)4 sin(1/zk)

)
=

(
0
1

)
+

(
zk

− sin(1/zk)

)
→
(

0
0

)
. (16)

Finally, the approximate complementarity condition trivially holds, since ΠK(G(xk)) = 0.
TAKKT fails at x̄. Suppose that there exists a sequence {xk := (xk1 , x

k
2)}k∈N and {Λk}k∈N ⊂ R conforming

to the definition of TAKKT. Then, (
0
1

)
+ Λk

(
xk2h

′(xk1)

h(xk1)

)
→
(

0
0

)
. (17)

The approximate complementarity condition of TAKKT implies ΛkG(xk1 , x
k
2) = Λkxk2h(xk1)→ 0. Since xk2 → 1,

we get Λkh(xk1)→ 0, which is a contradiction with (17).

Through Definition 3.2 and Theorem 3.1, it is possible to see AGP as an incomplete CAKKT condition
in (NLP), which is a different interpretation from [60]. Indeed, note that AGP holds at x̄ with sequences
{xk}k∈N → x̄ and {Λk}k∈N ⊂ Rm+ if, and only if, ΛkiGi(x

k) → 0, whenever Gi(x
k) ≤ 0. Since both AGP and

CAKKT push Λki to zero when Gi(x̄) < 0, they only differ when Gi(x̄) = 0. Even though the CAKKT condition
allows divergence of Λki in this case, it demands it to go to infinity slower than Gi(x

k) goes to zero, while AGP
may allow a faster growth as long as {xk}k∈N violates Gi(x

k) ≤ 0. From this point of view, CAKKT improves
AGP by introducing some control in the behavior of the multiplier sequences associated with the infeasible part
of the constraints, using a quantitative measure of such infeasibility. Generalizing this reasoning, we obtain:

Definition 3.3. (CAKKT) Let x̄ be a feasible point. We say that x̄ satisfies the Complementary Approximate
Karush-Kuhn-Tucker (CAKKT) condition if there exist sequences {xk}k∈N → x̄ and {Λk}k∈N ⊂ Ko such that
(9) and (11) hold, and

〈Λk,ΠKo(G(xk))〉 → 0. (18)

Observe that CAKKT as in Definition 3.3 is indeed a generalization of the condition with the same name
from [13] for (NLP), since ΛkiGi(x

k) → 0 in this case, independently on the sign of Gi(x
k). Moreover, note

that CAKKT is essentially AGP upgraded with (18). Therefore, in view of Moreau’s Decomposition, CAKKT
clearly implies both, AGP and TAKKT. But since they are independent, the implications are strict. We proceed
by showing that CAKKT is a genuine necessary optimality condition, that is, a property that must be satisfied
by every local minimizer, even the ones that do not satisfy any constraint qualification.

Theorem 3.2. If x̄ is a local minimizer of (NCP), then x̄ satisfies the CAKKT condition.

Proof. Let x̄ be a local minimizer of (NCP) in B[x̄, δ], for some δ > 0. Then, x̄ is a global minimizer of

Minimize
x∈Rn

f(x) +
1

2
‖x− x̄‖2,

subject to G(x) ∈ K
‖x− x̄‖ ≤ δ.
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Let {ρk}k∈N →∞ and, for each k ∈ N, consider the penalized optimization problem

Minimize
x∈Rn

f(x) +
1

2
‖x− x̄‖2 + ρk

1

2
‖ΠKo(G(x))‖2,

subject to ‖x− x̄‖ ≤ δ.
(19)

Denote by xk a global solution of (19). Using analogous arguments as in the standard external penalty algorithm
convergence proof [61], we see that xk → x̄, and thus ‖xk − x̄‖ < δ for k large enough. Using Fermat’s rule
applied to (19), we have

∇f(xk) + (xk − x̄) +DG(xk)∗Λk = 0, where Λk := ρkΠKo(G(xk)) ∈ Ko,

and the expression for the derivative follows from (1), along with the definition of orthogonal projection, and
Moreau’s decomposition. Thus, (9) holds. Furthermore, by the definition of Λk and Lemma 2.1, we see that
〈Λk,ΠK(G(xk))〉 = 〈ρkΠKo(G(xk)),ΠK(G(xk))〉 = 0, that is, (11) holds. We proceed to show that (18) is
satisfied. First, from the optimality of xk we have

f(xk) +
1

2
‖xk − x̄‖2 +

1

2
〈Λk,ΠKo(G(xk))〉 = f(xk) +

1

2
‖xk − x̄‖2 + ρk

1

2
‖ΠKo(G(xk))‖2 ≤ f(x̄),

which leads to

0 ≤ 〈Λk,ΠKo(G(xk))〉 = ρk‖ΠKo(G(xk))‖2 ≤ 2(f(x̄)− f(xk))− ‖xk − x̄‖2,

and since xk → x̄ and f(xk)→ f(x̄), we see that 〈Λk,ΠKo(G(xk))〉 → 0. Thus, CAKKT holds at x̄.

Consequently, from our previous discussion:

Corollary 3.3. If x̄ is a local minimizer of (NCP), then x̄ satisfies AGP and TAKKT.

In the next section, we propose an Augmented Lagrangian algorithm for NCP based on projections onto Ko

and we build its convergence theory using the new conditions.

4 An Augmented Lagrangian algorithm

Employing Augmented Lagrangian methods to find the solution of optimization problems is a very successful
technique for solving finite-dimensional problems, and it is described in several textbooks on continuous opti-
mization, for example, [18, 19, 20, 61, 74] to cite a few of them. In this section, we will show that a variant
of the Powell-Hestenes-Rockafellar [65, 46, 72] Augmented Lagrangian algorithm generates AGP sequences
without any additional condition, and also CAKKT (and TAKKT) sequences under the so-called generalized
 Lojasiewicz inequality (see (28) for the definition). The Augmented Lagrangian variant that we consider is a
direct generalization of the one considered in [10, 13] and in the book [20]; the main contrasting feature of it
is that it adopts a step control strategy (Step 3) and a safeguarding strategy (Step 2). The effects of these
modifications over the “quality of convergence” of the method are discussed, at least in the particular case of
NLP, in [5, 49].

Given ρ > 0, let Lρ : Rn ×Ko → R be the Augmented Lagrangian function of (NCP), defined as

Lρ(x,Λ) := f(x) +
ρ

2

[∥∥∥∥ΠKo

(
G(x) +

Λ

ρ

)∥∥∥∥2

−
∥∥∥∥Λ

ρ

∥∥∥∥2
]
,

whose partial derivative with respect to x is given by

∇xLρ(x,Λ) = ∇f(x) +DG(x)∗
(
ρΠKo

(
G(x) +

Λ

ρ

))
. (20)

The expression of the derivative in (20) is what motivates the particular choice of Lagrange multiplier update
in the following algorithm:
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Algorithm 1 General framework: Augmented Lagrangian

Inputs: A sequence {εk}k∈N of positive scalars such that εk → 0; a nonempty convex compact set B ⊂ Ko; real

parameters τ > 1, σ ∈ (0, 1), and ρ0 > 0; and initial points (x−1, Λ̂0) ∈ Rn × B. Also, define ‖V −1‖ =∞.

For every k ∈ N:
1. Compute some point xk such that

‖∇xLρk(xk, Λ̂k)‖ ≤ εk; (21)

2. Update the multiplier

Λk := ρkΠKo

(
G(xk) +

Λ̂k

ρk

)
, (22)

and compute some Λ̂k+1 ∈ B (typically, the projection of Λk onto B);

3. Define

V k :=
Λ̂k

ρk
−ΠKo

(
G(xk) +

Λ̂k

ρk

)
; (23)

4. If ‖V k‖ ≤ σ‖V k−1‖, set ρk+1 := ρk. Otherwise, choose some ρk+1 ≥ τρk.

Note that Step 4 implies that either ρk →∞ or there is some k0 ∈ N such that ρk = ρk0 , for every k > k0. In
the latter case, it holds also ||V k|| → 0. With this in mind, we proceed by showing that Algorithm 1 generates
sequences whose limit points satisfy AGP.

Theorem 4.1. Let x̄ be a feasible limit point of a sequence {xk}k∈N generated by the Augmented Lagrangian
method. Then, x̄ satisfies AGP.

Proof. First, from (21) together with (22) and (20), we get

‖∇f(xk) +DG(xk)∗Λk‖ ≤ εk, with Λk = ρkΠKo(G(xk) + ρ−1
k Λ̂k), (24)

which implies (9) and Λk ∈ Ko. Taking a subsequence if necessary, we can suppose that {xk}k∈N → x̄. We
consider two cases depending on whether the sequence {ρk}k∈N is bounded or not:

1. Suppose that ρk →∞. By (24) and Lemma 2.1 item 3, we have 〈Λk,ΠK(G(xk) + ρ−1
k Λ̂k)〉 = 0 for every

k ∈ N, which yields

|〈Λk,ΠK(G(xk))〉| = |〈Λk,ΠK(G(xk))−ΠK(G(xk) + ρ−1
k Λ̂k)〉|

≤ ‖Λk‖‖ΠK(G(xk))−ΠK(G(xk) + ρ−1
k Λ̂k)‖

≤ ‖Λk‖‖ρ−1
k Λ̂k‖,

where the inequalities follow from the Cauchy-Schwarz inequality the nonexpansiveness of the projection,

respectively. But note that ‖ρ−1
k Λk‖‖Λ̂k‖ = ‖ΠKo

(
G(xk) + ρ−1

k Λ̂k
)
‖‖Λ̂k‖ converges to zero by the

continuity of the projection, so 〈Λk,ΠK(G(xk))〉 → 0 and AGP holds at x̄.

