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CONVERGENCE PROPERTIES OF A SECOND ORDER
AUGMENTED LAGRANGIAN METHOD FOR MATHEMATICAL
PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS*
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Abstract. Mathematical programs with complementarity constraints (MPCCs) are difficult
optimization problems that do not satisfy the majority of the usual constraint qualifications (CQs)
for standard nonlinear optimization. Despite this fact, classical methods behave well when applied
to MPCCs. Recently, Izmailov, Solodov, and Uskov proved that first order augmented Lagrangian
methods, under a natural adaption of the linear independence constraint qualification to the MPCC
setting (MPCC-LICQ), converge to strongly stationary (S-stationary) points, if the multiplier se-
quence is bounded. If the multiplier sequence is not bounded, only Clarke stationary (C-stationary)
points are recovered. In this paper we improve this result in two ways. For the case of bounded
multipliers we are able replace the MPCC-LICQ assumption by the much weaker MPCC-relaxed
positive linear dependence condition (MPCC-RCLPD). For the case with unbounded multipliers,
building upon results from Scholtes, Anitescu, and others, we show that a second order augmented
Lagrangian method converges to points that are at least Mordukhovich stationary (M-stationary) but
we still need the more stringent MPCC-LICQ assumption. Numerical tests, validating the theory,
are also presented.
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1. Introduction. In this paper we are interested in the mathematical program
with complementarity constraint

min  f(x)
(MPCC) subject to (s.t.) H(z)=0, G(z)<0,
h(z) 20, g(x) >0, h(x)'g(x) <0,

where f : R - R, H : R® — RY, G : R® — R*, and h, g : R” — R™ are C? functions.
The last (inequality) constraint, which ensures that g and h are complementary, gives
the name to the problem.

MPCCs appear frequently in the literature. They are, for example, related to
bilevel optimization problems and Stackelberg games (see [16, 41] and references
therein). They have also been used by Andreani, Dunder, and Martinez to devise
an alternative formulation for order-value optimization problems that have applica-
tions in portfolio optimization and risk analysis [3]. MPCCs are also present in many
applications like urban traffic control, economy, problems arising from the electrical
sector, etc. See [18, 25, 41, 42, 51] and references therein.
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MPCCs are highly degenerate problems: they do not satisfy the majority of the
established constraint qualifications (CQ). In particular, no feasible point conforms
to the Mangasarian—Fromovitz constraint qualification (MFCQ) and only patholog-
ical examples conform to the relaxed constant positive linear dependency (RCPLD)
condition [31]. Moreover, in the absence of strict complementarity, only Guignard’s
condition can be expected with certain generality [19]. Since there is not any com-
putational method that converges to KKT points using only Guignard’s condition,
there is not any guarantee that traditional optimization methods applied to MPCCs
converge to KKT points. The main difficulty resides in the sign of the multipliers as-
sociated with the constraints g;, h; at points where both vanish, that is, when strict
complementarity fails.

Specific CQs for the MPCC, like MPCC-LICQ, were introduced to try to over-
come this difficulty [24, 27, 28, 34, 46, 48, 50, 54]. Moreover, different notions of
stationarity, allowing for “wrong” signs of the multipliers whenever strict comple-
mentarity fails, were also introduced. The main stationarity concepts for MPCCs,
in order of strength, are weak, Clarke, Mordukhovich, and strong stationarity (W-,
C-, M-, and S-stationarity, respectively) [48]; see Figure 1. Using these concepts the
behavior of general nonlinear optimization algorithms for the MPCC was studied.
For example interior point methods [37], penalty approaches [30, 31, 53, 52], and se-
quential quadratic programming [23]. Such methods can only recover C-stationary
points. In particular, the SQP method can converge to any feasible point even under
MPCC-LICQ [23].

S-stat. M-stat. C-stat. W-stat.
Ag Ag Ag Ag
””” DY | A Ah Nh
Ag > 0and A\, >0 AgAn =0 or AgAn >0 Ag and A\, free

(Ag > 0 and A\, > 0)

Fi1G. 1. Different notions of stationarity. Ag and Ap, are the multipliers of the biactive comple-
mentary constraints g(z) > 0 and h(z) > 0.

Also, many specific methods for the MPCC were developed; see [17, 32, 33, 35, 38,
39, 49]. Such methods have good convergence properties, converging to M-stationary
points, but require exact computation of KKT points in the subproblems, which
is not computationally feasible. If one relaxes such exactness requirements, only
C-stationary points can be ensured unless strict extra assumptions are used [36].
Such convergence is not better than what can be achieved with classical nonlinear
optimization algorithms. This led some authors to put in check the efficiency of such
specific methods when compared to general algorithms [22, 28].

In this work we are especially interested in the results from Izmailov, Solodov, and
Uskov showing that augmented Lagrangian methods can only be shown to converge
to C-stationary points when applied to MPCCs [2, 31]. To illustrate this, consider
the bidimensional MPCC

1
(1) min§ [(z =1+ (y—1)?°] st.2>0, y>0, zy <0.

Its global minima are (1,0) and (0,1). The origin is a C-stationary point where
MPCC-LICQ holds; however, it is a strict local maximizer that may be approximated
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by a sequence computed by some augmented Lagrangian methods. In fact, this is the
problem scholtes3 of the MacMPEC collection maintained by Sven Leyffer, and in
section 4 we observe this behavior with the ALGENCAN [2] algorithm (see Table 1).

In this paper we show that, under MPCC-LICQ), the second order augmented La-
grangian method from Andreani et al. [1], called ALGENCAN-SECOND, is able to ensure
convergence to points that are at least M-stationary, a concept much stronger than
C-stationarity. In particular, in the example above, the origin is not M-stationary
and hence ALGENCAN-SECOND is able to avoid it. This is a case in which the sec-
ond order information is able to unveil better first order stationary points by better
controlling the sign of the multipliers. The idea of using second order information to
assert the convergence of algorithms to M-stationary points under MPCC-LICQ has
already appeared in the literature. In fact, in a seminal paper, Scholtes [49] used it
to show that his regularization scheme converges to M-stationary points. Later on,
in two important papers, Anitescu showed a similar result using an “elastic mode”
approach [8, 9]. This result was improved in a further collaboration with Tseng and
Wright that introduced an algorithm that allows for inexact second order computa-
tions [10]. Second order information was also considered in a partially augmented La-
grangian approach in [40]. Our contribution may be viewed as an improvement upon
the last result, establishing convergence to M-stationary points, still under MPCC-
LICQ, for a “pure” (second order) augmented Lagrangian method, in which all the
constraints can be penalized. This is especially important when dealing with problems
with nonlinear constraints. Moreover, if not only MPCC-LICQ holds, but also the
multiplier sequence associated with the complementarity constraint h(z)tg(x) < 0 is
bounded, then it is possible to show that augmented Lagrangian methods converge
to S-stationary points [31]. We improve this result by showing that it is possible to
replace MPCC-LICQ by the much weaker MPCC-RCPLD and still show convergence
to S-stationary points if the multipliers are bounded. In particular, MPCC-RCPLD
holds whenever the constraints are linear without any further assumption, and hence
it is adequate to unify results for the cases of nonlinear and linear constraints.

This paper is organized as follows: section 2 revises basic concepts about the
MPCC and augmented Lagrangian methods. Section 3 presents the convergence of
ALGENCAN-SECOND for the MPCC. Section 4 presents some numerical tests that
validate the convergence results and, finally, section 5 closes with some final remarks
and future directions.

Notation. The symbol || - || will denote the Euclidean norm. If ¢ : R — R™ then
we write V¢(z) to denote the n X m matrix whose columns are Vg¢;(z),i=1,...,m.
We denote by Ag(A) the smallest eigenvalue of a symmetric matrix A. Given a set
S of vectors, span S is the space spanned by the vectors of S, and spanS* is its
orthogonal (Euclidean) complement. If z € R™, the components of z are defined by
(74); = max{0,z;},i=1,...,n.

