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The identity ray, αI for α > 0, can be seen as the center ray of

the cone of symmetric and positive definite (SPD) matrices. In that

sense, the angle that any SPDmatrix forms with the identity plays a

very important role to understand the geometrical structure of the

cone. In this work, we extend this relationship, and analyze the geo-

metrical structure of symmetric matrices including the location of

all orthogonal matrices, not only the identity matrix. This geometri-

cal understanding leads to new results in the subspace of symmetric

matrices.We also extend someof the geometrical results for the case

of general (not necessarily symmetric) nonsingular matrices.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The space of square real n × nmatrices can be equipped with the Frobenius inner product defined

by

< A, B >F = tr(ATB),

for which we have the associated norm that satisfies ‖A‖2
F =< A, A >F . In here, tr(A) = ∑

i aii is

the trace of the matrix A. In this inner product space, the cone of symmetric and positive definite

(SPD) matrices has a rich geometrical structure. In that context the angle that any matrix forms with

the identity ray, αI for α > 0, plays a very important role. Our work has been motivated by the rich

geometrical structure of the positive semidefinite cone ofn×nmatrices and specially by thediscussion

presented by Tarazaga [3,4], and more recently by Chehab and Raydan [1].
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In this work, we extend this geometrical point of view, and analyze the geometrical structure of

symmetric matrices, including the location of all orthogonal matrices, not only the identity ray.

The rest of this paper is divided into sections as follows. In Section 2 we introduce the required

notation, review the previously obtained results for SPDmatrices, andwe present new results that add

understanding to the structure of the subspace of symmetric matrices. In particular we describe the

multiple rays in the subspace of symmetric matrices that generalize the role of the identity matrix in

the SPD case. In Section 3, we will show properties about the location of orthogonal matrices. As a by

product, we present a new lower bound for the Frobenius condition number of symmetric matrices.

In Section 4 we present an extension of the obtained results for general matrices.

2. Basic results and structure of symmetric matrices

The Frobenius inner product allow us to define the cosine of the angle between two given real n×n

matrices as

cos(A, B) = < A, B >F

‖A‖F‖B‖F

. (1)

In particular, for a given symmetric matrix A,

cos(A, I) = tr(A)

‖A‖F

√
n
. (2)

Note that, for any nonsingular symmetric matrix A, using the Cauchy-Schwarz inequality we have

n = tr(I) =< A, A−1 >F � ‖A‖F‖A−1‖F = κF(A),

and so, n is a lower bound for κF(A). Moreover, it also follows that

cos(A, A−1) = < A, A−1 >F

‖A‖F‖A−1‖F

= n

‖A‖F‖A−1‖F

= n

κF(A)
. (3)

In particular, for a given SPD matrix A, it was established in [1] that

0 � cos(A, A−1) � cos(A, I) cos(A−1, I) � 1. (4)

Let us now analyze the geometrical structure of the subspace Sn of symmetric matrices of order n.

Given A ∈ Sn, we can always diagonalize A as follows

QtAQ = D,

where the columns of the orthogonal matrix Q are a set of orthonormal eigenvectors of A. In here, we

only consider nonsingular matrices. It is important to recall that the map

φQ (X) = QtXQ

is an isometry and so it preserves thenormof amatrix and the angle betweenmatrices. It alsopreserves

eigenvalues and the trace of a matrix. In particular note that φQ (I) = I, i. e., the identity matrix is a

fixed point of φQ for every orthogonal matrix Q .

We are interested in the angles that A, A−1, and any othermatrix that shares the same eigenvectors,

form between them. Using φQ we can shift all these matrices to the set of diagonal matrices, since

all of them are simultaneously diagonalizable. Let us now consider the matrix QA that belongs to the

class mentioned above. This is a very interesting matrix that will play a key role throughout this work.

Given a matrix A ∈ Sn with spectral decomposition A = ∑n
i=1 λixix

t
i we define QA as follows
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QA =
n∑

i=1

sign(λi)xix
t
i .