2. If {ρk}k∈N is a bounded sequence, it must be constant for sufficiently large k. Note that

〈Λk,ΠK(G(xk))〉 = ρ−1
k 〈ΠKo(ρkG(xk) + Λ̂k),ΠK(ρkG(xk))〉

= ρ−1
k 〈ΠKo(ρkG(xk) + Λ̂k),ΠK(ρkG(xk))−ΠK(ρkG(xk) + Λ̂k)〉,

(25)

where in the second equality, we use 〈ΠKo(ρkG(xk)+Λ̂k),ΠK(ρkG(xk)+Λ̂k)〉 = 0. It remains to show that

the right-hand side of (25) goes to zero. In fact, since Λk = ΠKo(ρkG(xk) + Λ̂k) is a bounded sequence,

we only need to prove that ΠK(ρkG(xk))−ΠK(ρkG(xk) + Λ̂k) converges to zero. Indeed, the reasoning is
as follows:

By Step 4 of Algorithm 1, we see that V k converges to zero, and hence ρkV
k → 0. Using the definition of

V k we get that
Λk − Λ̂k = ΠKo(ρkG(xk) + Λ̂k)− Λ̂k = −ρkV k → 0,
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and thus Λk = Λ̂k−ρkV k characterizes a bounded sequence. To show that ΠK(ρkG(xk))−ΠK(ρkG(xk)+

Λ̂k) converges to zero, consider the next expression

ρkG(xk)−ΠK(ρkG(xk) + Λ̂k) = ρkG(xk) + Λ̂k −ΠK(ρkG(xk) + Λ̂k)− Λ̂k

= ΠKo(ρkG(xk) + Λ̂k)− Λ̂k = Λk − Λ̂k → 0.
(26)

Using the above expression and the nonexpansiveness of the projection onto K, we get that

‖ΠK(ρkG(xk))−ΠK(ρkG(xk) + Λ̂k)‖ ≤ ‖ρkG(xk)−ΠK(ρkG(xk) + Λ̂k)‖ → 0. (27)

Thus, we obtain that x̄ is an AGP point associated with {xk}k∈N.

Remark 1. Inexact Restoration (IR) algorithms are well-known methods for solving NLP problems (see [23,
58, 59] for details). The philosophy behind them consists of dealing with feasibility and optimality in different
stages. Hence, IR methods fit well in difficult problems whose structure allows the implementation of an efficient
feasibility restoration procedure [28]. The AGP condition plays a pivotal role in obtaining global convergence
results for IR methods [21], but its applicability beyond that class of algorithms was still unclear. Theorem
4.1 solves this issue by showing that the convergence theory of the Augmented Lagrangian is also supported
by AGP, which is not an obvious result. From this point of view, Theorems 3.1 and 4.1 show that IR methods
generate solution candidates at least as good as Augmented Lagrangian methods for NLP.

Next, we show that Algorithm 1 generates CAKKT sequences under an additional condition called generalized
 Lojasiewicz inequality, that is satisfied by a point x̄ and a function Ψ when there exist some δ > 0 and a
continuous function ψ(x) : B(x̄, δ) ⊂ Rn → R such that ψ(x)→ 0 when x→ x̄, and

|Ψ(x)−Ψ(x̄)| ≤ ψ(x)‖DΨ(x)‖ for every x ∈ B(x̄, δ). (28)

This property coincides with the inequality with the same name that was proposed in [13]. Such types of
property have been extensively used in optimization methods, complexity theory, stability of gradient systems
etc. See, for instance, [15, 16, 24, 31, 52, 53, 55] and references therein. For instance, all analytic functions
satisfy it, and so does every function that satisfies the classical  Lojasiewicz inequality [55]. Now, we may resume
our results:

Theorem 4.2. Let x̄ be a feasible limit point of a sequence {xk}k∈N generated by the Augmented Lagrangian

Algorithm. If x̄ satisfies (28) for Ψ(x) = (1/2) ‖ΠKo(G(x))‖2, then x̄ satisfies CAKKT.

Proof. For the sake of simplicity, we can suppose that {xk}k∈N → x̄. By Theorem 4.1, 〈Λk,ΠK(G(xk))〉
converges to zero. Thus, it suffices to show that 〈Λk,ΠKo(G(xk))〉 converges to zero as well. Similarly to the
proof of the previous theorem, we split this proof into two cases, depending on whether {ρk}k∈N is a bounded
sequence or not:

1. Suppose that {ρk}k∈N is unbounded. We start by showing that ρk‖ΠKo(G(xk))‖2 → 0.

From the generalized  Lojasiewicz inequality, there exists some function ψ such that

1

2
‖ΠKo(G(xk))‖2 = |Ψ(xk)| ≤ ψ(xk)‖DΨ(xk)‖ = ψ(xk)‖DG(xk)∗ΠKo(G(xk))‖,

and we obtain the following inequality

ρk‖ΠKo(G(xk))‖2 ≤ 2ψ(xk)‖ρkDG(xk)∗ΠKo(G(xk))‖.

Now, we proceed by finding an upper bound for the sequence ‖ρkDG(xk)∗ΠKo(G(xk))‖:

‖ρkDG(xk)∗ΠKo(G(xk))‖ ≤ ‖DG(xk)∗(Λk − ρkΠKo(G(xk)))‖+ ‖DG(xk)∗Λk‖
≤ ‖DG(xk)∗‖‖Λk − ρkΠKo(G(xk)))‖+ ‖DG(xk)∗Λk‖
≤ ‖DG(xk)∗‖‖ΠKo(ρkG(xk) + Λ̂k)−ΠKo(ρkG(xk)))‖+ ‖DG(xk)∗Λk‖.

Furthermore, from ‖ΠKo(ρkG(xk) + Λ̂k)−ΠKo(ρkG(xk)))‖ ≤ ‖Λ̂k‖, we see that

‖ρkDG(xk)∗ΠKo(G(xk))‖ ≤ ‖DG(xk)∗‖‖Λ̂k‖+ ‖DG(xk)∗Λk‖
≤ ‖DG(xk)∗‖‖Λ̂k‖+ ‖∇f(xk)‖+ εk,

(29)

where in the second inequality, we use that ‖∇f(xk) + DG(xk)∗Λk‖ ≤ εk, (Step 1 of Algorithm 1).
Thus, (29) is bounded by some scalar M > 0, due to the continuity of DG and ∇f near x̄. Thus,
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ρk‖ΠKo(G(xk))‖2 ≤ 2ψ(xk)M . Using the fact that ψ(xk) → 0, we get that ρk‖ΠKo(G(xk))‖2 → 0. We
proceed by computing 〈Λk,ΠKo(G(xk))〉. Indeed,

〈Λk,ΠKo(G(xk))〉 = 〈ΠKo(ρkG(xk) + Λ̂k),ΠKo(G(xk))〉
= 〈ΠKo(ρkG(xk) + Λ̂k)−ΠKo(ρkG(xk)),ΠKo(G(xk))〉+

+〈ΠKo(ρkG(xk)),ΠKo(G(xk))〉
= 〈ΠKo(ρkG(xk) + Λ̂k)−ΠKo(ρkG(xk)),ΠKo(G(xk))〉+

+ρk‖ΠKo(G(xk))‖2.

(30)

Since ρk‖ΠKo(G(xk))‖2 → 0, we only need to show that the first expression of (30) goes to zero. Now,

since ΠKo(G(xk))→ ΠKo(G(x̄)) = 0 and from the boundedness of {Λ̂k}, we get that:

|〈ΠKo(ρkG(xk) + Λ̂k)−ΠKo(ρkG(xk)),ΠKo(G(xk))〉| ≤ ‖Λ̂k‖‖ΠKo(G(xk))‖ → 0.

Thus 〈Λk,ΠKo(G(xk))〉 → 0, and as a consequence CAKKT holds at x̄.

2. Suppose that {ρk}k∈N is a bounded sequence. By the proof of Theorem 4.1, we see that {Λk}k∈N is a
bounded sequence, and hence 〈Λk,ΠKo(G(xk))〉 goes to zero, since ΠKo(G(xk))→ ΠKo(G(x̄)) = 0.

In both cases, we have shown that x̄ is a CAKKT point associated with {xk}k∈N.

The Augmented Lagrangian method presented in [10, Algorithm 1] for NLSDP was proven to generate
TAKKT sequences under generalized  Lojasiewicz [10, Theorem 5.2]. Hence, Theorem 4.2 improves this result
not only in terms of generality, but also in terms of refinement of the convergence theory. If (28) is not satisfied,
then Algorithm 1 may generate sequences that do not satisfy CAKKT, as it is shown by the counterexample
after [13, Theorem 5.1] (note that Algorithm 1 is a direct generalization of the augmented Lagrangian presented
in [13]).

For completing the convergence theory of Algorithm 1, it is necessary to know how likely it is to reach
feasible points. In fact, even though one can not guarantee that every limit point of the sequence {xk}k∈N
generated by Algorithm 1 will be always feasible, at least it is possible to prove that it has the tendency of
finding feasible points, in the following sense:

Proposition 4.3. Every limit point x̄ of a sequence {xk}k∈N generated by Algorithm 1 is a stationary point of

Minimize
x∈Rn

||ΠKo(G(x))||2. (31)

Proof. Taking a subsequence if necessary, suppose that xk → x̄. If {ρk}k∈N is bounded, it must converge to

some ρ̄ and then Λ̂k → Λ̂. Also, in this case V k → 0, which means Λ̂ = ΠKo(Λ̂ + ρ̄G(x̄)). Then, by Lemma 2.1,
item 1, we get ρ̄G(x̄) ∈ K, so ΠKo(G(x̄)) = 0 and x̄ is a global solution of (31). On the other hand, if {ρk}k∈N
is unbounded, by Step 1 and (20), note that

1

ρk
(∇f(xk) +DG(xk)∗Λk) =

∇f(xk)

ρk
+DG(xk)∗ΠKo

(
Λ̂k

ρk
+G(xk)

)
→ 0.

Then, since ∇f(xk)→ ∇f(x̄) and {Λ̂k}k∈N is bounded, we obtain DG(x̄)∗ΠKo(G(x̄)) = 0, which means x̄ is a
stationary point of (31).

Remark 2. We highlight that our convergence theory for Algorithm 1 allows the set K to have empty interior
and it does not demand self-duality. For instance, it can be applied to optimization problems involving the
classical set of Euclidean Distance Matrices (EDM) of dimension m, which is defined as

Em := {M ∈ Sm : ∃p1, . . . , pm ∈ Rr,∀i, j ∈ {1, . . . ,m},Mij = ‖pi − pj‖22}.