2. Basic concepts.

2.1. Augmented Lagrangian methods. Let us consider the general nonlinear
optimization problem

(2) min F(z) s.t. H(z) =0, G(z) <0, z € Q,

where F' : R" - R, H : R* — RY%, and G : R” — R?® are smooth functions and
Q) C R™ is compact. We denote the index set of active inequality constraints at x by
Ig(xz) = {i | Gi(z) = 0}. The Lagrangian function associated with this problem is
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defined by
L(z, p) = F(z) + (1) G(2) + (™) H ()

for all z € Q and p = (p% pf’) € RYL x RZ. We will also consider the (Powell-
Hestenes—Rockafellar) augmented Lagrangian [26, 45, 47], defined in

H 12

Ly(x,p) = F(z) + g HH(x) + ”7

where z € Q, = (u, pf) € R% x RY, and p > 0.

One of the most important classes of algorithms to solve (2) are the augmented
Lagrangian methods. These methods are based on successive (partial) minimizations
of the augmented Lagrangian function with a fixed multiplier followed by a multiplier
update. Among them, we are particularly interested in the ALGENCAN algorithm,
an augmented Lagrangian method developed in [2]. ALGENCAN is the basis for the
second order augmented Lagrangian method named ALGENCAN-SECOND [1].

Both variations consider that the abstract set {2 only contains box constraints,
as these are simple enough to be handled by the inner minimization procedure.
Therefore, we assume from now on that ) only contains box constraints, that is,
Q ={z| ¢ <z < u}, and the augmented Lagrangian subproblems consist in min-
imizing L,(-, ) over Q for fixed p. To solve these subproblems ALGENCAN uses
GENCAN [13], a box constrained solver based on an active-set strategy and in spectral
projected gradient (SPG) steps, while ALGENCAN-SECOND uses a variation of GEN-
CAN that is able to deal with directions of negative curvature [1]. In the rest of this
section, we briefly introduce both variations of the ALGENCAN algorithm.

Let us define the continuous projected gradient as

Gp(x) = Po(x — VaLy(x, 1)) — z,

where Pq(+) is the orthogonal projection onto €. The multiplier x4 and the penalty
parameter p are fixed, and they will be clear from the context. When the continuous
projected gradient is nonzero, it is a descent direction for the augmented Lagrangian
function L,(-, u), and it is feasible with respect to the box Q (see Figure 2). Thus
[IGp(+)|| is a measure for the first order (KKT) optimality of the augmented Lagrangian
subproblem, which is used in Step 1 of the ALGENCAN algorithm below.

L

Fic. 2. Geometry of Gp and Gr. The open face F(x*) is the right border of Q, where z1 is
fized and x3 is free. If Gp(x*) # 0 then Gp(x™*) is a feasible descent direction for Ly(-, ) at z*. On
the other hand, Gr(x*) # 0 is a feasible descent direction within F(z*).
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Algorithm 1 ALGENCAN

Let pf. < pl . pS.. >0 v>1,0< 7 < 1, and let {e;} be a sequence
of positive scalars with limy_,oex = 0. Let (u )11 € i pl ] i=1,...4q,
(uHrel0,uS,.],i=1,...,s and p; > 0. Initialize k < 1.

Step 1. Find, using GENCAN, an approximate minimizer x* of the problem
mingeq L, (x, u*) such that
(Gl

Step 2. Define

Gk
1% max{Gi(a:k),('u)i}, i=1,...,s.
Pk

If k¥ > 1 and max{||H(2")||o, |V¥||oc} < 7max{||H(z*1)||oo, V¥ s}, define
Pr+1 = pk. Otherwise, define pr+1 = Ypk.

Step 3. Compute (u™);* € [l mlin, i = 1,...,q, and (u©); ™ € [0, u§,

1=1,...,s. Take k + k+ 1 and go to Step 1.

In order to have more stability on solving subproblems, the penalty parameter p
is increased only if feasibility and complementarity measures do not improve (Step 2
of Algorithm 1). In Step 3, a practical choice of new multiplier estimates is to project
(W)F + prH(a*) and ((16)F + peG(a*))1 onto boxes [ufhy,, jufl,]7 and [0, uG,]*.
respectively.

Originally, the convergence theory of ALGENCAN was established under the con-
stant positive linear dependence (CPLD) constraint qualification [2], which states that
if a subset of gradients of the active constraints is positive linearly dependent (PLD)
at a feasible z* then these gradients remain LD at the points in a neighborhood of
z*. Recently, this result was improved with the introduction of the cone continuity
property (CCP) [7]: we say that a feasible * conforms to CCP if the multifunction
K : R™ = R” defined by

K(z) = {VH@)u" + VG(a)uC | p € R, u€ € Ry, 1§ = 0 for j ¢ Ig(a*)}

is outer semicontinuous at z*, i.e., if limsup,_, . K(z) C K(z*). We note that the
KKT conditions can be written as —VF(z*) € K(«*). In [7], the authors showed
that CCP is the weakest constraint qualification that ensures that an approrimate
KKT (AKKT) [4] point is KKT. As ALGENCAN generates AKKT sequences [6], its
convergence is automatically established with the CCP condition.

THEOREM 2.1. Let {2*} be a sequence generated by Algorithm 1. Then
o {2¥} admits at least one accumulation point and any such accumulation point

*

x* is a KKT point of the infeasibility problem
(3) min [[H(@) |2 + [G(2)+|? st e,

e if an accumulation point x* is feasible and satisfies the CCP condition then
it is a KKT point of (2).

For more details on ALGENCAN, see [11, 12, 14].
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Next we present the ALGENCAN-SECOND and GENCAN-SECOND algorithms. For
all x € Q, we define

Fla)={z€Q |z =4 ifx; =4;, z; =u; if x; = u;, £; < z; < u; otherwise}.

Geometrically, F(z) is the smallest face of Q containing x, and we say that it is the
open face to which = belongs. The variables z; such that ¢; < z; < u; are the free
variables, while the remaining are called fized variables. Let V(x) be the minimal
affine subspace that contains F(z), and S(z) the parallel subspace to V(x). The
dimension of F(z), denoted by dim F(x), is the dimension of S(z) and coincides with
the number of free variables in the open face F(x). We define the inner projected
gradient as

Gi(x) = Ps(q) (Gp(2)).

This vector plays a similar role to the continuous projected gradient. It is a measure
for the first order (KKT) optimality of the augmented Lagrangian subproblem, but
now within the open face. Figure 2 illustrates the geometry of the gradients Gp
and g].

The Hessian of L, may not be defined at points where a component of uS + pG
is zero. We then define, for each € Q and € > 0, the approzimate e-Hessian of L,
(with respect to x) as

ViL,(2,p) = V2F(z)+ Z (pfl + pH;(2)) V2 H;(z) + pZVHi(x)VHi(x)t
+3 (1€ +pGix)), V2Gi(z) +p Y. VGi(x)VGi(a),

i=1 i€l (z)

where I.(z) is a relaxed version of the index set of zero components of u% + pG,
defined by

I(z) = { 1§+ pGy(x)) > —e}.

1
j ‘ — (

VP
Observe that V3L, (z,p) is the true Hessian of L, where it exists. At these points
the eigenvalues of VgLP give upper bounds to the eigenvalues of the true Hessian.
Furthermore, if the true Hessian of L, is positive semidefinite then V2L, is also
positive semidefinite.

Now, let 7 be an open face and € > 0. For each x € F, p > 0, and pp € R? x R%,
we define the reduced e-Hessian H(r . , (v, ) as the matrix whose entry (i, j) is the
entry (i,j) of V2L, (x, p) if z; and x; are free in F, and the entry (i, j) of the identity
matrix otherwise. The matrix H(r . (7, 1) gives a second order optimality measure
for the augmented Lagrangian subproblem within the open face F. In fact, if x;
is fixed in F then the directions pointing out the affine subspace V have a nonzero
i-component (see Figure 2). By the construction of Hyr . ,(x, ), this i-component
does not affect its positive semidefiniteness.

We are now ready to state the second order algorithms that will play a pivotal role
in this paper (Algorithms 2 and 3). Compared with ALGENCAN, Step 1 of Algorithm 2
contains an extra second order condition which attests that the current point x* is
a vertex of the box Q (i.e., dim F(x*) = 0) or satisfies approximately a necessary
second order optimality condition for the augmented Lagrangian subproblem (namely,
WSONC, defined below). In Step 2 of Algorithm 3, we abandon the current face only
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when the first order optimality measure ||G;(2*)||, within the face, is small enough
compared to the optimality measure ||Gp(2*)|| on the entire box 2 (condition (4)),
and additionally, when a second order optimality condition is satisfied. That is, we
explore the current open face F(x*) to exhaustion before moving to another face.