It is worth noticing that QA = sign(A), where sign(A) ≡ A(A2)−1/2, and A1/2 is the principal square

root of A; see Higham for details [2]. Clearly, QA shares the eigenvectors of A and the sign of the

corresponding eigenvalues which implies that they share the inertia. It is also straightforward that QA

is an orthogonal matrix. Also we have that QA = QA−1 . It is clear now that given A = ∑n
i=1 λixix

t
i and

Q , the matrix whose columns are the eigenvectors of A, it follows that φQ (A) = diag(λ1, . . . , λn) and
φQ (QA) = diag(sign(λ1), . . . , sign(λn)).

For example, the diagonal matrices of order two form a two dimensional subspace of S2 and any

matrix in that subspace can be written as

D = λ1e1e
t
1 + λ2e2e

t
2,

where e1 and e2 are the canonical vectors in IR2, and λ1 and λ2 are the eigenvalues of D. Note that

the identity matrix is written as I = e1e
t
1 + e2e

t
2. This subspace of diagonal matrices contains four

orthogonal matrices: the identity matrix I, −I, and the other two diagonal matrices with a 1 and a −1

in the diagonal. As we said, the subspace of diagonal matrices has dimension two and the bisectors

of the quadrants are the orthogonal matrices just mentioned. We consider the system of coordinates

generated by e1e
t
1, e2e

t
2. Notice that, given a matrix A, its inverse A−1 and QA have the same inertia

(and also its transpose in the nonsymmetric case).

We can observe that inversion happens in the same quadrant (orthant in the general case Sn, for

n > 2). It is worth noticing that, in reference to this 2-dimensional example, the paper by Chehab and

Raydan [1] deals with the positive quadrant.

Lemma 2.1. Given a nonsingular matrix A ∈ S2, we have that

cos(A,QA) = cos(A−1,QA). (5)

Proof. First of all notice that since A and QA are simultaneously diagonalizable, it suffices to show that

cos(D,QD) = cos(D−1,QD),

where D satisfies A = QDQt . In other words the diagonal elements of D are the eigenvalues of A. Recall

that D, D−1 and QD have the same inertia. Let us now compute the cosines

cos(D,QD) = tr(DQD)

‖D‖F

√
2

= |λ1| + |λ2|√
λ2
1 + λ2

2

√
2
,

cos(D−1,QD) = tr(D−1QD)

‖D−1‖F

√
2

=
1

|λ1| + 1
|λ2|√

1

λ2
1

+ 1

λ2
2

√
2

.

Then it suffices to prove that

|λ1| + |λ2|√
λ2
1 + λ2

2

=
1

|λ1| + 1
|λ2|√

1

λ2
1

+ 1

λ2
2

,

which follows by simple algebraic manipulations. �
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This implies that if the angle between D and QD is θ then the angle between D and D−1 is 2θ . Recall
that the three matrices are in a two dimensional linear space. Using a well-known trigonometric

identity we have that

cos(D,D−1) = 2 cos2(D,QD) − 1. (6)

On the other hand, using (3) it follows that

κF(D) = 2

cos(D,D−1)
.

Hence, we have established the following result.

Theorem 2.2. Given A ∈ S2, we have that

κF(A) = 2

2 cos2(A,QA) − 1
. (7)

Determining QA requires the spectral decomposition of A, but the angle between A and QA is easy

to determine in this two dimensional subspace. In the case of positive trace, if cos(A, I) is larger than
1√
2
then QA = I. If cos(A, I) is smaller than 1√

2
then the angle between A and QA is the complement

of the angle between A and I (note that if cos(A, I) = 1√
2
, then A is singular). If the trace is zero then

λ2 = −λ1. In this case A = |λ1|QA and the angle between the twomatrices is zero. The negative trace

case follows considering −A.