It is a closed convex cone because it can be seen as the image of Sm+ through the linear operator

T (Y ) := diag(Y ) eT + ediag(Y )T − 2Y,

where e is a vector of ones and diag(M) := (M11, . . . ,Mmm). Also, Em is not self dual. Since every M ∈ Em
is hollow, that is, diag(M) = 0, the EDM cone has empty interior. In this case it is possible to build a general
convergence theory of algorithms over the EDM cone via sequential conditions, even when Robinson’s CQ
does not hold. In particular, algorithms based on projections onto Em or its polar, such as the Augmented
Lagrangian method we propose, can benefit from the recent advances towards efficient numerical methods to
compute projections while keeping a fixed embedding dimension [66]. More details about Euclidean Distance
Matrices can be found in [51].
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5 The AKKT condition

Until this point, we have presented generalizations of CAKKT and AGP via projections onto K and Ko, but
we have not addressed yet a generalization of AKKT, which is the most natural and simple condition in NLP.
However, in Sections 3 and 4, everything was built starting from TAKKT instead of AKKT. Historically, AKKT
was born in NLP as a natural way of representing limit points of sequences generated by algorithms and studying
their properties. But, in NCP, we will present it arising from a much more theoretical field, which is the theory
of perturbations in optimization problems.

Let us recall the KKT conditions at a point x̄ ∈ Rn with a multiplier Λ̄ ∈ Ko in the form of a generalized
equation (in the sense of Robinson [71]):(

∇f(x̄) +DG(x̄)∗Λ̄
G(x̄)

)
︸ ︷︷ ︸

F(x̄,Λ̄)

∈
[

{0}
{Y ∈ K : 〈Y, Λ̄〉 = 0}

]
︸ ︷︷ ︸

N (Λ̄)

.

Given some ε > 0, the standard perturbation theory (see, for example, [25, 44, 45]) can be used as inspiration
to say that a point x ∈ B(x̄, ε) satisfies the KKT conditions with error ε when there is a multiplier Λ ∈ Ko

and some perturbation vector ξ ∈ Rn × E such that F(x,Λ) + ξ ∈ N (Λ) and ‖ξ‖ ≤ ε. This strongly suggests a
sequential optimality condition:

Definition 5.1. (AKKT) A feasible point x̄ satisfies the Approximate KKT (AKKT) condition when there
exist sequences {yk}k∈N → 0, {xk}k∈N → x̄ and {Λk}k∈N ⊂ Ko such that (9) holds, G(xk) + yk ∈ K, and

〈Λk, G(xk) + yk〉 = 0,∀k ∈ N. (32)

It turns out that Definition 5.1 coincides with [67, Definition 2.5], which to the best of our knowledge,
employed for the first time perturbed KKT ideas to improve global convergence results of algorithms (for
instance, Sequential Quadratic Programming (SQP) methods). At the time, the authors did not prove it was an
optimality condition. Note that AKKT as in Definition 5.1 is distinguished for not directly relying on projections,
eigenvalues or other similar objects, but giving some degree of freedom to the approximation instead, what makes
it much more versatile and simple than the others. On the other hand, since the perturbation is inside the inner
product, AKKT has a more solid structure to work with, when compared to the others. Also, when Definition
5.1 is specialized to the NLP, the NLSDP or the NSOCP contexts, it is consistent with the existing concepts
with the same name from [3, Section 2], [10, Definition 3.1], and [2, Definition 3.3], respectively. This is clarified
in Subsection 6.1.

For relating AKKT with the other conditions in NCP, we begin by proving that AGP implies AKKT:

Proposition 5.1. If x̄ satisfies the AGP condition, then it must also satisfy AKKT.

Proof. If x̄ satisfies AGP, then there are sequences {Λ̃k}k∈N ⊂ Ko and {xk}k∈N → x̄ satisfying (9) and (11).
Denote by yk the global solution of

Minimize
y∈E

1

2
‖y‖2 − 〈Λ̃k, G(xk) + y〉,

subject to G(xk) + y ∈ K
(33)

and consider the feasible point y := −ΠKo(G(xk)) of (33). Then,

(1/2)‖yk‖2 − 〈Λ̃k, G(xk) + yk〉 ≤ (1/2)‖ΠKo(G(xk))‖2 − 〈Λ̃k, G(xk)−ΠKo(G(xk))〉
= (1/2)‖ΠKo(G(xk))‖2 − 〈Λ̃k,ΠK(G(xk))〉. (34)

Taking k → ∞ in (34), since ΠKo(G(xk)) → 0 and AGP holds, we see that yk → 0 and 〈Λ̃k, G(xk) + yk〉 → 0,
because Λ̃k ∈ Ko and G(xk) + yk ∈ K. Now, the necessary optimality condition for yk in (33) implies

0 ∈ yk − Λ̃k + {Θ ∈ Ko : 〈Θ, G(xk) + yk〉 = 0}

Now, choosing Λk := Λ̃k − yk for all k ∈ N, we obtain that AKKT holds at x̄ with the sequences {xk}k∈N,
{Λk}k∈N, and {yk}k∈N.

Though, the converse is not necessarily true, due to [3, Counterexample 3.1] that shows that AKKT does
not imply AGP in NLP (and Theorem 3.1). Also, [10, Example 5.2] and [2, Example 3.1] show that TAKKT
and AKKT do not imply each other in NLP, hence the same is valid for NCP.

Since AKKT is a weak condition, in comparison with AGP and CAKKT, we expect it to be more commonly
generated by algorithms designed for solving (NCP). An interesting fact is that the vector yk of Definition 5.1
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formalizes the idea of seeing joint feasibility-complementarity measures, which are commonly used in algorithms,
as certificates of approximate optimality along with the Lagrangian residue. For example, it is easy to verify
that Algorithm 1 generates sequences {xk}k∈N and {Λk}k∈N such that every feasible limit point x̄ of {xk}k∈N
satisfy AKKT. In this case, without loss of generality, we can assume {xk}k∈N → x̄. Then AKKT can be verified
by taking the sequence {yk}k∈N such that yk = V k for every k; then G(xk) + yk ∈ K and

〈Λk, G(xk) + yk〉 = ρk

〈
ΠKo

(
G(xk) +

Λ̂k

ρk

)
,

(
G(xk) +

Λ̂k

ρk

)
−ΠKo

(
G(xk) +

Λ̂k

ρk

)〉
= 0,

by Lemma 2.1. Condition (9) follows directly from Step 1, since ∇xLρk(xk,Λk) = ∇f(xk) + DG(xk)∗Λk for

the multiplier choice of Step 2. Also, if {ρk}k∈N is unbounded, it follows that yk → −ΠKo(G(x̄)) = 0; but if
it is bounded, then ||yk|| → 0 due to Step 4. Thus, it can be said that AKKT is the most simple and natural
sequential condition amongst the ones we presented when viewed from the algorithmic and the theoretical
perspective.

When K is a product of closed convex cones, say K = K1 × · · · × Kr and E = E1 × · · · × Em where Ki ⊂ Ei
for all i ∈ {1, . . . , r}, it is possible to see that Definition 5.1 resembles the classical AKKT from NLP via the
following lemma:

Lemma 5.2. Let x̄ be a feasible point of (NCP). If x̄ satisfies AKKT, then there are sequences {xk}k∈N → x̄
and {Λk}k∈N ⊂ Ko such that (9) holds and Λki = 0 whenever Gi(x̄) ∈ int Ki, for sufficiently large k.

Proof. Let x̄ be an AKKT point associated with the sequences {(y1, . . . , yr)
k}k∈N → 0, {xk}k∈N → x̄ and

{(Λ1, . . . ,Λr)
k}k∈N ⊂ Ko. Proving (9) is trivial. Then, for every index i ∈ {1, . . . , r} such that Gi(x̄) ∈ int Ki,

there is some k0 ∈ N such that zki := Gi(x
k) + yki ∈ int Ki for every k > k0. Hence, for every such k and i,

there is some αki > 0 such that zki + αki Λki ∈ Ki, so we have 0 ≥ 〈Λki , zki + αki Λki 〉 = αki ‖Λki ‖2. Thus, Λki = 0
when Gi(x̄) ∈ int Ki, for all k > k0.

Note that the converse holds in NLP when K = Rm+ is seen as the cartesian product of m copies of R+.
Therefore, Definition 5.1 is consistent with the usual form of AKKT in NLP. In the next section, we contextualize
the other conditions in other classical particular cases of (NCP) as well.

Remark 3. In Steck’s PhD thesis [75], it was introduced a new sequential optimality condition, which was
further developed in [26, Definitions 3.1 and 3.2]. In view of [26, Remark 4.1], since E is finite-dimensional and
K is a closed convex cone, their condition can be defined for (NCP) similarly to Definition 3.1, but replacing (10)
by

lim inf
k→∞

〈Λk, G(xk)〉 ≥ 0. (35)

Following [26], we will call this condition s-AKKT. It is immediate to see that s-AKKT is implied by TAKKT.
Moreover, if AGP holds at a feasible point x̄ and K is self-dual, then Moreau’s decomposition tells us that

lim inf
k→∞

〈Λk, G(xk)〉 = lim inf
k→∞

−〈Λk,ΠK(−G(xk))〉 ≥ 0.

Then, if K is self-dual, AGP implies s-AKKT. However, since AGP and TAKKT are independent, then s-AKKT
is strictly implied by both of them in this case. Since TAKKT does not imply AKKT, then s-AKKT does not
imply AKKT either. Conversely, Example 3.2 shows that AKKT does not imply s-AKKT; in fact, any sequence
that satisfies (17) must have lim inf

k→∞
ΛkG(xk1 , x

k
2) = Λkxk2h(xk1) → −1 < 0, since xk2 → 1. In summary, if K is

self-dual, s-AKKT is strictly weaker than TAKKT, strictly weaker than AGP, but independent of AKKT. If K
is not self-dual, Example 3.2 also shows that AGP is independent of s-AKKT, but the other relations still hold.
It is worth mentioning that all notions of convergence considered in [26] are equivalent in a finite dimensional
setting, which is why we only address s-AKKT.
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The relations between the new sequential optimality conditions of this paper are presented in the figure
below, where the arrows indicate (strict) implications.