Algorithm 2 ALGENCAN-SECOND

Let pf <l  uG.. >0,v>1 and 0 < 7 < 1. Let {ef™}, {2} and

{ehess} he sequences of positive scalars such that limy e 8 = limyg o0 e%md =
limg 00 EQCSS = 0. Let (MH)zl € [:uzinrﬂrlr{ax]v i=1,...,q, (HG)% € [Ovlugax]v 1=
1,...,s, and p; > 0. Initialize k + 1.

Step 1. Find an approximate minimizer 2* of the problem mingcq L, (z, ©*) using
Algorithm 3 (GENCAN-SECOND) with 7 = pg, I = pF, el = gl cerad — grad

and ehess = El];ess_ The iterate ¥ satisfies
1Gp ()| < ef™

and
dim]:(g;k) =0 or X (H[F(xk),a;““,pk](xk,Mk)) > _giless.

Step 2. Define

Gk
1% :maX{Gi(ajk),—(MpL}, 1=1,...,s.
k

If £ > 1 and max{||H(z")| e, [|[V*|lo} < Tmax{||H(x* )| co, [[VF¥ !||oc} define
Pr+1 = pk. Otherwise, define px+1 = vpk.

Step 3. Compute (uH)f‘”'1 € [ph ul 1,i=1,...,q and (uG)f"H € [0,u8,.],

i=1,...,s. Take k + k+ 1 and go to Step 1.

As in ALGENCAN, the convergence analysis of ALGENCAN-SECOND considers sep-
arately feasible and infeasible accumulation points. With respect to the first order
stationarity, we naturally have the same results from ALGENCAN. In what follows, we
discuss the convergence to second order stationary points. If z* is a KKT point with
multipliers u = (u%, pf) € RS xR? we say that o* satisfies the weak second order nec-
essary condition (WSONC) if the Hessian of the Lagrangian is positive semidefinite
in the subspace orthogonal to gradients of the active constraints, i.e., if

d'V2L(z*,u)d >0 Vd € R™ such that VG, (z*)d=0, VH(z*)d=0.

Recently, a new second order constraint qualification was introduced in [5]. It is
called the second order cone continuity property (CCP2) and it can be viewed as an
adaptation of CCP to take into account second order information. For each z € R",
let us consider the cone

Clz,z*) ={d e R" | VHi(z)'d =0, i=1,...,q, VGj(2)'d =0, j € Is(z")}.

The set C(z,z*) can be viewed as a perturbation of the weak critical cone C(x*) :=
C(z*,2z*) around a feasible point 2*. As in CCP, we can write WSONC in the compact
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Algorithm 3 GENCAN-SECOND

Let ' € Q be an approximate initial solution of the problem

I
min Ly (z, 71)

(i and p are fixed here). Assume that n € (0, 1), et g8rad chess 5 and eomv ¢
(0, ghess). Initialize k < 1.

Step 1. (Stopping criterion.) If ||Gp(2)|| < 8" and
dlm]:(xk) =0 or )\O (H[‘F(xk),gfun’ﬁ] (.’Ek,ﬂ)) Z _EheSS7

stop declaring convergence.

Step 2. (Decision about keeping or abandoning the current face.) If

(4) IG:1(=™)I| < nllGp(2®)]

and
dim F(z*) =0 or Ao (H (7 (hy,etun 5 (2 FR)) > -,

compute z**1 € Q using the SPG method [15] (abandon the current face). Other-
wise, compute z¥*! by [1, Algorithm 2.3] (inner iteration).

Step 3. Take k < k+ 1 and go to Step 1.

form
(=VF(z*),-V?F(2%)) € Ka(z*),
where Ky () denotes the convex cone

(VH(x ),uHJrVG( )¢, M) such that

Ks(z) = U - M+ Z plEViH(z)+ Y p§VRG(2)
(w7 u?)ERT xRS, j€lg(z*)
u§'=0 for j¢la(=*) | is positive semidefinite on C(z,z*)

Finally, we say that a feasible z* conforms to CCP2 if the multifunction K5 : R™ = R™
is outer semicontinuous at *. Asin CCP, CCP2 is the weakest constraint qualification
that guarantees that an approzimate second order stationary point (AKKT2) point
fulfills WSONC (see [5] and its Theorem 4.2). As ALGENCAN-SECOND generates
AKKT?2 sequences [5] (and consequently an AKKT sequence), the next result was
established generalizing [1, Theorem 2.

THEOREM 2.2. Let {x*} be a sequence generated by Algorithm 2. Then
o {2} admits at least one accumulation point and any accumulation point x*
is a KKT point of the infeasibility problem (3),
e if an accumulation point x* is feasible and satisfies CCP then x* is a KKT
point of (2),
e if an accumulation point x* is feasible and satisfies CCP2 then x* is a KKT
point of (2) and fulfills WSONC.
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2.2. Stationarity concepts and constraint qualifications for MPCC. For
the sake of simplicity, we will omit in this section the box {2 and the noncomplemen-
tary constraints G(x) < 0, H(z) < 0. The adaptations to take these extra constraints
into account can be easily carried out by the reader. Therefore, we will focus on
following particular case of (MPCC):

min f(z) s.t. g(x) >0, h(z) >0, g(z)'h(z) <0.

Its usual Lagrangian is

L(z, 1) = f(x) = (u9)"g(w) — (") h(z) + pog(z)"h(z)

and the MPCC-Lagrangian is defined by

L(z,X) = f(x) = (\)'g(z) — (\")'h(a).

For a feasible x we define the sets of indexes of the active constraints as

Ij(x) ={i| gi(x) =0}, Ip(xz)={i|hi(z) =0}, and Io(z)=I,(z)NIx(x).

We note that I (x) U I(z) = {1,...,m}. For simplicity we write I, = I (z*),
Iy, = I(z*), and Iy = Ip(x*) whenever z* is clear from the context.

As we already mentioned, MPCCs do not satisfy the majority of the established
CQs, not even Abadie’s condition [19]. Hence, specific constraint qualifications are
defined. Among the various CQs, we present two of interest to us.

DEFINITION 2.3 (see [48]). We say that x* satisfies the MPCC-linear indepen-
dence constraint qualification (MPCC-LICQ) if the gradients

Vgi(z™), i € Iy(z*), Vhi(z¥), i € I(x"),

are linearly independent.

It is known that MPCC-LICQ implies the classical Guignard condition, but the
same does not occur with the sightly less stringent MPCC-MFCQ [19].

Next, we present the extension of RCPLD [6] to the MPCC that was introduced
in [24].

DEFINITION 2.4. Let Z, C I,\I, and Iy, C I\, (at x*) be such that
Vgi(x*), 1€ Ig, Vhi(x*), i €Iy,

is a basis of

span{Vg;(z*), Vh;(z*) | i € I\In, j € In\I4}.

Then z* is said to satisfy the MPCC-relaxed constant positive linear dependence
(MPCC-RCPLD) constraint qualification if there is an open neighborhood N (z*) of
x* such that
o {Vyi(z),Vhj(z) | i€ I \In, j € Ix\Iy} has the same rank for all x € N (z*);
e for each fg,fh C Iy, whenever there are multipliers p?, u", not all zeros,
satisfying plud =0 or pl, u? >0 Vi € Iy and

> Vgt + Y ulVhi(at) =0,

i€T U, i€Zyp Ul
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we have that
{Vgi(z),Vhj(z)|i €T, Ul,, j €T, UI,}

is linearly dependent for each x € N (z*).

Just like in nonlinear optimization, these MPCC CQs are important in asserting
the validity of first order stationarity conditions akin to KKT. However, in MPCC
there are different notions of stationarity (see [41, 43, 48]) that we describe below.

DEFINITION 2.5. We say that a feasible point x of MPCC is weakly stationary
(W-stationary) if there is a A = (N9, \") such that V,L(z,\) = 0, Al @M\ y(z) = 0
and AL o\ 1,0) = 0 o

Other stationarity concepts are common in the literature, and deal with the dif-
ferent possibilities for the signs of the nonzero multipliers.

