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Abstract We propose a Gauss–Newton-type method for nonlinear constrained opti-
mization using the exact penalty introduced recently by André and Silva for varia-
tional inequalities. We extend their penalty function to both equality and inequality
constraints using a weak regularity assumption, and as a result, we obtain a continu-
ously differentiable exact penalty function and a new reformulation of the KKT con-
ditions as a system of equations. Such reformulation allows the use of a semismooth
Newton method, so that local superlinear convergence rate can be proved under an
assumption weaker than the usual strong second-order sufficient condition and with-
out requiring strict complementarity. Besides, we note that the exact penalty function
can be used to globalize the method. We conclude with some numerical experiments
using the collection of test problems CUTE.
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1 Introduction

A popular framework to solve constrained nonlinear programming problems is to use
penalty-based methods, such as quadratic penalty functions, augmented Lagrangians
and exact penalty functions. The last one consists in replacing the original constrained
problem with a single unconstrained one. Recently, André and Silva [1] proposed an
exact penalty function for variational inequalities. Their idea is based on Di Pillo
and Grippo’s work [2, 3], which consists in incorporating a multipliers estimate in an
augmented Lagrangian function. In this work, we propose a modified multipliers esti-
mate and extend the exact penalty function for variational inequalities to optimization
problems with general equality and inequality constraints. We use a generalized New-
ton method to solve the associated reformulation of the KKT conditions and define a
suitable merit function to globalize the method.

The paper is organized as follows. In Sect. 2, we give some notations, definitions
and the background concerning exact penalty functions. In Sect. 3, we construct the
exact penalty function and present some results associated to the modified multipli-
ers estimate. Exactness results are presented in Sect. 4, and in Sect. 5 we show a
way to dynamically update the penalty parameter. Local convergence results for the
semismooth Newton method are presented in Sect. 6. We finish in Sect. 7, with a
globalization idea and some numerical experiments.

2 Preliminaries

Consider the following nonlinear programming problem:

min f (x) s.t. x ∈ X, (NLP)

where the feasible set is assumed to be nonempty and is defined by

X := {
x ∈ R

n : h(x) = 0, g(x) ≤ 0
}
,

and f : R
n → R, g : R

n → R
m and h : R

n → R
p are C 2 functions. Roughly speak-

ing, a function wc : R
n → R, that depends on a positive parameter c ∈ R, is an exact

penalty function for the problem (NLP) if there is an appropriate choice of the penalty
coefficient c such that a single minimization of wc recovers a solution of (NLP).

A well-known exact penalty function is the one proposed by Zangwill [4]. It can
be shown that the solutions of the constrained problem (NLP) are solutions of the
following unconstrained one:

min
x

[
f (x) + c max

{
0, g1(x), . . . , gm(x),

∣∣h1(x)
∣∣, . . . ,

∣∣hp(x)
∣∣}],

under reasonable conditions and when c is sufficiently large [5, Sect. 4.3.1]. However,
the maximum function contained in such penalty function makes it nondifferentiable,
which demands special methods to solve this unconstrained problem. Besides, it is
not easy to find the value of the parameter c that ensures the recovering of solutions
of (NLP).
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To overcome such difficulty, many authors proposed continuously differentiable
exact penalty functions. The first ones were introduced by Fletcher [6] and by Glad
and Polak [7], respectively, for problems with equality constraints and for those with
both equality and inequality constraints. Another important contribution was done by
Mukai and Polak [8]. In problems associated to such penalties, the variables are in the
same space as the variables of the original problem. An alternative approach consists
in defining an unconstrained minimization problem on the product space of variables
and multipliers. This last case, called exact augmented Lagrangian methods, was
introduced later by Di Pillo and Grippo [9, 10].

Considering only problems with equality constraints, these authors formulated the
unconstrained problem as follows:

min
x,μ

[
f (x) + 〈

μ,h(x)
〉 + c

2

∥∥h(x)
∥∥2 + 1

2

∥∥M(x)
(∇f (x) + Jh(x)T μ

)∥∥2
]
,

where 〈·, ·〉 and ‖·‖ denote the Euclidean inner product and norm, respectively, Jh(x)

is the Jacobian of h at x and M(x) ∈ R
�×n is a C 2 matrix with p ≤ � ≤ n and such

that M(x)Jh(x)T has full rank. Suitable choices of M(x) make the above objective
function quadratic in the dual variable μ. In such a case, we can write the multiplier
in terms of x and incorporate it again in the function, obtaining an unconstrained
problem in the space of the original variables. Some of the choices of M(x) recover
the exact penalties of Fletcher and Mukai and Polak.