Nowwewant to point out a particular case where similar results hold. It is clear that if theminimal

polynomial of A has degree two (in other words A has only two distinct eigenvalues), then A−1 is

in the subspace generated by A and the identity matrix. This was the case of the two dimensional

case analyzed above. Unfortunately this is not enough to guarantee that (5) holds. However, given a

nonsingular matrix A ∈ Sn, if n is even and A has only two distinct eigenvalues both with multiplicity

n/2 then (5) holds. As in the comments following Lemma2.1wealsohave that (6) holds, or equivalently

cos(A, A−1) = 2 cos2(A,QA) − 1,

that, using (3), establishes that if A ∈ Sn, n is even, and A has only two distinct eigenvalues both with

multiplicity n/2 then (7) holds. A couple of comments are in order. First, the identity matrix plays

a relevant geometrical role for positive definite matrices as shown in [1], and for general symmetric

matrices the orthogonal matrices seem to play that role. Second, it is clear in this two dimensional

example that the closer (angle-wise) to an orthogonal matrix the lower the Frobenius condition num-

ber, and a relationship has been established. Hence, the angle to the closest orthogonal matrix is a key

measure for estimating the Frobenius condition number.

For n > 2 our next result relates the angle between a given symmetric matrix A and QA and the

angle between A−1 and QA−1 = QA; and extends in a natural way Theorem 3.1 in [1]. First, we need to

recall that

< A,QA >F= tr(A QA) =
n∑

i=1

|λi|,

and

< A−1,QA >F= tr(A−1 QA) =
n∑

i=1

1/|λi|,

where λi �= 0 for 1 � i � n are the eigenvalues of A.
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Theorem 2.3. If A is a symmetric and nonsingular matrix, then

1/
√

n � cos(A,QA)

cos(A−1,QA)
�

√
n. (8)

Proof. Using (1) for cos(A,QA) and cos(A−1,QA) and recalling that ‖A‖2
F = ∑n

i=1 λ2
i , we have

cos2(A,QA)/ cos2(A−1,QA) = (
∑n

i=1 |λi|)2(∑n
i=1 1/λ

2
i )

(
∑n

i=1 1/|λi|)2(∑n
i=1 λ2

i )
.

Consider now the vector λ ∈ IRn with entries |λi|, and consider also the vector y ∈ IRn with entries

1/|λi|, for i = 1, . . . , n. Using these two vectors, we can write

cos2(A,QA)/ cos2(A−1,QA) = (λT e)2 (yTy)/(λTλ) (yTe)2, (9)

where e is the vector of all ones. Using the Cauchy-Schwarz inequality and the fact that ‖x‖2 � ‖x‖1

for any vector x ∈ IRn, it follows that

1 � ‖λ‖2
1/‖λ‖2

2 = (λT e)2/‖λ‖2
2 � ((λTλ) (eTe))/‖λ‖2

2 = eTe = n,

and also that

1 � ‖y‖2
2/‖y‖2

1 = (yTy)/(yTe)2 � (yTy)/(‖y‖2
2 ‖e‖2

2) = 1/(eTe) = 1/n.

Therefore, substituting the last two inequalities in (9) we obtain that

1/n � cos2(A,QA)/ cos2(A−1,QA) � n,

and the result is established. �

Moreover, using thewell-knownharmonic-arithmetic inequality for the collection {|λi|} of positive
real numbers, for i = 1, . . . , n, which can be written as follows,

n

(
1

|λ1| + · · · + 1

|λn|
)−1

� |λ1| + · · · + |λn|
n

,

we obtain an extension of Lemma 2.2 in [1], for symmetric and nonsingular matrices:

< A,QA >F < A−1,QA >F= tr(A QA) tr(A
−1 QA) � n2. (10)

Notice now that multiplying by 1/κF(A) in both sides of (10) it can also be written in the equivalent

form

n

κF(A)
� tr(A QA)√

n‖A‖F

tr(A−1 QA)√
n‖A−1‖F

,

that combined with (1) gives the following upper bound for cos(A, A−1)

0 � cos(A, A−1) � cos(A,QA) cos(A−1,QA) � 1, (11)

which means, as predicted by the geometrical intuition, that the angle between A and A−1 is larger

than the angle between A and QA or between A−1 and QA.
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Now, since cos(A−1,QA) � 1, from (11) it follows that cos(A, A−1) � cos(A,QA), which together

with the equality given by (3), yields the following new lower bound for the Frobenius condition

number κF(A) in the symmetric case

κF(A) � n

cos(A,QA)
� n. (12)

It isworth stressing out that, except from the SPD case inwhichQA = I, cos(A,QA) cannot be computed

without knowing the spectral decomposition of A, and so it is not a practical lower bound. In Section 3

wewillmake itpracticalbyexploitingsomegeometricalproperties related to the locationoforthogonal

matrices in the subspace of symmetric matrices.