DEFINITION 2.6. Let x be a W-stationary point with associated multipliers A =
(A9, A1),
o If XIA\h > 0 for all i € Iy(x) then we say that z is Clarke stationary (C-
stationary).
o If for alli € Ip(z) we have XIA! =0 or AY >0, AP > 0 then we say that x is
Mordukhovich stationary (M-stationary).
o If )\5170(30) >0 and /\’}O(w) > 0 then we say that x is strongly stationary (iS-
stationary).

Clearly S-stationarity = M-stationarity = C-stationarity = W-stationarity. Fig-
ure 3 illustrates the geometry of these concepts. When the lower level strict comple-
mentarity does not hold (i.e., when Iy(z) # @), these concepts are not equivalent
in general. In the example of the introduction, the local maximizer (0,0) is a C-
stationary point, but is not M-stationary. In the problem

1
min§ [(x—1)2+4y2] st.x>0,y>0, 2y <0,

the origin is an M-stationary point, but is not S-stationary.

V}M,f v \Y Y

xT T X xZ

e Vg Vg Vg Vg
v vf vf

S-stat. M-stat. C-stat. W-stat.

Fic. 3. Geometry of the stationarity concepts. The constraints g(z), h(xz) > 0 are active at x,
and the equation ViL(x,\) = 0 is equivalent to Vf(z) = \9Vg(zx) + \*Vh(z). The signs of the
multipliers A9 and A\ determine the regions where V f(z) can be. More stringent concepts result in
smaller regions.

M-stationarity is not a necessary optimality condition. However, if x* is a lo-
cal minimizer of MPCC and fulfills MPCC-Guignard’s condition then z* is an M-
stationary point [20, 21] (i.e., “M-stationary or not MPCC-Guignard” is a necessary
optimality condition). MPCC-Guignard is a variant of the classical Guignard’s condi-
tion, and is one of the weakest known constraint qualifications for M-stationarity (for a
detailed description of relations between constraint qualifications for M-stationarity,
see [24, 46]). The same does not occur with S-stationarity (which is equivalent to
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KKT; see [19, Proposition 4.2]): even MPCC-MFCQ does not guarantee that local
minimizers are S-stationary points [48]. Furthermore, an M-stationary point is not
S-stationary only if \Y A =0 for some index in Iy(z), which, from a numerical point
of view, seems to be atypical. Thus, theoretical convergence results to M-stationary
points seem reasonable.

3. Convergence results for MPCCs. In this section, we improve the conver-
gence results for the (first order) augmented Lagrangian methods applied to MPCC
presented in [31]. We also establish the corresponding result for ALGENCAN-SE-
COND [1]. As before, for the sake of simplicity, we will omit the constraints G(x) <0
and H(z) < 0. As we already mentioned, ALGENCAN and ALGENCAN-SECOND treat
box constraints separately, without penalizing them. When the box €2 is present,
the reduced e-Hessian H[r . (2, ) in ALGENCAN-SECOND and the approximate e-
Hessian V2L, (x, 1) have different entries related to fixed variables in the current open
face (see subsection 2.1). Hence, once again for simplicity we also omit the box ,
which removes this difficulty ensuring that Hz . ,(z, 1) = V2L, (x, ). The adapta-
tions of this theory to the general case are simple and mostly technical, and will be
treated separately in remarks that follow the results and in subsection 3.1.

Izmailov, Solodov, and Uskov [31] showed that under MPCC-LICQ, augmented
Lagrangian methods (in particular ALGENCAN) converge to points that are at least
C-stationary. The authors showed that when a certain dual sequence is bounded,
augmented Lagrangian methods converge to S-stationary points under MPCC-LICQ.
We improve the last statement showing that the same occurs with the weaker MPCC-
RCPLD condition. We apply the same technique that was used in [6].

THEOREM 3.1. Let {x*} be a sequence generated by ALGENCAN (Algorithm 1)
and x* be a feasible accumulation point with associated infinite index set K, i.e.,
limpe g ¥ = o*. If the sequence of complementarity multipliers is such that

s 0 k\t k
liminf(pk + prg(2”)"h(z")) < oo

and MPCC-RCPLD holds at x*, then x* is S-stationary. Otherwise, if MPCC-LICQ
holds at x*, it is at least C-stationary.

Proof. We only need to prove the first assertion of the theorem. The second
statement follows from the proof of [31, Theorem 3.2]. Hence, we assume from now
on that MPCC-RCPLD holds at #* and that liminfier (1) + prg(z¥)th(z*)) < oo.

ALGENCAN generates a sequence {z¥, u¥, p;} satisfying

(5) Vil (z",u") = V§(a") - Z ()" = prgi(z)) | Vgila")

— Z ()" = prha(a®)) | Vhi(@®) + (45, + prg(a®) h(z*)) " =0,
where v% = 3" (Vg (2%)hi(2%) + VI, (2%)g;(2*)). We can write

(6) V") = (V) = (ANEVhi(a*) — 0,

i=1 i=1
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where
(7) AF = (1) = prgile®)) , — ALhi(a"),
(8) ADF = ((u)* = prha(a®)) . — Ngi(@®),

and A\ = (1 + prg(z*)th(z¥)) ;. We will call {A\}} the sequence of complementarity
multipliers.

If {p} is bounded, it is straightforward, by taking limits in K, to show that z*
is a KKT point or, in other words, S-stationary. Thus, we restrict our attention to
the case in which pp — co. As we are under the assumption that lim infge i /\2 < 00,
there is an infinite index set K7 C K where {\?} is bounded. Thus, (7) and (8) imply
that limgex, (A \; )¥ = 0 and limgeg, (A |, )¥ = 0. Hence, (6) may be rewritten as

hr\l.q ! Ig\Ih

9) lim | V(") =Y (W) Vah) - >N VRN | =o0.

keKy ‘ h
i€l i€l
Again, by expressions (7) and (8) we have

. g k-> . h k>
(10) klé%(kfo) >0 and kléml()\lo) > 0.

The last expression allows us to perturb (/\5}0)’C and (A} )¥ in order to obtain (9) with
(A?O)k > 0 and (A},)" > 0 for all k € K; large enough. Consider Z, C I,\Ij and
Ty, C In\1Iy as in the definition of MPCC-RCPLD, i.e., such that

B(z*) = {Vgi(z*),Vhj(z") | i € Iy, j € In}
is a basis of
S(z*) = span {Vg;(z™), Vh;(x*) | i € I\, j € Iy\Iy}.

From the first condition of MPCC-RCPLD, B(z¥) is a basis of S(z*) for all k € K,
sufficiently large. Let us say for all k € Ky C K;. Then, there are sequences {(/\%y)k }
and {(A\} )¥} such that

> Vg + D ANVRi(R) = Y () Vi) + Y (AR (),

i€l \Ip i€ln\I, €T, i€Ty

and (9) gives

lim | Vf(z*) =Y ()'Vgi(a") = Y (A Vhi(a)

keKs i€Z, i€y,
=3 DEVgk) = AV Ri(k) | = 0.
i€lp 1€y

The gradients of the first two sums are linearly independent and the multipliers of
the last two sums are nonnegative. By [6, Lemma 1] there are, for each k € K>, a set
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IF C Iy and vectors (A9, )", (A%)* > 0 such that
0 0

lim | Vf(a*) =D (W) 'Vgi(a") = Y (A Vhi(ab)

e i€Z, =
=Y ADVa*) = Y AN Vhi(h) | =0,
ielk ielk

where all gradients of constraints are linearly independent. As there are only a finite
number of sets I(’f, there is an infinite index set K3 C K5 and Iy C Iy such that

: Ey AL v LA AL (kY| —
(1) lim V(") ZA (A)FVgi(aF) Zh (AI)EVh(z®) | =0,
i€ZyUly i€ZpUly

where all gradients of constraints remain linearly independent.
Let S = max{[|(AZ . )¥[loo, |(A" - )F|loo}. If liminfrex, Sk < oo then there is

Z,Ulo Z,Ulo
an infinite set K4 C K3 such that
lim (A2 . )*=X . and lim (A" . )F=)\0 .
k€K4( IgUIO) IgUIO k€K4( Ih,UI()) IpUIg

As (Xf )k,(j\;fo)k > 0 for all k € Ky, taking (\Y . )* = (A" . )¥ = 0 we conclude
0

Io\lo Io\lo
that =* is S-stationary.