Local minimizer

CAKKT

AGP

AKKT

TAKKT

s-AKKT

Figure 1: Relationship of the new sequential optimality conditions.

6 Contextualization in some particular cases of NCP

In this section, we specialize CAKKT, AGP, and AKKT, in the contexts of NLP, NLSDP, and NSOCP, to
illustrate the stopping criteria associated with each of them in more practical terms. The TAKKT condition
does not acquire any specific format when reduced to any context, so it is not included in this section.

6.1 Nonlinear programming

Consider the standard nonlinear programming problem with q inequality constraints and p equality constraints:

Minimize
x∈Rn

f(x),

subject to h(x) = 0,

g(x) ≤ 0.

(NLP)

The most straightforward way of viewing (NLP) as a particular case of (NCP) is directly phrasing the
constraints as (h(x), g(x)) ∈ {0}p × Rq−, but Moreau’s Decomposition is meaningless when K = {0}p, and
CAKKT reduces to TAKKT in this case. However, the CAKKT from [13] is strictly stronger than TAKKT,
which indicates that this is not the best way of modelling (NLP) as a particular case of (NCP) concerning
CAKKT. The AKKT and AGP conditions do not present the same behavior. It is noteworthy that if one
considers (NCP) with separate equality constraints, i.e., with two blocks of constraints: h(x) = 0 and G(x) ∈ K,
then every definition from this paper can be straightforwardly extended to this new problem and, in this case,
K can be taken as Rq−. Then, we consider an auxiliary formulation of (NLP), where equality constraints are
treated as two inequalities:

Minimize
x∈Rn

f(x),

subject to G(x) := (h(x),−h(x), g(x)) ∈ Rp− × Rp− × Rq−.
(NLP-Auxiliary)

The Lagrange multipliers are then written as

Λk = (ωk1+, . . . , ω
k
p+, ω

k
1−, . . . , ω

k
p−, µ

k
1 , . . . , µ

k
q ) ∈ Rp+ × Rp+ × Rq+.

Our next result concerns about the specializations of CAKKT, AGP, and AKKT, from (NCP) to (NLP), but
we use (NLP-Auxiliary) as an intermediary step for recovering the original (NLP) definitions of such conditions.

Proposition 6.1. Let x̄ be a feasible point of (NLP). Then x̄ satisfies:

(a) AKKT for (NLP-Auxiliary) if, and only if, µkj = 0 whenever gj(x̄) < 0, for every sufficiently large k and

some sequences {xk}k∈N → x̄, {ωk}k∈N ⊂ Rp, and {µk}k∈N ⊂ Rq+ such that

∇f(xk) +

p∑
i=1

ωki∇hi(xk) +

q∑
j=1

µkj∇gj(xk)→ 0; (36)

(b) AGP for (NLP-Auxiliary) if, and only if, µkj min{0, gj(xk)} → 0 and lim inf
k→∞

ωki hi(x
k) ≥ 0, for every i ∈

{1, . . . , p} and every j ∈ {1, . . . , q}; for some sequences {xk}k∈N → x̄, {µk}k∈N ⊂ Rq+, and {ωk}k∈N ⊂ Rp,
such that (36) holds;
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(c) CAKKT for (NLP-Auxiliary) if, and only if, µkj gj(x
k) → 0 and ωki hi(x

k) → 0, for every i ∈ {1, . . . , p}
and every j ∈ {1, . . . , q}; for some sequences {xk}k∈N → x̄, {µk}k∈N ⊂ Rq+, and {ωk}k∈N ⊂ Rp, such that
(36) holds;

Proof. (a) AKKT: If AKKT holds for (NLP-Auxiliary), there exist sequences {xk}k∈N → xk, {Λk}k∈N ⊂ Ko,
and {Y k}k∈N ⊂ Rp ×Rp ×Rq, where Y k = (zk+, z

k
−, y

k)→ 0, such that h(xk) + zk+ ≤ 0, −h(xk) + zk− ≤ 0,

and g(xk) + yk ≤ 0 for every k, and

〈G(xk) + Y k,Λk〉 =

p∑
i=1

ωki+(hi(x
k) + zki+) +

p∑
i=1

ωki−(−hi(xk) + zki−) +

q∑
j=1

µkj (gj(x
k) + ykj ) = 0. (37)

Since all terms are nonnegative, they are all zero and, consequently, whenever gj(x̄) < 0 we have gj(x
k) +

ykj < 0 for sufficiently large k. That implies µkj = 0 for every such k and j. Take ωki := ωki+ − ωki− to
obtain (36) from (9).

Conversely, consider the following natural choice: Y k := (−h(xk), h(xk), ĝj(x
k))→ 0, where

ĝj(x
k) :=

{
0, if gj(x̄) < 0

−gj(xk), otherwise,

Then, for sufficiently large k, we have (37) and G(xk)+Y k ∈ K, AKKT is satisfied with ωki+ := max{0, ωki }
and ωki− := −min{0, ωki }.

(b) AGP: In this case, 〈Λk,ΠK(G(xk))〉 → 0 is equivalent to saying that

p∑
i=1

ωki+ min{0, hi(xk)}+

p∑
i=1

ωki−min{0,−hi(xk)}+

q∑
j=1

µkj min{0, gj(xk)} → 0.

Since each part of the sum has the same sign, we get that ωki−min{0,−hi(xk)} → 0, ωki+ min{0, hi(xk)} →
0, and µkj min{0, gj(xk)} → 0. Hence, we have that µkj min{0, gj(xk)} → 0 for every j ∈ {1, . . . , q} and,

defining ωki := ωki+ − ωki−, we observe that

ωki hi(x
k) = ωki+ min{0, hi(xk)} − ωki−min{0, hi(xk)} − ωki+ min{0,−hi(xk)}+ ωki−min{0,−hi(xk)}. (38)

Then, note that the first and the last term of the right-hand side of (38) both vanish in the limit, and the
middle terms are nonnegative. Hence, lim inf

k→∞
ωki hi(x

k) ≥ 0, for every i ∈ {1, . . . , p}.

Conversely, set ωki+ := max{0, ωki } and ωki− := −min{0, ωki }. Then, for each k, only one term of the
right-hand side of (38) can be nonzero, so its first and last terms must converge to zero, since they are
nonpositive.

(c) CAKKT: Here, we get

〈Λk,ΠK(G(xk))〉 = 〈ωk+,min{h(xk), 0}〉+ 〈ωk−,min{−h(xk), 0}〉+ 〈µk,min{g(xk), 0}〉

and
〈Λk,ΠKo(G(xk))〉 = 〈ωk+,max{h(xk), 0}〉+ 〈ωk−,max{−h(xk), 0}〉+ 〈µk,max{g(xk), 0}〉,

so if both tend to zero, define ω̂k := ωk+ − ωk− and we obtain ω̂ki hi(x
k)→ 0 and µkj gj(x

k)→ 0.

The converse is analogous to the previous item, with the same choice of multipliers:

ωki+ := max{0, ωki } and ωki− := −min{0, ωki }.

Note that from this point of view, our definitions are consistent with the original AKKT from [3], the AGP
from [60] (which follows from Theorem 3.1), and the CAKKT from [13], respectively.
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We summarize our results in the following table:

Approximate complementarity condition

AKKT gj(x̄) < 0⇒ µkj = 0,∀j and k sufficiently large.

AGP µkj min{gj(xk), 0} → 0 and lim inf
k→∞

ωki hi(x
k) ≥ 0, ∀i,∀j.

CAKKT µkj gj(x
k)→ 0 and ωki hi(x

k)→ 0, ∀i,∀j.

Table 6.1: Sequential conditions when specialized to (NLP).

Since the sequential conditions mostly differ in how they deal with approximate complementarity, only this
condition is made explicit in Table 6.1.

6.2 Nonlinear semidefinite programming

Here, we recall the classical form of an NLSDP problem:

Minimize
x∈Rn

f(x),

subject to G(x) ∈ Sm− ,
(NLSDP)

which is (NCP) with E = Sm, 〈A,B〉 := tr(AB) is the (Frobenius) inner product given by the trace of AB, and
K = Sm− . We recall that Ko = −K and every symmetric matrix A ∈ E has a spectral decomposition, that is,

there exits an orthogonal matrix U such that A = UDUT , where D = Diag(λU1 (A), . . . , λUm(A)) is a diagonal
matrix and λUi (A) are eigenvalues of A ordered according to the eigenvectors in the columns of U . Moreover,

ΠK(A) = UDiag(min{λU1 (A), 0}, . . . ,min{λUm(A), 0})UT

and a similar relation holds for ΠKo(A) with max instead of min.
When no order is specified, we consider λ1(A) ≤ · · · ≤ λm(A). Note that for every i ∈ {1, . . . ,m} we have

λi(−A) = −λm−i+1(A). Also, the following inequality is important to our analyses: For every A,B ∈ Sm− , we
have the inequality

m∑
i=1

λi(A)λm−i+1(B) ≤ tr(AB) ≤
m∑
i=1

λi(A)λi(B). (39)

For its proof see [57].
Now, we specialize our conditions from (NCP) to (NLSDP):

Proposition 6.2. Let x̄ be a feasible point of (NLSDP). Then x̄ satisfies:

(a) AKKT if, and only if, there exist sequences {xk}k∈N → x̄, {Λk}k∈N ⊂ Ko, and a sequence of orthogonal
matrices Sk → U , where U diagonalizes G(x̄) and each Sk diagonalizes Λk, such that (9) holds and

λS
k

i (Λk) = 0, if λUi (G(x̄)) < 0, for sufficiently large k.