Before we close this section, we will look into another direction to add some geometrical under-

standing that explains the difference between the Frobenius condition number and the Euclidean

condition number. First we need to point out that singular matrices in S2, except for the zero matrix,

are rank one matrices and they make an angle with the identity whose cosine is 1√
2
(see [3]). Only for

n = 2, any matrix that makes this angle with the identity is a rank one matrix.

Now given amatrix A ∈ S2 with eigenvalues λ1 > λ2 and nonnegative trace (for the negative trace

works with −A), we have that

Â = A − λ2I

is a rank one matrix and the closest rank one matrix to A. Note that the eigenvalues of Â are λ1 − λ2

and 0.We now compute the angle between A and Â, which is the angular distance to the set of singular

matrices:

cos(A, Â) = tr(AÂ)

‖A‖F‖Â‖F

= λ1(λ1 − λ2)√
λ2
1 + λ2

2(λ1 − λ2)
= λ1√

(λ2
1 + λ2

2)
.

If we denote cos(A, Â) by γ and square the last equation we have

γ 2 = λ2
1

λ2
1 + λ2

2

=
(

λ1

λ2

)2
(

λ1

λ2

)2 + 1

.

Solving for
λ1

λ2
yields

∣∣∣∣∣λ1

λ2

∣∣∣∣∣ = λ1

|λ2| =
√√√√ γ 2

1 − γ 2
.

Note that under our hypothesis
λ1|λ2| = κ2(A). Therefore, the following result has been established.

Theorem 2.4. Given A ∈ S2, we have

κ2(A) =
√√√√ cos2(A, Â)

1 − cos2(A, Â)
.

Our first observation is that even when cos(A, Â) seems difficult to compute, it is not, since the

angle between the two matrices is given by the difference between π
2

and the angle that A makes
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with the identity. In Section 4, Theorem 2.4 will be extended to general nonsingular matrices of any

dimension (see Theorem 4.1).

Closing up, concerning the difference between the condition numbers κF(A) and κ2(A), the Frobe-

nius condition number is a function that measures how close A is to an orthogonal matrix, while the

conditionnumber associatedwith the 2-norm is related tohowcloseA is to the set of singularmatrices.

3. Orthogonal matrices: location properties

As we saw in the previous section, any matrix that is close to an orthogonal matrix is well-

conditioned. In this section we will show properties about the location of orthogonal matrices. We

start by observing that the eigenvalues of symmetric orthogonal matrices can only take the values±1.

Indeed, all the eigenvalues of a symmetric matrix are real and because of the orthogonality they must

have absolute values equal to one.

Theorem 3.1. If Q is a symmetric orthogonal matrix with k negative eigenvalues then

cos(Q , I) = n − 2k

n
.

Proof. Based on the definition of the cosine between two matrices we have that

cos(Q , I) = tr(Q)

‖Q‖F‖I‖F

= (n − k) − k√
n
√

n
= n − 2k

n
. �

Clearly k can be any integer between zero and n. The extreme cases correspond to the identity

matrix I, and −I. Given k, we can define now the following surface

S(I,
n − 2k

n
) =

{
X ∈ Sn : cos(X, I) = n − 2k

n

}
.

All these surfaces, for 0 � k � n, are conical shells around I when n � 2k, and around −I otherwise.

Every orthogonal matrix is in one of these shells, and the only case when every matrix, in the shells,

is orthogonal is again n = 2. A consequence of this observations is that the set of orthogonal matrices

is in general disconnected, except for orthogonal matrices with the same inertia. It is worth pointing

out that several properties of matrices around the identity matrix are a consequence only of the fact

that the identity is an orthogonal matrix. Some of these properties can be generalized for arbitrary

symmetric orthogonal matrices (see Theorem 4.2 for an extension to general matrices).