Now we suppose that limyec g, St = co. Dividing (11) by Sk we obtain

lim Z (;\Zi)ng'(xk)—i— Z MVh‘(xk) =0
keK3 S ! . k ! '
1€ZGUlp 1€, Uly

All the sequences (AY)* /Sy, and (Al)¥ /S, are bounded, and hence there are convergent
subsequences with indexes in an infinite set K5 C K3. By the definition of Sj, one
of these limits is equal to 1, and thus the gradients of the constraints with indexes in
;U fo, InuU fo are linearly dependent at x*. But this contradicts the second item of
the MPCC-RCPLD definition, completing the proof. 0

Remark 1. Box and noncomplementarity constraints do not offer major difficul-
ties. For these constraints, the MPCC-RCPLD definition is stated as in [24]. The
adaptation of Theorem 3.1 also follows the strategy adopted in [6].

We now proceed to study the application of ALGENCAN-SECOND to MPCC. In
the method, we consider the subproblem

(5 -0) [ 4],

ALGENCAN-SECOND generates sequences {z"} C R™, {((u9)*, (u")*, ul)} € RT x
R7 x Ry, {pr} C Ry, and {&; = "} C Ry satisfying the following first and second
order conditions (for simplicity, we will omit “(2*)”).

2

H}Tin flx)+ + +

NI
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First order condition.

m

(12) Vil = V=5 ()" = pugs), Vi = ((u)* = puhi) , Vhs

i=1 i=1
m
+ (ug + pry'h) +Z 9;Vh; +h;Vg;) — 0.
i=1
Second order condition. The smallest eigenvalue of the matrix sequence {H* =

H(F(2*),ep.p) } teNds to a nonnegative value. The entries of HF related to free variables
are the entries of

(13) V2 Ly, = V2 =) ()" = prgi)+ — (uh + prg'h) 1+ hi] Vg

Ir

s
I
-

[(()F = pehi) s = (R + prg™h)+ i) V2hi

'Plﬂg

=1

+or Y, VeVgi+p Y VhVh

iel?, (zF) ie[?k (zk)

m

Y (VhiVg} + Vg, Vhi)

i=1

+ (1R + prg'h)+

m

> (giVhi + hiVg)

m

t
Z(giwﬁhiw—)} :

i=1

+ 2kpk

where

for r =g, h, and

. :{ L (1/y/P8) () + prg(a®)Th(a")) > —ep,
TN 0 i (1Rl + prg(at) h(ab)) < ey

Observe that as we are supposing that there are no box constraints, H* = V2

THEOREM 3.2. Let {z*} be a sequence generated by ALGENCAN-SECOND (Algo-
rithm 2) for solving (MPCC) and let * be a feasible accumulation point with asso-
ciated infinite index set K, i.e., limpe i ¥ = x*. If the sequence of complementarity
multz'pliers is such that liminfye (1) + prg(z®)th(z*)) < oo and MPCC-RCPLD
holds at x*, then x* is S-stationary. Otherwise, if MPCC-LICQ holds at x* and
€ = (1/\ﬁ) then x* is at least M-stationary.

Proof. As we stated in the beginning of this section, we will focus on the case
in which there are only complementarity constraints. The general case, allowing for
noncomplementarity constraints, will be treated in the next section.

The first statement is a direct consequence of Theorem 3.1. We proceed to prove
the second one. That is, we are interested in the case in which MPCC-LICQ holds at
o* and limge g (19 + prg(z®)th(2¥)) = co. In particular, as the multiplier estimates
computed by ALGENCAN-SECOND are bounded, py — 0o.
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The iterates satisfy

m

(14) lim \Vf =3 () Vg = > (X)) Vhi
i=1

i=1

where (\/)* = ((u)* — prgi)+ — Nhay N)F = ((u?)* = prhi)+ — Ngi, and A} =
(12 + prg'h)+. Following the proof of [31 Theorem 3.2] and passing to a subsequencg
if necessary, we car}labbume that {(/\9) beer and {(A)E ek converge toa A’ and
with )‘1, vz, =0, Ar\g, =0, and X )\i >0 for all ¢ € Ip. That is, 2* is C-stationary
with

(15) ~ S XVt = > N Vhi

icly i€l

We note that MPCC-LICQ at z* guarantees the uniqueness of X?q and X};h in the
expression above. This result depends only on the first order information. Our ob-
jective is to use the second order properties of ALGENCAN-SECOND to prove that x*
is actually M-stationary.

Suppose, by contradictlon that x* is not an M- statlonary pomt Thus, there is
an index j EIO suchthat)\ 750 and)\ <00r)\ < 0. As)\ )\» > 0, we have

)\j < 0 and )\j < 0. Hence, for all k € K sufficiently large we have

(16) D" = ((1D"* = prgi)+ — (uR + prg'h) s hy < =6
and
(17) (A = ()" = prhy)y — (4 + prg'h) 1 g5 < =6

for a certain fixed § > 0. As h; — 0, (16) implies
(18) 1y + prgth — oo.

We affirm that (,u?)k — prg; — —oo and (u;-‘)k — prhj — —oo. In fact, if (/,L?)k
prg; — oo then g; < 0 and (16) implies (42 + prg'h)+h; — oo. By (17) we have
(1) + prg'h)+ — —oo, which is 1mp0ss1b1e Moreover, if (p )k — prg; — a € R then
(12 + prg'h)+h; — b= (a )+—/\ > 0. As pdh; —>Oweobta1n (¢'h)pxh; — b >0,
which implies |pyh;| — oo because g'h — 0. Now, if pyh; — —oo then g'h < 0, which
implies the boundedness of {(1{ + prg'h)+}, contradicting (18). If pih; — oo then
g'h >0 and ((u})* — phy)+ — 0. By (17),

—h
(1p + prg'h)g; = (up + prg'h)4+g; — =X, >0,

which implies prg; — o0o. Then (,u?)k — prg; — —oo, which contradicts the conver-
gence to a. We conclude that (u?)k — prg; — —oo, as we wanted. This analysis is
valid for all £ € K sufficiently large, taking successive subsequences if necessary. The
proof of (u?)k — prhj — —oo is analogous.
We write
m
k= (gi(:vk)Vhi(xk) + hi(gck)Vgi(mk))
i=1
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and for each k € K we take a unitary vector
(19) dr e span{vk,VgIg\{j}(xk), Vhlh\{j}(:ck)}J‘.

Such a d* exists since MPCC-LICQ holds at z* and thus there are no more than n — 1
vectors in this spanned subspace. Multiplying (12) by d* we obtain

m m

(20) V=Y () = prgi) , Veid® = ((wh)* = prha) , Vi — 0.
i=1 i=1

For all k € K large enough we have

e Vg;(z*)td* =0, Vi € I,\{j}, by the definition of d*;

o (ud)* — prgi)+ =0, Vi ¢ I,, by the feasibility of z*;

o (W)~ prgy)+ = 0 since (u)F — prg; — —oc.
The same holds for h and then by (20) we have Vf'd* — 0. As {d*}rex is a
sequence of unitary vectors, there is an infinite set K1 C K such that limpef, d* = d.
By continuity,

de S = Span{Vf(x*), Vg[g\{j} (I*), Vh]h\{J}(SC*)}J'

Since MPCC-LICQ holds at z* and as we can choose d* in (19) converging to an
arbitrary d € S, we can suppose that Vh;(z*)'d # 0. In fact, if Vh;(z*)'d = 0 for all
de S, ie.,if

Vh(z*) € St = span{V f(x*), Vgr\ (3 ("), VR iy (7)1,
then we can write

Vh;(z*) = aV f(z*) + Z aIVg(z*) + Z al'Vhi(z*) +0- Vg, (z*).
i€l \{j} ieln\{j}

We have a # 0, since the gradients of these (active) constraints are linearly indepen-
dent by MPCC-LICQ. Dividing this expression by « we obtain V f(z*) as a combi-
nation of gradients of active constraints where the factor of Vg;(z*) is zero. But this
contradicts the uniqueness of the multipliers that appear in (15), since Xg < —4.
Multiplying (15) by d we obtain
~h
*\t >‘j *\t
Vgi(z*)'d= —?th(x )'d #£ 0.
J

As X? < —§ and X;l

< —6 we have X;/X]g- > 0, and thus
(21) d [th(x*)ng(x*)t + Vg, (x*)Vh; (x*)t] d= Q(ng(x*)td)(th (z*)'d) < 0.