(b) AGP implies that, for every i,
min{0, λi(G(xk))}λi(Λk)→ 0,

for some sequences {xk}k∈N → x̄ and {Λk}k∈N ⊂ Ko such that (9) holds;

(c) CAKKT implies that, for every i,

min{0, λi(G(xk))}λi(Λk)→ 0 and min{0,−λm−i+1(G(xk))}λi(Λk)→ 0,

for some sequences {xk}k∈N → x̄ and {Λk}k∈N ⊂ Ko such that (9) holds;

Proof. (a) AKKT: If there is a sequence {yk}k∈N → 0 such that G(xk) + yk ∈ K and 〈Λk, G(xk) + yk〉 = 0
for every k, the latter implies that G(xk) + yk and Λk are simultaneously diagonalizable, that is, for
every k, there is a matrix Sk such that G(xk) + yk = SkΘk(Sk)T and Λk = SkΓk(Sk)T , where Θk =

Diag(λS
k

i (G(xk) + yk)) and Γk = Diag(λS
k

i (Λk)). The continuity of G and the convergence of {xk}k∈N
imply that Sk → U , for some orthogonal matrix U . Then U diagonalizes G(x̄) since G(xk) + yk → G(x̄),

and if λUi (G(x̄)) < 0, then for sufficiently large k we have λS
k

i (G(xk) + yk) < 0 as well. Then λS
k

i (Λk) = 0
for those k. Conversely, let x̄ be a feasible point associated with the sequences {Λk}k∈N, {xk}k∈N → x̄, and

{Sk}k∈N → U , where each Sk diagonalize Λk and U diagonalizes G(x̄), such that λS
k

i (Λk) = 0 whenever
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λUi (G(x̄)) < 0. Without loss of generality and to simplify the notation, we can suppose that U leaves the
eigenvalues of G(x̄) increasingly ordered. Also suppose that there are α negative eigenvalues and β zero
eigenvalues in G(x̄), with α + β = m, and for some indexed matrix Ak, define Ãk := (Sk)TAkSk. Then,
choose

yk := Sk
[

0 −G̃(xk)αβ
−G̃(xk)βα −G̃(xk)ββ

]
(Sk)T , where G̃(xk) =

[
G̃(xk)αα G̃(xk)αβ
G̃(xk)βα G̃(xk)ββ

]
and the partition αα refers to the first α rows of the matrix, for example. Then, if Γk := Λ̃k, we get

〈Λk, G(xk) + yk〉 = 〈Γk, G̃(xk) + ỹk〉 = 0,

for sufficiently large k, because Γkαα = 0 for large enough k. Since every block of G̃(xk) converges to zero,
except for G̃(xk)αα, we know that yk → 0. Also, since G̃(xk) + ỹk ∈ Sm− , we get G(xk) + yk ∈ Sm− .

(b) AGP: In this case, observe that 〈Λk,ΠK(G(xk))〉 = tr(ΛkΠK(G(xk)))→ 0 can be simplified using the left
inequality of (39) for A = ΠK(G(xk)), B = −Λk. With this, we obtain λi(ΠK(G(xk)))λm−i+1(−Λk)→ 0,
for all i. Since λi(Λ

k) = −λm−i+1(−Λk), we conclude that AGP implies λi(ΠK(G(xk)))λi(Λ
k) → 0, for

every i ∈ {1, . . . ,m}. This means

min{0, λi(G(xk))}λi(Λk)→ 0.

(c) CAKKT: Similarly to the previous item, from 〈Λk,ΠK(G(xk))〉 → 0 we get min{0, λi(G(xk))}λi(Λk)→
0. Also, from 〈Λk,ΠKo(G(xk))〉 → 0 and (39), we obtain λi(−ΠKo(G(xk)))λi(Λ

k) → 0, for every i ∈
{1, . . . ,m}, which is equivalent to λi(ΠK(−G(xk)))λi(Λ

k)→ 0. Then,

min{0,−λm−i+1(G(xk))}λi(Λk)→ 0.

Note that the characterizations for AGP and CAKKT are unilateral in this case, but since the purpose
of specializing our conditions is to define stopping criteria, this is not an issue. For instance, if an algorithm
employs the stopping criterion related to AGP (given by item (b) of Proposition 6.2), the proposition states that
its feasible limit points are at least as good as AGP. Nevertheless, we point out that the converse statements
hold when Λk and G(xk) commute, for every k.

We summarize our results for (NLSDP) in the following table:

Approximate complementarity condition

AKKT
λUi (G(x̄)) < 0⇒ λS

k

i (Λk) = 0,∀i,∀k sufficiently large,

where Sk diagonalizes Λk, for every k, and U diagonalizes G(x̄).

AGP min{0, λi(G(xk))}λi(Λk)→ 0, ∀i.
CAKKT min{0, λi(G(xk))}λi(Λk)→ 0 and max{0, λm−i+1(G(xk))}λi(Λk)→ 0, ∀i.

Table 6.2: Sequential optimality conditions when specialized to (NLSDP). Recall that for C ∈ Sm, the symbols
λ1(C), . . . , λm(C) represent the eigenvalues of C, increasingly ordered.

Recall from Definition 3.3 that CAKKT incorporates the idea of controlling the behavior of the Lagrange
multiplier through a vanishing measure of infeasibility. In NLP, this control can be understood in terms of
growth, but in more general contexts such as NLSDP, it can have different meanings. As mentioned in the
Introduction, the authors of [10] conjectured that the ideal definition of CAKKT should control the growth of
all eigenvalues of the multiplier. In our case, only max{0,m − 2r} eigenvalues have their growths controlled,
where r is the number of nonzero eigenvalues of G(x̄). This suggests that even though our definition of CAKKT
generalizes one of the multiple interpretations of the nonlinear programming CAKKT, it is still imperfect. We
conjecture that our definition, the one presented in [2], and (6) are all independent. If this is the case, then
there would be multiple correct ways of generalizing CAKKT. However, we were not able to find examples that
support our claim, at this moment.

AGP was not yet defined for NLSDP and AKKT is consistent with the definition presented in [10, Definition
3.1]. Also, employing analogous reasoning, it is possible to recover AKKT from [2] in symmetric cones after
imbuing a Jordan product into E, by making use of the Spectral Theorem from [17].
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6.3 Nonlinear second-order cone programming

Consider the following particular case of (NCP):

Minimize
x∈Rn

f(x),

subject to Gi(x) ∈ Ki, i ∈ {1, . . . , r},
(NSOCP)

where E = Rm1 × · · · × Rmr , with m1 + · · · + mr = m, and each Ki ⊂ Rmi is a second-order cone (or Lorentz
cone), that is,

Ki := {(z0, ẑ) ∈ R× Rmi−1 : ‖ẑ‖ ≤ z0}, i ∈ {1, . . . , r}.

Denote G(x) := (G1(x), . . . , Gr(x)) and K := K1 × · · · ×Kr. From [36], the interior and the boundary of Ki
are described by

int Ki := {(z0, ẑ) ∈ R× Rmi−1 : ‖ẑ‖ < z0},
bd Ki := {(z0, ẑ) ∈ R× Rmi−1 : ‖ẑ‖ = z0}.

Moreover, consider the following sets of indices:

Iint := {i ∈ {1, . . . , r} : Gi(x̄) ∈ int Ki},
Ibd+

:= {i ∈ {1, . . . , r} : Gi(x̄) ∈ bd Ki \ {0}}.
(40)

It is well-known that Ko
i = −Ki, ∀i, and hence Ko = −K. In [36], there is a formula for the projection onto a

single Lorentz cone Ki. Following [36], every v = (v0, v̂) ∈ R× Rmi−1 can be decomposed as

v = µ1(v)c1(v) + µ2(v)c2(v), (41)

where µ`(v) ∈ R and c`(v) ∈ K, for ` ∈ {1, 2}, are given by the following expressions:

µ`(v) = v0 + (−1)`‖v̂‖ and c`(v) =

{
(1/2)(1, (−1)`v̂‖v̂‖−1) if v̂ 6= 0

(1/2)(1, (−1)`w) if v̂ = 0,
(42)

where w is any unitary vector in Rmi−1. Clearly, we always have that µ1(v) ≤ µ2(v) and 0 ≤ 〈ci(v), cj(w)〉 ≤ 1
for every v, w and i, j ∈ {1, 2}. Now, for every v = (v0, v̂) ∈ R×Rmi−1, we have ΠKi(v) := max{µ1(v), 0}c1(v)+
max{µ2(v), 0}c2(v). Using Ko

i = −Ki, we obtain

ΠKo
i
(v) := min{µ1(v), 0}c1(v) + min{µ2(v), 0}c2(v).

Finally, for v = (v1, . . . , vr) ∈ E with vi ∈ R × Rmi−1, we have that ΠK(v) = (ΠK1
(v1), . . . ,ΠKr

(vr)) and
ΠKo(v) = (ΠKo

1
(v1), . . . ,ΠKo

r
(vr)).

We recall from [64, Lemma 6.2.3] that, for every zi, vi ∈ Rmi ,

µ1(zi)µ2(vi) + µ2(zi)µ1(vi) ≤ 2〈zi, vi〉 ≤ µ1(zi)µ1(vi) + µ2(zi)µ2(vi). (43)

Now, let x̄ be a feasible point of (NSOCP), and {xk}k∈N be a sequence with xk → x̄ associated with some
sequential optimality condition with multipliers {Λk}k∈N, then (9) can be stated as

∇f(xk) +

r∑
i=1

DGi(x
k)Tλki → 0, (44)

where Λk = (λk1 , . . . , λ
k
r ) ∈ Ko

1 × · · · × Ko
r .