Theorem 3.2. If A ∈ Sn and the rank of A is k then for any symmetric orthogonal matrix Q we have that

−
√

k√
n

� cos(Q , A) �
√

k√
n
.

Proof. Since A = ∑k
i=1 λixix

t
i , then

cos(Q , A) = 〈Q , A〉F
‖Q‖F‖A‖F

=
∑k

i=1 λi〈Q , xix
t
i 〉F√

n‖A‖F

=
∑k

i=1 λix
t
i Qxi√

n‖A‖F

.

Now we have that

| cos(Q , A)| = |
∑k

i=1 λix
t
i Qxi√

n‖A‖F

| �
∑k

i=1 |λi||xti Qxi|√
n‖A‖F

� ‖λ‖1√
n‖λ‖2

�
√

k√
n
,



1208 R. Andreani et al. / Linear Algebra and its Applications 438 (2013) 1201–1214

where λ denotes the vector with the k nonzero eigenvalues of A. In the last inequalities we have used

first the fact that the Rayleigh quotient for an orthogonal matrix in absolute value is bounded by

one; and second the standard inequality between the 1-norm and the 2-norm, which completes the

proof. �

An interesting consequence is the following result.

Corollary 3.3. Given Q a symmetric orthogonal matrix and x a vector in IRn, then

− 1√
n

� cos(Q , xxt) � 1√
n
.

If Q = I, the equality holds in the right inequality, and if Q = −I, the equality holds in the left inequality.

It is interesting to note howwell located are rank onematriceswith respect to orthogonalmatrices.

Theangle corresponding to the cosine 1√
n
is very largeasn increases. Similar resultswere introducedby

Tarazaga in [3,4] for the caseof the identitymatrix,which is obviouslyorthogonal. Aneasy consequence

of Theorem 3.2 is the following.

Corollary 3.4. If A is singular and Q is any symmetric orthogonal matrix then

| cos(A,Q)| �
√

n − 1√
n

.

The contrapositive is a more interesting result.

Corollary 3.5. Given A ∈ Sn and any symmetric orthogonal matrix Q , if | cos(A,Q)| >
√

n−1√
n

, then A is

nonsingular, and A has the same inertia of Q .

This result guarantees a circular cone around Q of nonsingular matrices similar to the cone intro-

duces by Tarazaga in [4], around the identity.

Nowwe introduce a characterization of symmetric orthogonal matrices. First of all, for a given unit

vector u, we will denote by Hu the Householder matrix

Hu = I − 2uut .

Recall that any symmetric orthogonal matrix Q has eigenvalues ±1. If Q has k negative eigenvalues

then it can be written as

Q =
k∑

i=1

−xix
t
i +

n∑
i=k+1

xix
t
i ,

or modified as follows

Q =
n∑

i=1

xix
t
i − 2

k∑
i=1

xix
t
i = I − 2

k∑
i=1

xix
t
i .

Let us nowmultiply a couple of Householder matrices Hu and Hv under the condition that utv = 0

HuHv = (I − 2uut)(I − 2vvt) = I − 2vvt − 2uut − 4(uut)(vvt) = I − 2vvt − 2uut .
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It is straightforward to generalize this property to the product of k Householder matrices to obtain

k∏
i=1

Hui = I − 2

k∑
i=1

uiu
t
i ,

which yields the following result.

Theorem 3.6. If Q is a symmetric orthogonal matrix different from the identity matrix, then

Q =
k∏

i=1

Hui ,

where ui are the eigenvectors corresponding to the negative eigenvalues.

To close this section, as a by product of the previous results, we now develop a new practical bound

for the Frobenius condition number, KF(A), of symmetric matrices, which is based on the location of

orthogonal matrices described above and also on the theoretical bound given by (12). Since cos(A,QA)
cannotbe computedwithoutknowing the spectral decompositionofA,wewill estimate it byexploiting

the location of the orthogonalmatrices, in particular by using Theorem3.1, and the fact thatQA belongs

to one of the conical shells S(I, n−2k
n

) for some k. Notice that there exists a value of k = 0, . . . , n − 1

such that

n − 2(k + 1)

n
� cos(A, I) � n − 2k

n
.