Multiplying (13) by d, for k € K;, and remembering that I, U I, = {1,...,m} we
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obtain

(22) V2, Lyydi = di | V2F () =Y () V2gi(a™) = D (A VPhi(a") | da

=1 i=1

A
e > (V) o Y (diVhiab)

iel?, (zF) iEng (z*)

B
+ (pp + pkg(ack)th(xk))Jr [}, (th(xk)ng(mk)t + ng(xk)th(a:k)t) di] -

c

The term A is bounded since limger, A9 = 2 and limgex, A" = Xh. As

- g\k % hyk N —
dm ((15)" = prgg) = lim ((47)" = prhy) = —oo,
we conclude that j ¢ IZ (z*) U I (a) for all k € K if ¢ is small enough to ensure
that

1 1
(23) 0 <ep < —max {m((uﬁ)’“ — i), ﬁ((ﬂ?)k - thj)} .
Furthermore, we have, for all k € K; large enough, (ug)k — prg; < —d and (u?)k —
prh; < —0 for a fixed § > 0. Thus, the algorithmic condition e, = O(1/,/px) is
sufficient to guarantees the validity of (23). Recall that for all i ¢ I, if k € K, is
large enough, g; will be positive and bounded away from zero. Hence, as p, — o0, it
follows that

Ly ()"
ﬁ((u_,) - pkgj) = \/pik — \/ﬁTkg] Z —00.

Therefore (I\I4) NI¢ (z*) = 0 for these indices k. Analogously, (I,\I) NIk (%) =
() for all £ € K; large enough. We conclude that the term B in (22) does not
appear. Finally, by (18) and (21), the term C in (22) tends to —oo. This shows that
d} V2 L, dr — —oo, contradicting the second order test (13). We conclude that z*
is an M-stationary point, completing the proof. ]

Figure 4 gives a geometric interpretation for the ALGENCAN-SECOND convergence.

Remark 2 (box constraints). We can adapt the proof of Theorem 3.2 to cover box
constraints considering

drF e Span{vk, ngg\{j}(xk), Vh\ ) (nlck)7 e}-}J‘

instead of (19), where ex is the matrix formed by canonical vectors e; of R™ whose
indices are the ones of fixed variables in the open face F = F(x*) (this is possible
by MPCC-LICQ condition). Thus, d* will also be orthogonal to er and by the
first order expression we will obtain V f(2*)!d* — 0. Analogously we conclude that
(dk)tV§kLPkdk — —00. Now, as d” is orthogonal to er, d; = 0 for all i such that x;
is fixed in F. Therefore, we can write

d"= 3" dfe;

i; x; free
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Fic. 4. ALGENCAN-SECOND convergence. The two constraints g(x) > 0 and h(z) > 0 are
active at x*. When V f(x*) is in the regions delimited by thin solid arcs, x* is not C-stationary,
while the thick solid arc indicates the region for which x* is C-stationary, but not M-stationary.
When V f(z*) is in the regions indicated by dotted lines, x* is M-stationary. ALGENCAN does not
converge to * when V f(z*) is on thin arcs, while ALGENCAN-SECOND also avoids this undesirable
situation when V f(z*) is on the thick arc. In the last case, an orthogonal vector d to V f(x*) fulfills
dt(VhV gt + VgVht)d = 2(Vhtd)(Vgtd) < 0.

and hence

(@) Hrdh = Y didiHE = Y didy (V2 L), = (d8)'VE Lydt = oo,
(0.9 (i-1);

x;,x; free z;,x; free

completing the argument.

Remark 3. In example (1) of the introduction, ALGENCAN may converge to (0, 0)
with the sequences (zx,yr) = (1/k,1/k) and pi, = k3, but not ALGENCAN-SECOND
since the origin is not M-stationary. In the example of subsection 2.2, ALGENCAN-
SECOND (and consequently ALGENCAN) may converge to the origin with the sequences
(zg, yx) = (1/k%,1/k) and p = k*, in which case ul + prz*y* — oco. This point is M-
stationary but not S-stationary. Therefore we cannot expect more than convergence
to M-stationary points.

3.1. General constraints. Let us show briefly that Theorem 3.2 also holds in
the presence of the noncomplementarity constraints G(x) < 0 and H(x) = 0 (box
constraints are neglected here by simplicity; Remark 2 is still applicable). In order to
prove the theorem in this case let us recall that the ALGECAN-SECOND subproblem is

()|
(5 o) 2 (& -1) (‘f+g<x>th<x>)+r

The algorithm then generates sequences satisfying the following first and second order
conditions.

H 2

. u
mlnf(a?)—i—i +HP+H(JU)

p ‘

2

+ + +
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First order condition.

s q
(24)  VaLp, =VI+ > () + peGi) 4 VGi+ Y ((uf")* + prHi)VH;

=1 i=1
- Z((“?)k — Prgi)+ Vi — Z((M?)k — prhi)+Vh;
=1 i=1

+ (R + prg'h) 1+ > _(Vhigi + Vgihi) = 0.
i=1

Second order condition. The sequence formed by the smallest eigenvalues of the
matrices below converges to a nonnegative value:

s q
V2, Loy = V2 + ) (()F + prGi) VG + > ((ud")* + pu Hi)VH;
=1 =1

q
> VGVG!+ppy VHVH!

iEISC (zk) 1=1

= (EDF = prgi)+ — (1) + prg"h)+hi]V2g;
=1

- Z[((u?)’c — prhi)s — (1§ + prg'h)+.g:]V2h

+or Y. VeVgi+p Y, VhiVh
iEngk(xk) ielé‘k(zk)
> (VhiVg} + Vg Vi)

=1

+ (g + prg'h)+

m

> (Vhigi + Vgihi)

i=1

m

> (Vhigi + Vgihi)

=1

+ 2k Pk

)

where the new set satisfies
1
G ky_ ) Ghk k
Isk(l' )—{ZC{l,...,p}‘ \//Tk((lj'l) +kal(w ))>_5k}'

As previously, we consider the additional set of indices Ig(x) = {i | Gi(z) = 0} and
write Iq = Iq(z*), I, = I4(2*), and Ij, = I (z*).

Again, if lim inf(u? + prg(z*)'h(2z*)) < oo, we can use only the first order prop-
erties to ensure convergence to S-stationary points under MPCC-RCPLD. We now
focus on the liminf(ud + prg(z*)th(z*)) = oo case.

Once more, considering only the first order properties we can argue that ALGEN-
CAN-SECOND converges to C-stationary points, i.e.,

(25)

q
)+ 3 X VG Z > NVgie) — 3 N Vhi(a®

i€lg i€ly iely
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We proceed supposing that x* is not M-stationary, and then an index j € I exists.
If MPCC-LICQ holds on z* then the gradients

VH(z*), VG, (z*), Vg ("), and Vhy,(z¥)

are linearly independent. Therefore, we can take

1
dy € span {v*, Vhp,\ (1 (2"), Vgr\ 1 (25), VG, (2F), VH (a")} .