Similarly to the previous subsections, the following result exhibits the formats of our sequential condition
when specialized to NSOCP:

Proposition 6.3. Let x̄ be a feasible point of (NSOCP). Then x̄ satisfies:

(a) AKKT if, and only if, there exist sequences {xk}k∈N → x̄, {λki }k∈N ⊂ Ko, such that (44) holds, λki = 0
for every i ∈ Iint and sufficiently large k, and when i ∈ Ibd+, then −λki ∈ bd Ki and either λki → 0 or

λ̂ki

‖λ̂ki ‖
→ Ĝi(x̄)

‖Ĝi(x̄)‖
; (45)

(b) AGP implies that
µ`(λ

k
i ) max{µ`(Gi(xk)), 0} → 0,

for every ` ∈ {1, 2} and every i ∈ {1, . . . , r}, for some sequences {xk}k∈N → x̄ and {λki }k∈N ⊂ Ko such
that (44) holds;

18



(c) CAKKT implies that

µ`(λ
k
i ) max{µ`(Gi(xk)), 0} → 0, ` ∈ {1, 2} and µ`(λ

k
i ) min{µs(Gi(xk)), 0} → 0,

for every `, s ∈ {1, 2}, with ` 6= s, and every i ∈ {1, . . . , r}, for some sequences {xk}k∈N → x̄ and
{Λk}k∈N ⊂ Ko such that (44) holds.

Proof. (a) AKKT: If there are sequences {yki }k∈N → 0 such that zki := Gi(x
k) + yki ∈ Ki for every i and

r∑
i=1

〈λki , Gi(xk) + yki 〉 = 0,

then we have, for every i, that 〈λki , Gi(xk) + yki 〉 = 0. So if Gi(x̄) ∈ int Ki, we get λki = 0 for k sufficiently

large, due to Lemma 5.2. But also, if Gi(x̄) ∈ bd+Ki, then ‖Ĝi(x̄)‖ = (Gi(x̄))0 > 0, so for large enough
k, we must have (zki )0 > 0 as well. Now, note that

0 = 〈λki , zki 〉 = 〈λ̂ki , ẑki 〉+ (λki )0(zki )0 ≤ ‖λ̂ki ‖‖ẑki ‖+ (λki )0(zki )0 ≤ (‖λ̂ki ‖+ (λki )0)(zki )0,

but since (zki )0 > 0 we get ‖λ̂ki ‖ ≥ −(λki )0. On the other hand, since −λki ∈ Ki, we know that ‖λ̂ki ‖ ≤
−(λki )0. Hence, ‖λ̂ki ‖ = −(λki )0, which means −λki ∈ bd Ki. If λki 6→ 0, then (λki )0 6→ 0, but we still have
〈λki , zki 〉 = 0, whence

1 = lim
k→∞

〈
λ̂ki

−(λki )0
,
ẑki

(zki )0

〉
= lim
k→∞

〈
λ̂ki

‖λ̂ki ‖
,
Ĝi(x

k)

(Gi(xk))0

〉
= lim
k→∞

〈
λ̂ki

‖λ̂ki ‖
,
Ĝi(x̄)

‖Ĝi(x̄)‖

〉
,

which means λ̂ki /‖λ̂ki ‖ → Ĝi(x̄)/‖Ĝi(x̄)‖. In order to check this, keep in mind that both vectors are
unitary, so the cosine of the angle between them must tend to 1.
Conversely, without loss of generality, we can suppose that every λki such that i ∈ Ibd+

and λki → 0, is
equal to zero for k sufficiently large, and set

yki :=


−Gi(xk), if Gi(x̄) = 0,

−ΠKo(Gi(x
k)), if i ∈ Iint or i ∈ Ibd+

with λki → 0,

‖Ĝi(xk)‖
(λki )0

(
(λki )0,−λ̂ki

)
−Gi(xk), if i ∈ Ibd+ with λki 6→ 0.

Then, we have Gi(x
k) + yki ∈ Ki, for every i ∈ {1, . . . , r}, because ((λki )0,−λ̂ki ) ∈ Ko and (λki )0 ≤ 0. If

Gi(x̄) ∈ {0} ∪ int Ki, we clearly have 〈Gi(xk) + yki , λ
k
i 〉 = 0 for k sufficiently large. If i ∈ Ibd+

, since

−λki ∈ bd Ki, we get

〈Gi(xk) + yki , λ
k
i 〉 =

‖Ĝi(xk)‖
(λki )0

(
(λki )2

0 − ‖λ̂ki ‖
2
)

= 0.

Also, note that

(yki )0 = ‖Ĝi(xk)‖ − (Gi(x
k))0 and ŷki =

‖Ĝi(xk)‖

‖λ̂ki ‖
λ̂ki − Ĝi(x

k),

so in case λki 6→ 0 we get yki → 0 from Gi(x̄) ∈ bd Ki \ {0} and (45).

(b) AGP: In this case, since

〈Λk,ΠK(G(xk))〉 =

r∑
i=1

〈λki ,ΠKi
(Gi(x

k))〉 → 0

and Ko = −K, we obtain 〈λki ,ΠKi(Gi(x
k))〉 → 0 for every i ∈ {1, . . . , r}. Now, using the spectral

decomposition (41) and the right-hand side of (43), we obtain

2〈λki ,ΠKi(Gi(x
k))〉 ≤ µ1(λki )µ1(ΠKi(Gi(x

k))) + µ2(λki )µ2(ΠKi(Gi(x
k))) ≤ 0.

Hence, taking k →∞ in the above expression, we see that:

• µ1(λki )µ1(ΠKi(Gi(x
k))) = µ1(λki ) max{µ1(Gi(x

k)), 0} → 0;

• µ2(λki )µ2(ΠKi
(Gi(x

k))) = µ2(λki ) max{µ2(Gi(x
k)), 0} → 0.
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Furthermore, from above and since µ1(λk) ≤ µ2(λk) ≤ 0, we see that µ2(λki ) max{µ1(Gi(x
k)), 0} → 0.

Thus, 〈λki ,ΠKi
(Gi(x

k))〉 → 0 implies µ`(λ
k
i ) max{µ`(Gi(xk)), 0} → 0 for ` ∈ {1, 2} and ∀i ∈ {1, . . . , r}.

(c) CAKKT: Again, 〈Λk,ΠK(G(xk))〉 → 0 and 〈Λk,ΠKo(G(xk))〉 → 0 are equivalent to 〈λki ,ΠKi
(Gi(x

k))〉 →
0 and 〈λki ,ΠKo

i
(Gi(x

k))〉 → 0, for every i ∈ {1, . . . , r}.
From 〈λki ,ΠKo

i
(Gi(x

k))〉 → 0, using (41) and the left-hand side of (43), we have

0 ≤ µ1(λki )µ2(ΠK◦
i
(Gi(x

k))) + µ2(λki )µ1(ΠK◦
i
(Gi(x

k))) ≤ 2〈λki ,ΠK◦
i
(Gi(x

k))〉.

Then, from (41) and taking k →∞ in the above expression, we see that:

• µ1(λki )µ2(ΠKo
i
(Gi(x

k))) = µ1(λki ) min{µ2(Gi(x
k)), 0} → 0;

• µ2(λki )µ1(ΠKo
i
(Gi(x

k))) = µ2(λki ) min{µ1(Gi(x
k)), 0} → 0.

Furthermore, from above, we see that µ2(λki ) min{µ2(Gi(x
k)), 0} → 0. Thus, 〈λki ,ΠKo

i
(Gi(x

k))〉 → 0

implies µ`(λ
k
i ) min{µs(Gi(xk)), 0} → 0 for `, s ∈ {1, 2}, s 6= ` and ∀i ∈ {1, . . . , r}. See Table 6.3.

Note that AKKT is consistent with [2, Definition 3.3] in view of [2, Theorem 4.1], which gives the exact same
characterization as item (a) of Proposition 6.3, and AGP was not yet defined for NSOCP. Also, our version of
CAKKT comprises eigenvalue products, which is similar to what we expected to obtain in the NLSDP case.

The following table summarizes our results:

Approximate complementarity condition

AKKT
i ∈ Iint, λki → 0, and for i ∈ Ibd+, −λki ∈ bd Ki and either λki → 0

or λ̂ki /‖λ̂ki ‖ → Ĝi(x̄)/‖Ĝi(x̄)‖.
AGP µ`(λ

k
i ) max{µ`(Gi(xk)), 0} → 0 for ∀` ∈ {1, 2}, ∀i.

CAKKT
µ`(λ

k
i ) max{µ`(Gi(xk)), 0} → 0 and µ`(λ

k
i ) min{µs(Gi(xk)), 0} → 0,

∀`, s ∈ {1, 2} (` 6= s), ∀i.

Table 6.3: Sequential optimality conditions when specialized to (NSOCP). We use {µ`(v), ` ∈ {1, 2}} to denote
spectral values of v ∈ Ki (see (42)). For the definitions of Ibd+ and Iint, see (40).

In NSOCP, the relation between Definition 3.3 and CAKKT as in [2, Definition 3.4] is not clear. We conjec-
ture they are independent, which may endorse the possibility of existence of multiple independent extensions
of CAKKT. Observe that the most important feature of our approach is its simplicity and its generality, since
it only uses inner products and projections. On the other hand, [2, Definition 3.4] relies on the Jordan algebra
structure, which is limited to symmetric cones, but it is more elegant than our approach in certain aspects.

7 Strength of the sequential optimality conditions

A sequential optimality condition carries the convergence properties of the algorithms supported by them and
this is what gives them a practical meaning. However, even though we compared sequential conditions among
themselves, we have not yet shown any improvement regarding the usual convergence theory of any algorithm.
In other words, to complete our results, we still need to clarify the relation between our sequential conditions
and other optimality conditions of the form “KKT or not-CQ” for some CQ. This section is dedicated to filling
this gap.