Once this value of k has been identified, we choose the shell associated with the end point, of the

interval above, closest to cos(A, I). If there is a tie any one of them can be chosen.

As a second stepwe need to find thematrix in that shell closest to A. For that wemove from A along

±I, as a direction, if the selected shell corresponds to the right or the left end point of the interval,

respectively. Clearly, the angle between A and QA will be greater than or equal to the angle between A

and the closest matrix on the identified shell.

In what follows we will assume, without any loss of generality, that tr(A) � 0. The explicit calcu-

lations are obtained by forcing only one of the following equalities:

cos(A + αI, I) = n − 2k

n
,

or

cos(A − αI, I) = n − 2(k + 1)

n
.

In order to compute α, we first expand cos2(A + αI, I) as follows

cos2(A + αI, I) = < A + αI, I >2
F

‖A + αI‖2
F n

= (tr(A + αI))2

tr((A + αI)2)n
= (tr(A))2 + 2αn tr(A) + α2n2

(tr(A2) + 2α tr(A) + α2n)n
.

Now, since cos2(A + αI, I) = ( n−2k
n

)2, using the expansion above we obtain

n((tr(A))2 + 2αn tr(A) + α2n2) = (n − 2k)2(tr(A2) + 2α tr(A) + α2n).
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This equation generates the following quadratic equation in α

n(n2 − (n − 2k)2)α2 + 2tr(A)(n2 − (n − 2k)2)α + n (tr(A))2 − (n − 2k)2tr(A2) = 0,

and after simple manipulations we obtain

α2 + 2tr(A)

n
α + n (tr(A))2 − (n − 2k)2tr(A2)

n(n2 − (n − 2k)2)
= 0,

whose solutions are

α = − tr(A)

n
±

√√√√(
tr(A)

n

)2

− n (tr(A))2 − (n − 2k)2tr(A2)

n(n2 − (n − 2k)2)
, (13)

which is valid for k � 1. The extreme case k = 0 (SPD) will be discussed at the end of this section.

Since A forms an angle with the identity larger than the shell whose cosine with the identity is n−2k
n

,

we have that
tr(A)

‖A‖F

√
n

< n−2k
n

, and as we will now argue, this condition guarantees that α can be

obtained as a positive value with the plus (+) sign in (13), recalling that tr(A) � 0. Indeed, from (13),

to be able to obtain a positive α, we need

−n (tr(A))2 − (n − 2k)2tr(A2)

n(n2 − (n − 2k)2)
> 0

or equivalently

(n − 2k)2tr(A2) − n (tr(A))2 > 0.

After some algebraic manipulations we have that

n(tr(A))2 < (n − 2k)2tr(A2)

n(tr(A))2

tr(A2)
< (n − 2k)2

(tr(A))2

tr(A2)n
<

(n − 2k)2

n2
,

which is precisely our angle condition,
tr(A)

‖A‖F

√
n

< n−2k
n

, squared. Summing up, for the case where

cos(A, I) is closer to n−2k
n

than to
n−2(k+1)

n
, k � 1, and tr(A) � 0, it follows that

cos(A,QA) � cos(A, A + αI),

and α is given by (13) with the plus (+) sign.

For the case where cos(A, I) is closer to n−2(k+1)
n

than to n−2k
n

we have that

cos(A,QA) � cos(A, A − αI)

and, after similar algebraic manipulations, we obtain the value of α as

α = tr(A)

n
±

√√√√(
tr(A)

n

)2

− n (tr(A))2 − (n − 2(k + 1))2tr(A2)

n(n2 − (n − 2(k + 1))2)
, (14)
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which is valid for k � n − 2. The extreme case k = n − 1 will be discussed at the end of this section.