Multiplying the first order expression (24) by dj we obtain

s q
Vil + > (u)E + peGi) 4 VGidy + > ()" + prH;)VHY dy,
i=1 i=1

= (1 = prgi)+ Vaide =Y (1h)* = prhi) £ Vhidy, — 0,
i=1 i=1

and analogously V ftdj, — 0. The limit d = limyc g, dj satisfies

de span{Vf(x*), Vh;h\{j}(x*), VQIH\{j} (l‘*), VGIG (.Z‘*), VH(Z‘*)}J‘

With similar arguments on (25) we obtain Vg;(z*)'d = —(X?/Xg)th(x*)td # 0,
and (21) holds. Multiplying the second order expression by dj, k € K7, we obtain

di V2, Loody = di | V2 (") + ) ((u9)" + puGi(a®)) | V?Gi(2")
1=1

+ > () + prHi(")) V2H (") = Y () VPgi(a") = Y () VPhi(a*) | da

i=1 i=1 =1

o Y (V@) o Y (dVhih) o Y (dVGi(h))

iel?, (z*) iGIé‘k (z*) 7J€IEC;C (zk)

2

B
+ (g + pkg(ar:]“)’%(avk))jL [d, (Vhi(z")Vg;(a) + Vg;(aF)Vh;(a")") di] -

C

The term between brackets is bounded and C tends to —oco. In B, the first two
sums do not appear when ¢ is sufficiently small. Now, if ¢ € Ig(a*) then, for all &k
sufficiently large, G;(z*) < —y < 0 and

L Gyk k (1§
ﬁ ((Nq )+ kG )) < ﬁ — /PRy = —o0,

which implies i ¢ ]gc (). Thus the third sum in B will not appear either. This
completes the proof of Theorem 3.2 considering noncomplementarity constraints.

4. Numerical experiments. In this section we report and discuss the behav-
ior of our implementation of ALGENCAN-SECOND. The implementation was based on
the ALGENCAN 3.0.0 beta package provided by the TANGO project (http://www.
ime.usp.br/~egbirgin/tango). Analogously, our implementation of GENCAN-SECOND
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was based on the GENCAN code supplied with the ALGENCAN package. To com-
pute eigenvalues, we used the Jacobian preconditioned conjugate gradients method
(JPCG) [44] implemented in the HSL EA19 package (version 1.4.0) [29]. In order to
force ALGENCAN to behave like a pure augmented Lagrangian method we turned off
an acceleration option that consists in trying to apply a Newton-type method to the
nonscaled KKT system obtained by fixing active constraints as equalities [11]. This
acceleration routine was not considered in our analysis.

Regarding our ALGENCAN-SECOND implementation we highlight the following.

e GENCAN employs a quadratic interpolation backtracking. We keep this back-
tracking strategy if a first order direction is chosen in our implementation of GENCAN-
SECOND. When a second order direction is chosen, we perform a simple backtracking
t < 0.9 x t. Observe that the sufficient decrease criteria for the second order in
ALGENCAN-SECOND is not of Armijo type [1].

e GENCAN employs extrapolation steps [13] that improve the global performance
of ALGENCAN. We maintain this strategy for GENCAN-SECOND.

e As we stated in Theorem 3.2, the tolerance ¢™ for the approximate e-Hessian
must be of order O(1/,/p). In our implementation, we take the nonincreasing sequence

e™ = max {10~ min{ef"™, 1/\/pr}} -

e At each iteration of GENCAN, the decrease of the objective function, the decrease
of the projected gradient norm, and the step size are monitored. GENCAN stops by
lack of progress if for maxinnitnp consecutive iterations at least itnplevel of these
values do not improve. In GENCAN-SECOND we additionally monitor the smallest
eigenvalue of the reduced e-Hessian. More specifically, we stop GENCAN-SECOND if
during maxinnitnp consecutive iterations at least itnplevel original measures do
not improve and, additionally, if the smallest eigenvalue remains negative. We use
the default GENCAN values for maxinnitnp = 3 and itnplevel = 2.

e GENCAN-SECOND starts searching for directions of negative curvature only near
first order stationary points. More specifically, eigenvalues are computed once both
conditions below hold.

— The projected gradient norm is less than or equal to €8¢ (Step 1 of GEN-
CAN-SECOND).

— The gradient norm is less than or equal to a threshold € > 0. This criterion
is related to the choice of the second order directions in the inner iterations
of Step 2 of GENCAN-SECOND (see [1, Algorithm 2.3)).

Furthermore, eigenvalues may be computed to verify the lack of progress condition
described in the last item.

e Augmented Lagrangian methods usually start from arbitrary multiplier values,
typically the zero vector. The multiplier estimates start to carry real information
about the problem only after a few outer iterations. Hence, we avoid using the second
order information from the approximate e-Hessian VgLP prematurely.

— A GENCAN-SECOND iteration is never executed in the first outer iteration of
ALGENCAN-SECOND.

— GENCAN-SECOND is turned on after the multiplier estimates A\* have settled.
That is, if [|A¥ — A¥=1||, < & for N, consecutive iterations.

— GENCAN-SECOND is also turned on if the first order convergence criteria of
ALGENCAN-SECOND are satisfied with its tolerance multiplied by 10. That is,
if the complementarity, the feasibility, and the projected gradient norm are
at most 10 times the desired first order tolerance.
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— After the first execution of GENCAN-SECOND, all future iterations of ALG-
ENCAN-SECOND will use it. This ensures that we realize an “infinite” number
of second order iterations, in which case Theorem 3.2 is valid.

— We do not declare convergence in ALGENCAN-SECOND before performing the
first second order iteration. Thus, we avoid cases in which the convergence
to stationary points occurs rapidly only with first order directions, before at
least one second order test takes place. Hence, we guarantee that we have a
legitimate second order method.

e On the other hand, we start to use GENCAN-SECOND whenever we can detect
that ALGENCAN-SECOND may fail.

— ALGENCAN-SECOND may fail declaring that it found a stationary point of the
feasibility measure. Therefore, we turn on GENCAN-SECOND if the gradient of
the feasibility measure at the current point is less than two times the tolerance
that ALGENCAN-SECOND uses to declare failure.

— The method may also fail if the penalty parameter p; increases too much.
Therefore, we turn on GENCAN-SECOND if py, is larger than fixed large popng.
Hopefully the use of second order information may help to preclude the failure.

— GENCAN-SECOND is also started after 2/3 of the maximum number of itera-
tions of ALGENCAN-SECOND is reached. This is an undesirable situation, but
aims to execute second order iterations before the first order method halts.

The computational tests were performed using the MacMPEC collection, which
is available in the AMPL modelling language at http://www.mcs.anl.gov/~leyffer/
MacMPEC. From the 193 test problems, 19 were either multi-objective (ralphl),
infeasible (pack-rig2-16/32, pack-rig2c-16/32), had integer variables (ex9.1.2),
or had mixed complementarity constraints (bilevellm, bilevel2m, gnash10m—19m,
taxmcp), and were hence ignored. Another 15 test problems were not considered be-
cause they cause unknown fatal errors in the AMPL interface of ALGENCAN (gnash14,
incid-set-1-8/16/32, incid-set-1c-8/16/32, incid-set-2-8/16/32, incidset-
2¢-8/16/32, water-FL, water-net). Problem pack-rig3c-32 causes memory over-
flow in the second order method, while bem-milanc30-s, tollmpec, and tollmpecl
exceed five hours on the second order computations. These problems were then also ig-
nored. We note that the original instances use the directive complements to represent
complementarity constraints. This directive is not understood by ALGENCAN’s AMPL
interface. Therefore we rewrote these constraints using explicit, functional, comple-
mentarities. The AMPL option presolve was turned off in order avoid changes in
the structure of the problems. A computer with an Intel i7 2.6 GHz processor, 8 Gb
RAM, and GNU/Linux 64 bits system (Ubuntu 16.04) was used. For ALGENCAN and
ALGENCAN-SECOND we used £°P = ¢35 = 1076 and the maximum number of outer
iterations equal to 100. Regarding the parameters that are exclusive to the second
order methods, we set €? = 1074, "V = 0.99 x 1076, ehes = 1076, k = 1, n = 0.1,
66““ =1076, e* = Vefeas = 1073, Ny, = 3 and Pand = 108. We initialize the multipliers
as zero. When not supplied, the initial point was taken as the origin.

The use of slacks in ALGENCAN is not recommended in general, since the method
can benefit from active inequality constraints [12]. Hence the use of slacks in ALGEN-
CAN is disabled by default. However, the numerical experience of SQP in MPCCs
suggests that it is better to write complementarity in the form g(z)th(z) + s = 0,
s > 0 [23]. Izmailov, Solodov, and Uskov [31] adopt this form in their computa-
tional tests with ALGENCAN. In order to compare the behavior of ALGENCAN and
ALGENCAN-SECOND in these two situations, we realized tests with complementarity
in both forms g(x)'h(z) < 0 and g(z)*h(z) +s =0, s > 0. In both cases, ALGENCAN


http://www.mcs.anl.gov/~leyffer/MacMPEC
http://www.mcs.anl.gov/~leyffer/MacMPEC

2596 R. ANDREANI, L. D. SECCHIN, AND P. J. S. SILVA

and ALGENCAN-SECOND behave similarly in most problems, without significant dif-
ferences.