Recall that the classical Robinson’s CQ [70] holds at some feasible point x when

0 ∈ int(G(x) +DG(x)Rn −K), (46)

where DG(x)Rn := {DG(x)d : d ∈ Rn}. It is widely known that Robinson’s CQ generalizes the Mangasarian-
Fromovitz constraint qualification (MFCQ) from NLP (see [56]). We proceed by re-proving the classical con-
vergence results to KKT points under Robinson’s CQ, via sequential conditions:

Proposition 7.1. If Robinson’s CQ holds at an AKKT point x̄ associated with the sequences {xk}k∈N and
{Λk}k∈N, then x̄ satisfies the KKT conditions for (NCP).
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Proof. We begin by proving that {Λk}k∈N is bounded. In order to do that, by contradiction, suppose not. Then,

we can assume ||Λk|| → ∞, but Λ̂k := Λk/||Λk|| → Λ̄ ∈ Ko. Then from (9) we get∇f(xk)/||Λk||+DG(xk)∗Λ̂k →
0 and, consequently, DG(x̄)∗Λ̄ = 0. Moreover,

0 = 〈Λk, G(xk) + yk〉 = 〈Λ̂k, G(xk) + yk〉 → 〈Λ̄, G(x̄)〉 = 0

and, by Robinson’s CQ, there exists some small α > 0 such that −αΛ̄ ∈ (G(x̄) + DG(x̄)Rn − K). Let d ∈ Rn
and z ∈ K be such that −αΛ̄ = G(x̄) +DG(x̄)d− z, so we have

−α〈Λ̄, Λ̄〉 = 〈Λ̄, G(x̄)〉+ 〈Λ̄, DG(x̄)d〉 − 〈Λ̄, z〉 = 〈DG(x̄)∗Λ̄, d〉 − 〈Λ̄, z〉 ≥ 0,

which implies Λ̄ = 0. Since this contradicts the definition of Λ̄, we conclude that {Λk}k∈N must be bounded.
Hence, without loss of generality we can assume it converges to Λ̄ ∈ Ko. Trivially, ∇f(x̄) +DG(x̄)∗Λ̄ = 0 and

|〈Λ̄, G(x̄)〉| = lim
k→∞

|〈Λk, G(xk)〉| = | lim
k→∞

〈Λk, yk〉| = 0.

Also, since K is closed and K 3 G(xk)+yk → G(x̄) we have G(x̄) ∈ K. Thus (x̄, Λ̄) is a KKT pair of (NCP).

Analogously, it can be proved that TAKKT also satisfies the KKT conditions under Robinson’s CQ. More-
over, since AKKT is implied by CAKKT and AGP, the same holds for both. That means every algorithm that
is supported by one of our sequential conditions converges to KKT points under Robinson’s CQ, but sequential
conditions tell us more than that. Following [12], for each sequential optimality condition (OC) it is possible to
define conditions, so-called strict constraint qualifications (SCQ), such that “OC+SCQ⇒ KKT” and, among
them, characterize the weakest one.

We use the same nomenclature style of [12]. For instance, the weakest SCQ associated with the AKKT
condition is called AKKT-regularity, and similar names are given for the other sequential optimality conditions
presented in Section 3.

Definition 7.1. Consider the following sets:

1. KA(x, r) :=
{
DG(x)∗Λ : |y| ≤ r, Λ ∈ Ko, G(x) + y ∈ K ∩ {Λ}⊥

}
;

2. KT (x, r) := {DG(x)∗Λ : |〈Λ, G(x)〉| ≤ r, Λ ∈ Ko};

3. KAGP (x, r) := {DG(x)∗Λ : |〈Λ,ΠK(G(x))〉| ≤ r, Λ ∈ Ko};

4. KC(x, r) := {DG(x)∗Λ : max{|〈Λ,ΠK(G(x))〉|, |〈Λ,ΠKo(G(x))〉|} ≤ r, Λ ∈ Ko}.

We say that the AKKT-regularity condition holds at x̄, if the set-valued mapping (x, r) 7→ KA(x, r) is outer
semi continuous at (x̄, 0). The constraint qualification conditions TAKKT-, AGP- and CAKKT-regularity have
analogous definitions using the sets KT (x, r),KAGP (x, r), and KC(x, r), respectively.

Remark 4. For a feasible point x̄ of (NCP), we see that, at (x̄, 0), all the sets from Definition 7.1 coincide
with {DG(x)∗Λ : 〈Λ, G(x)〉 = 0,Λ ∈ Ko}. Thus, given an objective function f for (NCP), the KKT conditions
hold at x̄ if, and only if, −∇f(x) ∈ KA(x̄, 0). Similar statements hold for the other sets.

The next theorem states that each SCQ is, indeed, the weakest SCQ associated with each optimality condi-
tion.

Theorem 7.2. A feasible point x̄ for (NCP) satisfies CAKKT-regularity if, and only if, for every continuously
differentiable objective function, the CAKKT condition at x̄ implies the KKT conditions. Similar conclusions
are valid for AKKT-, AGP-, and TAKKT-regularity.

Proof. We use the same techniques as [11, 12]. We just prove the statement for CAKKT-regularity, since the
other ones are analogous.

Suppose that CAKKT-regularity holds at x̄, and take any objective function f having x̄ as a CAKKT point.
From definition, there exist sequences {xk}k∈N → x̄ and {Λk}k∈N ⊂ Ko such that

wk := ∇f(xk) +DG(xk)∗Λk → 0, 〈Λk,ΠK(G(xk))〉 → 0, and 〈Λk,ΠKo(G(xk))〉 → 0.

Set rk := max{|〈Λk,ΠK(G(xk))〉|, |〈Λk,ΠKo(G(xk))〉|},∀k ∈ N. Thus, −∇f(xk) + wk ∈ KC(xk, rk). Taking
limits in the last expression, we get −∇f(x̄) ∈ KC(x̄, 0) from the outer semi continuity of KC , and hence the
KKT conditions holds at x̄. Conversely, suppose that for every continuously differentiable objective function,
the CAKKT condition at x̄ implies the KKT conditions. We will show that CAKKT-regularity hold at x̄. Take
ω ∈ lim sup

(x,r)→(x̄,0)

KC(x, r). Then, there exists an infinite subset I ⊆ N and sequences {xk}k∈I → x̄, {rk}k∈I → 0,

21



and {wk}k∈I → w, such that wk ∈ KC(xk, rk) for every k ∈ I, which means each wk is associated with some
Λk ∈ Ko. Now, define the function f(x) := −〈ω, x〉, and let i(k) denote the element of I that is closest to a given
k ∈ N; in particular, when k ∈ I, then i(k) = k. Defining x̃k := xi(k) and Λ̃k := Λi(k) for every k ∈ N, we see
that that x̄ is a CAKKT point for f associated with the sequences {x̃k}k∈N and {Λ̃k}k∈N. Then, by assumption,
the KKT conditions hold, which is equivalent to −∇f(x̄) = w ∈ KC(x̄, 0), and thus CAKKT-regularity holds
at x̄.

From Theorem 7.1 and Definition 7.1, we observe that Robinson’s CQ implies AKKT-regularity, which
strictly implies AGP-regularity, and the latter strictly implies CAKKT-regularity due to Theorem 7.2 and the
relations among the sequential conditions from Sections 3 and 5. Thus, our previous considerations show that the
algorithms supported by the CAKKT condition are guaranteed to converge to KKT points under assumptions
that are weaker than Robinson’s CQ, for example.

Now, to conclude our analyses, we make explicit the relation between our SCQs and the very weak Abadie’s
CQ, that holds at a feasible point x̄ if, and only if, TΩ(x̄) = LΩ(x̄) and the set

KC(x̄, 0) = {DG(x̄)∗Λ : 〈Λ, G(x̄)〉 = 0,Λ ∈ Ko}
is closed, where

TΩ(x̄) := {d ∈ Rn : ∃ tk ↓ 0, dk → d with x̄+ tkd
k ∈ Ω}

is the tangent cone to Ω at x̄ and

LΩ(x̄) := {d ∈ Rn : DG(x̄)d ∈ TK(G(x̄))}

is the so-called linearized tangent cone to Ω at x̄.
The only affirmation that requires a proof is “CAKKT-regularity implies Abadie’s CQ”, but note that even

in the finite-dimensional setting of (NCP) the set KC(x̄, 0) may not be closed [63]. Therefore, the first thing
we prove is that this condition is guaranteed under CAKKT-regularity.

Lemma 7.3. Let x̄ be a feasible point of (NCP) that satisfies CAKKT-regularity. Then, KC(x̄, 0) is closed,
which in turn implies that it coincides with LΩ(x̄)o.

Proof. Recall that lim sup
(x,r)→(x̄,0)

KC(x, r) is always a closed set, so if it coincides with KC(x̄, 0), then the latter is

also closed. Moreover, it follows directly from [73, Corollary 11.25(d)] that if KC(x̄, 0) is closed, then it coincides
with LΩ(x̄)o.

In light of Lemma 7.3, the rest of the proof follows the same recipe as in NLP. To present it, we first recall
the regular normal cone to Ω at z̄ ∈ Ω, which is defined as

N̂Ω(z̄) := {w ∈ Rn : lim sup
z→z̄,z∈Ω

‖z − z̄‖−1〈w, z − z̄〉 ≤ 0},

and the limiting normal cone to Ω at x̄ ∈ Ω, which is NΩ(z̄) := lim sup
z→z̄,z∈Ω

N̂Ω(z). Now, we present a technical

lemma:

Lemma 7.4. We always have that NΩ(x̄) ⊂ lim sup
(x,r)→(x̄,0)

KC(x, r).

Proof. Analogous to the proof of [12, Lemma 4.3].

And finally, the result:

Theorem 7.5. CAKKT-regularity implies Abadie’s CQ.

Proof. Let x̄ be a feasible point such that CAKKT-regularity holds at x̄. Using the definition of outer semi
continuity of KC(x, r) and Lemma 7.4, we get that NΩ(x̄) ⊂ KC(x̄, 0), and by Lemma 7.3 we have that KC(x̄, 0)
is closed and KC(x̄, 0) = LΩ(x̄)o. Therefore, NΩ(x̄) ⊂ LΩ(x̄)o. Now, since TΩ(x̄) ⊂ LΩ(x̄) always holds for
every set, to show that Abadie’s CQ holds at x̄, it suffices to prove the inclusion LΩ(x̄) ⊂ TΩ(x̄). Now, from the
inclusion NΩ(x̄) ⊂ LΩ(x̄)o, we get that LΩ(x̄) ⊂ (LΩ(x̄)o)o ⊂ NΩ(x̄)o ⊂ TΩ(x̄), where the first inclusion follows
from polarity theorem, since LΩ(x̄) is a closed convex cone due to the fact that K is also a closed convex cone,
and the last inclusion comes from [73, Theorems 6.28(b) and 6.26].