To guarantee that α can be obtained as a positive value with the minus (−) sign, in (14), we need to

prove that the radicand of the second term is nonnegative, and also that

−n (tr(A))2 − (n − 2(k + 1))2tr(A2)

n(n2 − (n − 2(k + 1))2)
< 0

or equivalently

n (tr(A))2 − (n − 2(k + 1))2tr(A2) > 0. (15)

Since A forms an angle with the identity smaller than the shell whose cosine with the identity is
n−2(k+1)

n
, we have that

tr(A)

‖A‖F

√
n

> n−2(k+1)
n

, which implies (15) by squaring in both sides. To prove

that the radicand in (14) is nonnegative we need

(
tr(A)

n

)2

� n (tr(A))2 − (n − 2(k + 1))2tr(A2)

n(n2 − (n − 2(k + 1))2)
,

that, after algebraic manipulations, is equivalent to

(tr(A))2 � n tr(A2). (16)

To establish (16) we recall that tr(A) = ∑n
i=1 λi, and so by Cauchy–Schwarz inequality

tr(A) = eT λ̂ � ‖e‖2 ‖λ̂‖2 = √
n‖λ̂‖2

where λ̂ ∈ IRn is the vector with entries λi, and e is the vector of all ones. By squaring both terms

in the last inequality we obtain (16). Summing up, for the case where cos(A, I) is closer to
n−2(k+1)

n

than to n−2k
n

, k � n − 2, and tr(A) � 0, it follows that α is given by (14) with the minus (−)

sign.

Taking all cases into account we obtain the following conclusive theorem.

Theorem 3.7. Given A ∈ Sn, satisfying
n−2(k+1)

n
� cos(A, I) � n−2k

n
, where 1 � k � n − 2, and

tr(A) � 0, it follows that

κF(A) � n

cos(A, A ± αI)
, (17)

where α is given by (13) with the plus (+) sign, and using the plus (+) sign in (17) if cos(A, I) is closer to
(n− 2k)/n; or α is given by (14) with the minus (−) sign, and using the minus (−) sign in (17), if cos(A, I)
is closer to (n − 2(k + 1))/n.

Notice that the new bound (17) only requires the value of k, n, tr(A), and ‖A‖F . Note also that since

κF(A) = κF(−A), then when tr(A) < 0 we can apply Theorem 3.7 on the matrix −A and obtain the

same bound for κF(A).
Two practical comments are in order. The first one is related to matrices that are close to the

extreme conical shell that corresponds to I (k = 0) or −I (k = n − 1). In these cases we simply

compute (trivially) the angle between the matrix A and I or −I. Second if the inertia of the matrix A

is known then we know exactly the conical shell where QA is located, and then we compute the angle

between A and the corresponding shell. This bound will be sharper than the one given by the nearest

shell, unless they coincide.
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Fig. 1. Behavior of the condition number bound given by (17) for symmetric matrices of the form B = A + λI, where A is a 10 × 10

random symmetric matrix and 10−4 � λ � 104.

We now present a numerical experiment to evaluate the accuracy of the new bound (17) for in-

definite symmetric matrices. In Fig. 1 we compare, in a loglog plot, the value of κF(A) with (17) for

a family of matrices B: B = A + λI where A is a random symmetric matrix (built with the rand(n)
function in MATLAB) of dimension 10 × 10, and 10−4 � λ � 104. This test matrices are chosen to

monitor the quality of the bound while moving from a matrix (λ = 10−4) with approximately half

the eigenvalues on the positive side of the real axis, and half on the negative side, towards the identity

matrix (λ = 104). We observe, in Fig. 1, that the quality of the bound improves when the condition

number is reduced, and tends to the exact condition number when close to the identity matrix. We

also note that since (17) uses different shells to approximate κF(A), as a function of λ, the estimating

curve is not smooth. A quite similar behavior, to the one reported in Fig. 1, is observed for different

choices of A and different values of n.