We consider ALGENCAN/ALGENCAN-SECOND to have converged if one the follow-
ing situations occurred.

e The algorithm declares convergence to a stationary point.

e The algorithm stops with a large penalty parameter p (greater than 108, the
standard value in ALGENCAN), but with feasibility and with the final func-
tional value not worse than the best objective value known in the literature,
as reported in the MacMPEC collection. This is a typical situation in which
the accumulation point is a C-/M-stationary point only.

Otherwise, we consider the algorithm to have failed.

Results for complementarity without slack. In this case, complementarity
takes the form g(z)'h(z) < 0. From the 155 considered problems, both methods fail
in 15 (9.68%) of them.

Table 1 gives the problems in which there was convergence for at least one method,
and different approximate solutions were reached. The column “Best obj” contains
the best objective function value known in the literature, as described in MacMPEC
collection. The columns “Obj” and “Infeas” contain, respectively, the final objective
function value and the measure of infeasibility [12] given by

maX{IIH(mk)Ilom IGGE") +llses | (=h(™))  Hloos | (—9(2")) , lloos (g(w’“)th(w’“))+}-

In the column “Status,” “p > 1”7 means that the method failed with a large penalty
parameter. The entry “conv./C” means that the method declared convergence but
at least one pair of multipliers associated with complementarity constraints seems
to be converging to negative values. That is, the point found is approximately C-
stationary only. The entry “conv./S” means convergence to a point that is approx-
imately S-stationary, in particular all multipliers associated with complementarity
constraints are approximately nonnegative. We can see that in the pack-complc-32
problem, ALGENCAN-SECOND reached feasibility, while ALGENCAN did not achieve
the required precision. This led to failure due to the large penalty parameter for the
first order method. In the other three problems, ALGENCAN-SECOND converges to a
point with smaller functional value than the ones attained by the first order method.
It is possible to verify that in each case ALGENCAN converged to a point that is only
C-stationary, while ALGENCAN-SECOND converged to the best known solution which is
an S-stationary point, corroborating our theory. In the other 135 problems that both
methods declared convergence, the same functional value was obtained by two meth-
ods. In these problems, the functional value was equal to the best value reported
in MacMPEC collection with exception to the problems ex9.2.5, qpecgen100-4,
gpecgen200-3, and gpecgen200-4, where an S-stationary point with better objective
value were found, and bard3, ex9.2. 3, pack-complp-8, gpecgen100-1, qpecgenl100-
3, qpecgen200-2, and TrafficSignalCycle-1-11/13, where the methods converged
to S-stationary points with worse objective values. We note that small random pertur-
bations of the starting points still lead to similar results, where the first order method
converges to points that are approximately C-stationary in a few problems while the
second order variation recovers approximately S-stationary points. This observation
is in line with our theoretical results.

Results for complementarity with slack. When we consider complementar-
ity as g(z)th(z)+s = 0, s > 0, the general behavior of both methods is very similar to



SECOND ORDER AUGMENTED LAGRANGIAN METHOD FOR MPCCS 2597

TABLE 1
Computational tests, complementarity as g(z)'h(x) < 0. Differences between ALGENCAN and
ALGENCAN-SECOND.

ALGENCAN ALGENCAN-SECOND
Problem Best obj Obj Status Infeas Obj Status Infeas
pack-complc-32 6.61e-01 6.01e-01 p>1 1.14e-03 | 6.61e-01 conv./S 3.47e-08
scale4 1.00e+00 | 1.71e400 conv./C 5.57e-07 | 1.00e+00 conv./S 1.58e-08
scaleb 1.00e+02 | 2.00e4+02 conv./C 5.56e-07 | 1.00e+02 conv./S 3.00e-09
scholtes3 5.00e-01 | 9.99e-01 conv./C 5.56e-07 | 5.00e-01 conv./S 3.00e-10

the previous case. The number of problems considered was one less than before, 154,
as we detected an unknown error in the AMPL interface in the hakonsen problem.
Once again, both methods fail in only 15 (9.74%) of the tests. As before, we highlight
the problems in which the feasibility was reached by at least one of methods and where
both of them converged to different approximate solutions in Table 2. In the previous
case, ALGENCAN and ALGENCAN-SECOND attained the same functional value for the
pack-complp-8 instance, which was larger than the value reported by MacMPEC.
Now, both methods declare convergence, but ALGENCAN-SECOND reaches a better
functional value, quite close to the best known value.

Note that ALGENCAN behaves very similarly in the two ways of writing the com-
plementarity constraints. Thus we cannot assert that one form is better than the
other. In [31], the authors presented a similar observation. The same comment is
valid for ALGENCAN-SECOND.

In the computational tests performed in [31], the authors considered 161 problems
from the MacMPEC collection and reported that ALGENCAN converged in about 97%
of them. In our tests, this percentage was roughly 90%. This difference is probably
explained by different options and the different versions of ALGENCAN used in both
tests. In particular, we did not use the specialized solver for sparse linear systems from
HSL that is suggested in ALGENCAN’s documentation for large-scale problems. When
such a linear solver is available, ALGENCAN employs a trust region Newton method
in inner iterations of GENCAN [12]. This differs from the original line-search-based
version of GENCAN [13] and is not compatible with GENCAN-SECOND. On the other
hand, the main objective of the numerical experiments described in this section is
to see whether the second order version of GENCAN is able to recover better MPCC-
stationary points than the method that is concerned only with first order stationarity,
as suggested by Theorem 3.2. In order to make this comparison, the original GENCAN
has to be used in all the tests.

In any case, everything indicates that ALGENCAN reaches minimizers frequently.
Thus, we should not consider first and second order methods competitors among
themselves. Our intention is to show that there are a few cases where second order
information can be useful in recovering better stationary points. This is in the spirit
of ALGENCAN-SECOND: we only resort to the second order when the first order tends
to be exhausted. In particular, even after being very careful to use second order
computations only when strictly necessary in our numerical tests, the average running
time of ALGENCAN-SECOND was still 76% greater than that of ALGENCAN.

5. Conclusions. In this paper, we improved the convergence results [31] for AL-
GENCAN [2] when applied to MPCCs. We were able to replace the stringent MPCC-
LICQ condition by the much more general MPCC-RCPLD. We also proved a new
result for the second order augmented Lagrangian method ALGENCAN-SECOND [1].
We showed that it is able to cope with situations in which unbounded multipliers



2598 R. ANDREANI, L. D. SECCHIN, AND P. J. S. SILVA

TABLE 2
Computational tests, complementarity as g(xz)'h(z) +s = 0, s > 0. Differences between AL-
GENCAN and ALGENCAN-SECOND.

ALGENCAN ALGENCAN-SECOND
Problem Best obj Obj Status Infeas Obj Status Infeas

pack-complc-32 | 6.61e-01 8.25e-01 p>1 9.32e+06 | 6.6le-01 conv./S 6.46e-07

pack-complp-8 6.00e-01 | 6.61e-01 conv./S  2.11e-07 | 6.0le-01 conv./S 1.50e-09

scale4 1.00e+00 | 1.71e400 conv./C  5.57e-07 | 1.00e+00 conv./S 1.58e-08
scaleb 1.00e+02 | 2.00e4+02 conv./C  5.56e-07 | 1.00e+02 conv./S 3.00e-10
scholtes3 5.00e-01 | 9.99e-01 conv./C  5.56e-07 | 5.00e-01 conv./S 3.00e-10

appear, still asserting convergence to M-stationary points. We performed numerical
tests using MacMPEC instances and showed cases for which ALGENCAN-SECOND con-
verges to M-stationary points, while ALGENCAN is only able to recover C-stationarity.

Finally, there are many other second order methods for general nonlinear opti-
mization. We are interested in analyzing the convergence of such methods to second
order stationary points for MPCC.

Acknowledgments. We would like to thank the referees for their valuable com-
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