Remark 5. [26, Theorem 4.6] states that s-AKKT-regularity [26, Definition 4.4] is the weakest constraint
qualification that guarantees equivalence between KKT and s-AKKT, similarly to Theorem 7.2. Therefore,
s-AKKT-regularity is independent of AKKT-regularity, independent of AGP-regularity, and strictly stronger
than TAKKT-regularity. When K is self-dual, however, it implies AGP regularity strictly. Moreover, we obtain
from [26, Theorem 5.2 and Example 5.4], that s-AKKT-regularity is strictly implied by Robinson’s CQ.

For summarizing our results, we illustrate the position of the new SCQs among the existing CQs: s-AKKT-
regularity, Abadie’s CQ, and Robinson’s CQ, in the diagram of Figure 2.
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CAKKT-regularity

AGP-regularityTAKKT-regularity

s-AKKT-regularity AKKT-regularity

Abadie’s CQ

Robinson’s CQ

Figure 2: Relationship between the new (strict) constraint qualifications and existing ones.

8 Final remarks

Powerful modelling languages and other recent technological advances extended the possibilities for solving
complex real-life problems. Such complexity is often translated in terms of (NCP), which is a large family of
optimization problems, that generalizes NLP, NLSDP, and NSOCP, for example. In this paper, we extended to
the NCP context some of the so-called sequential optimality conditions, which have been useful in particular
cases of NCP for improving the global convergence analysis of several practical algorithms in a unified manner.
Also, we presented a variant of the Augmented Lagrangian method for NCP, whose global convergence theory
was built via sequential optimality conditions. We proved that every feasible limit point of this method satisfies
AGP and, under an additional smoothness assumption, it also satisfies CAKKT, which is a strictly stronger
condition. The meaning of such results lies in the fact that every CAKKT (respectively, AGP) point also satisfies
the KKT conditions in the presence of a constraint qualification called CAKKT-regularity (respectively, AGP-
regularity), which is strictly weaker than Robinson’s condition. That means, for instance, that Algorithm 1
is at least as strong as the classical variants of the Augmented Lagrangian method, despite being much more
general. To the best of our knowledge, the convergence of the Augmented Lagrangian to CAKKT points was
only known in NLP and, more recently, in NSOCP, but its convergence to AGP points was not yet known even
in NLP.

Intuitively, one may expect general environments to be more complicated or to be less likely to achieve
strong results, in comparison with more structured ones. However, in this work we see the opposite since we
were able to recover and improve most of the existing results from NLP, NLSDP, and NSOCP while employing
simpler techniques in our analyses. In fact, we limited ourselves to using only somewhat simple structures,
such as inner products and projections, to make our results as applicable as possible. Our efforts lead us
to believe that NCP encompasses most of the fundamental aspects of the classical optimization theory in a
natural way, which may encourage further research in this field. For instance, the relation between CAKKT
and the concept with the same name, from [2], is still unclear. Another subject of further investigation is
the role of sequential conditions in perturbation theory and error estimation, which may clarify their value as
a theoretical local optimality analysis tool, as an alternative to the punctual KKT conditions. Second-order
sequential conditions have recently appeared in [6, 22, 40, 43] for NLP and we intend to extend them to more
general contexts as well. Moreover, as mentioned in the Introduction, there are several algorithms for NLP that
have had their convergence theories (re)built via sequential optimality conditions of first- and second-order,
such as [8, 21, 30, 37, 38, 40, 41, 67]; and we believe that this work can be useful for extending such algorithms
to NCP as well.
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[47] Hiriart-Urruty JB, Lemaréchal C (2001) Fundamentals of Convex Analysis (Springer-Verlag Berlin Heidelberg.
Berlin).

[48] Kanzow C, Steck D, Wachsmuth D (2018) An augmented Lagrangian method for optimization problems in Banach
spaces. SIAM Journal on Control and Optimization 56(1):272–291.

[49] Kanzow C, Steck D (2017) An example comparing the standard and safeguarded augmented Lagrangian methods.
Operations Research Letters 45(6):598–603.

[50] Kocvara M, Stingl M (2004) Solving nonconvex SDP problems of structural optimization with stability control.
Optimization Methods and Software 19(5):595–609.

[51] Krislock N, Wolkowicz H (2012) Euclidean distance matrices and applications. International Series in Operations
Research and Management Science 166:879–914.

[52] Kurdyka K (1998) On gradients of functions definable in o-minimal structures. Annales de l’institut Fourier (Geno-
ble) 48:769–783.

[53] Li G, Pong TK (2018) Calculus of the exponent of Kurdyka- Lojasiewicz inequality and its appplications to linear
convergence of first-order methods. Foundations of Computational Mathematics 18(5):1199–1232.

[54] Lobo MS, Vandenberghe L, Boyd S, Lebret H (1998) Applications of second-order cone programming. Linear Algebra
and Applications 284:193–228.

[55]  Lojasiewicz S (1984) Sur les trajectories du gradient d’une fonction analytique. in Seminari di Geometria 1982-1983,
Universita di Bologna, Istituto di Geometria, Dipartamento di Matematica 115–117.

[56] Mangasarian OL, Fromovitz S (1967) The Fritz John necessary optimality conditions in the presence of equality
and inequality constraints. Journal of Mathematical Analysis and Applications 17(1):37–47.

[57] Marcus M (1956) An eigenvalue inequality for the product of normal matrices. The American Mathematical Monthly
63:173–174.

25

http://www.optimization-online.org/DB_HTML/2020/08/7951.html
http://www.optimization-online.org/DB_HTML/2020/08/7951.html
https://doi.org/10.1007/s10107-019-01454-4


[58] Mart́ınez JM, Pilotta EA (2000) Inexact restoration algorithms for constrained optimization. Journal of Optimization
Theory and Applications 104:135–163.

[59] Mart́ınez JM, Pilotta EA (2005) Inexact restoration methods for nonlinear programming: advances and perspectives.
Qi L, Teo K, Yang X, eds., Optimization and Control with applications, 271–292 (Springer).

[60] Mart́ınez JM, Svaiter BF (2003) A practical optimality condition without constraint qualifications for nonlinear
programming. Journal of Optimization Theory and Applications 118:117–133.

[61] Nocedal J, Wright S (New York. 2006) Numerical Optimization. Springer Series in Operations Research. Springer-
Verlag, ISBN 0387987932.

[62] O’Neill M, Wright SJ (2020) A log-barrier Newton-CG method for bound constrained optimization with complexity
guarantees. IMA Journal of Numerical Analysis, drz074 URL https://doi.org/10.1093/imanum/drz074.

[63] Pataki G (2007) On the closedness of the linear image of a closed convex cone. Mathematics of Operations Research
32(2):395–412.

[64] Peng J, Roos C, Terlaky T (2002) Self-Regularity: A new paradigm for Primal-Dual Interior Point Algorithms.
Princeton series in Applied Mathematics (Princeton University Press).

[65] Powell MJD (1982) A method for nonlinear constraints in minimization problems (Academic Press. New York).

[66] Qi HD, Yuan X (2013) Computing the nearest Euclidean distance matrix with low embedding dimensions. Mathe-
matical Programming 147(1-2):351–389.

[67] Qi L, Wei Z (2000) On the constant positive linear dependence conditions and its application to SQP methods.
SIAM Journal on Optimization 10:963–981.

[68] Ramos A (2019) Mathematical programs with equilibrium constraints: a sequential optimality condition, new
constraint qualifications and algorithmic consequences. To appear in Optimization Methods and Software URL
https://doi.org/10.1080/10556788.2019.1702661.

[69] Ramos A (2019) Two new weak constraint qualifications for mathematical programs with equilibrium constraints
and applications. Journal on Optimization Theory and Applications 183:566–591.

[70] Robinson SM (1976) Stability theory for systems of inequalities, part II: Differentiable nonlinear systems. SIAM
Journal on Numerical Analysis 13:497–513.

[71] Robinson SM (1982) Generalized equations and their solutions, part II: Applications to nonlinear programming.
Mathematical programming Study 19:200–221.

[72] Rockafellar RT (1974) Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM
Journal on Control and Optimization 12:268–285, ISSN 0363-0129.

[73] Rockafellar RT, Wets R (2009) Variational Analysis (Grundlehren der mathematischen Wissenschaften, v. 317.
Springer-Verlag Berlin Heidelberg. Berlin).

[74] Schnabel RB (1982) Determining feasibility of a set of nonlinear inequality constraints. Mathematical Programming
Studies 16:137–148.

[75] Steck D (2018) Lagrange multiplier methods for constrained optimization and variational problems in Banach
spaces. PhD thesis, Institute of Mathematics, Universität Würzburg URL https://arxiv.org/abs/urn:nbn:de:

bvb:20-opus-174444.

[76] Tuyen NV, Xiao YB, Son TQ (2019) On AKKT optimality conditions for cone-constrained vector optimization
problems. to appear in Journal of Nonlinear Convex Analysis URL https://arxiv.org/abs/1902.07416.

[77] Wolkowicz H, Saigal R, Vandenberghe L (2000) Handbook of Semidefinite Programming: Theory, Algorithms, an
Applications (International Series in Operations Research and Management Science. Springer US. New York).

[78] Yamashita H, Yabe H (2015) A survey of numerical methods for nonlinear semidefinite programming. Journal of
the Operations Research Society of Japan 58(1):24–60.

26

https://doi.org/10.1093/imanum/drz074
https://doi.org/10.1080/10556788.2019.1702661
https://arxiv.org/abs/urn:nbn:de:bvb:20-opus-174444
https://arxiv.org/abs/urn:nbn:de:bvb:20-opus-174444
https://arxiv.org/abs/1902.07416

	Introduction
	Preliminaries
	Notations and convex analysis background
	Sequential optimality conditions for NLP and NLSDP

	New optimality conditions for nonlinear conic programming
	An Augmented Lagrangian algorithm
	The AKKT condition
	Contextualization in some particular cases of NCP
	Nonlinear programming
	Nonlinear semidefinite programming
	Nonlinear second-order cone programming

	Strength of the sequential optimality conditions
	Final remarks