4. The general case

Let us now consider the general (not necessarily symmetric) nonsingular case. Some of the basic

results described in Sections 2 and 3 for symmetric matrices can be extended. It is straightforward

from the definition of κF(A) that

< AT , A−1 >F= tr(AA−1) = tr(I) = n,

and using the Cauchy-Schwarz inequality we obtain

n =< AT , A−1 >F� ‖AT‖F‖A−1‖F = ‖A‖F‖A−1‖F = κF(A). (18)

Using now the usual definition of cosine of the angle between two matrices, it follows that

cos(AT , A−1) = < AT , A−1 >F

‖AT‖F‖A−1‖F

= n

‖A‖F‖A−1‖F

= n

κF(A)
. (19)
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We observe that κF(A) is inversely proportional to the cosine of the angle between AT and A−1, that

can be viewed as a measure of orthogonality, since A is orthogonal if and only if AT = A−1, in which

case the cosine equals 1. From (19) we also observe that cos(AT , A−1) > 0, and so

0 < cos(AT , A−1) � 1.

Moreover, we can also consider the Singular Value Decomposition (SVD) for a general nonsingular

matrix A:

A = U	VT .

Using the SVD, we have that A−1 = V	−1UT , and then if we set σ = (σ1, . . . , σn)
t and σ̂ =

( 1
σ1

, . . . , 1
σn

)t we have that

n =< AT , A−1 >F= tr(AA−1) = tr(U	VTV	−1UT ) = tr(		−1) = σ T σ̂ .

Using, once again, the Cauchy-Schwarz inequality but now with the SVD of A, it follows that

n = σ T σ̂ � ‖σ‖2‖σ̂‖2.

Equality holds if and only ifσ and σ̂ share the same direction. Sinceσ and σ̂ have both positive entries,

this happens if and only if σ is a constant vector, and that constant must be 1 to be aligned with σ̂ .

This can be summarized in the following well-known result.

Lemma 4.1. Given a nonsingular matrix A, κF(A) = n if and only if A is orthogonal or a multiple of an

orthogonal matrix.

This last result justifies the previous claim that κF(A) can be viewed as a measure of orthogonality.

Moreover, similar to the conclusion drawn at the end of Section 3, in the general case the condition

number associated with the 2-norm is also related to how close A is to the set of singular matrices.

Theorem 4.1. Given a nonsingular matrix A, we have

κ2(A) �
√

1

1 − cos2(A, Â)
.

Proof. Since σ1 � σ2 � · · · � σn > 0, then the closest singular matrix to A is given by

Â =
n−1∑
i=1

σiuiv
t
i ,

where ui and vi are the columns of U and V respectively. Clearly, A − Â is a rank one matrix, and so

sin(A, Â) ≡ ‖A − Â‖F

‖A‖F

= σn

‖A‖F

= 1

‖A−1‖2 ‖A‖F

.

Now, using that ‖A‖2 � ‖A‖F , we obtain

1 − cos2(A, Â) = sin2(A, Â) = 1

(‖A−1‖2 ‖A‖F)2
� 1

(‖A−1‖2 ‖A‖2)2
,
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which implies

κ2
2 (A) � 1

1 − cos2(A, Â)
. �

Finally, Theorem 3.2 can also be extended to general rank deficient matrices.

Theorem 4.2. If the rank of A is k then for any orthogonal matrix Q we have that

−
√

k√
n

� cos(Q , A) �
√

k√
n
.

Proof. Since A = ∑k
i=1 σiuiv

t
i , then

cos(Q , A) = 〈Q , A〉F
‖Q‖F‖A‖F

=
∑k

i=1 σi〈Q , uiv
t
i 〉F√

n‖A‖F

.

Now we have that

| cos(Q , A)| =
∑k

i=1 σi|uti Qvi|√
n‖A‖F

�
∑k

i=1 σi√
n‖A‖F

� ‖σ‖1√
n‖σ‖2

�
√

k√
n
.

In the first inequalities we have used that Q is orthogonal and ui and vi are unitary vectors, and hence

for all i, |uti Qvi| � ‖ui‖2‖Qvi‖2 = 1. For the last inequality we have used the standard inequality

between the 1-norm and the 2-norm, which completes the proof. �
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