For problems with inequality constraints, we can add slack variables and write it
in terms of x using an appropriate choice of matrix M(x). Nevertheless, it is not
known a formula for M(x) that also isolates the multiplier. After this, Di Pillo and
Grippo proposed a new continuously differentiable exact penalty, this time taking
Glad and Polak’s multipliers estimate [7] as a base. The idea was presented in [11]
and [3] and it consists in constructing an exact penalty function by incorporating such
estimate in the augmented Lagrangian of Hestenes, Powell, and Rockafellar [12–14].
To overcome some theoretical limitations of such penalty, Lucidi proposed in [15]
another exact penalty function for problems with inequality constraints.

The same idea was extended recently by André and Silva [1] to solve variational
inequalities with the feasible set defined by functional inequality constraints. In their
work, they incorporated Glad and Polak’s multipliers estimate in the augmented La-
grangian for variational inequalities, proposed by Auslender and Teboulle [16]. If the
variational problem comes from the first-order necessary condition of an optimiza-
tion problem, then this penalty is equivalent to the gradient of Di Pillo and Grippo’s
penalty excluding second-order terms. This is important from the numerical point of
view, because otherwise it would be necessary to deal with third-order terms when
second-order methods, like the Newton method, are applied to solve the problem. In
the optimization case, Newton-type methods based on exact merit functions (exact
penalties and exact augmented Lagrangians), without the knowledge of third-order
terms, have been also proposed [17–20]. In particular, an exact penalty function was
used in [17] for problems with equality constraints.

In this work, we extend André and Silva’s exact penalty to solve optimization
problems like (NLP), that is, with both equality and inequality constraints. We also
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adapt Glad and Polak’s multipliers estimate in order to use a weaker regularity as-
sumption and compare it with the one proposed by Lucidi in [15]. The obtained func-
tion is semismooth or, under some conditions, strongly semismooth, which allows
the use of the semismooth Newton method to solve the associated system of equa-
tions [21]. Exactness results are established and we adapt some results of Facchinei,
Kanzow, and Palagi [22] to prove that the convergence rate is superlinear (or, in some
cases, quadratic) without requiring strict complementarity or strong second-order suf-
ficient condition. Moreover, we indicate a way to globalize the method using a spe-
cific merit function that makes it works as a Gauss–Newton-type method.

3 Constructing the Exact Penalty

The construction of the exact penalty function is based on Di Pillo and Grippo’s [3,
11] and André and Silva’s [1] papers. In both cases, the authors incorporate a La-
grange multipliers estimate in an augmented Lagrangian function. In particular, they
both use the estimate proposed by Glad and Polak [7], which requires that the gradi-
ents of active inequality constraints ∇gi(x), i ∈ {i : gi(x) = 0} and all the gradients
of equality constraints ∇hi(x), i = 1, . . . , p are linearly independent for all x ∈ R

n.
This condition is called linear independence constraint qualification (LICQ) and, in
the optimization literature, is usually referred only at feasible points of the problem.

However, methods based on exact penalties may need to compute multipliers es-
timates in infeasible points, and hence LICQ has to be assumed to hold in the whole
space R

n. Thus, it is interesting to search for estimates that depend on a weaker as-
sumption than LICQ in R

n. With this in mind, we introduce the following condition.

Definition 3.1 A point x ∈ R
n satisfies the relaxed linear independence constraint

qualification (relaxed LICQ) or, equivalently, it is called regular, if and only if the
gradients

∇gi(x), i ∈ I=(x), ∇hi(x), i ∈ E=(x)

are linearly independent, where

I=(x) := {
i ∈ {1, . . . ,m} : gi(x) = 0

}
and E=(x) := {

i ∈ {1, . . . , p} : hi(x) = 0
}
.

Also, define the set of regular points in R
n as1

R := {
x ∈ R

n : x satisfies relaxed LICQ
}
.

This condition is more reasonable than LICQ because it allows more infeasible
points to satisfy it. To illustrate such advantage, consider n = 2, m = 2, p = 1, and
functions defined by g1(x) := −x1 +x2, g2(x) := x1 +x2 −1 and h1(x) := x2. Taking
the infeasible point x̃ := (0.5,0.5)T , we observe that I=(x̃) = {1,2} and E=(x̃) = ∅.
Therefore, x̃ satisfies relaxed LICQ, but not LICQ.

1The notation R comes from the word regularity.
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By replacing LICQ with relaxed LICQ, we can adapt Glad and Polak’s multipliers
estimate. In this case, we obtain the estimate by solving the following unconstrained
minimization problem, with variables λ ∈ R

m and μ ∈ R
p associated to inequality

and equality constraints, respectively:

min
λ,μ

∥∥∇xL(x,λ,μ)
∥∥2 + ζ 2(∥∥G(x)λ

∥∥2 + ∥∥H(x)μ
∥∥2)

, (1)

where L(x,λ,μ) := f (x) + 〈λ,g(x)〉 + 〈μ,h(x)〉 is the Lagrangian function, ζ > 0,
G(x) := diag(g1(x), . . . , gm(x)) and H(x) := diag(h1(x), . . . , hp(x)) are diagonal
matrices with diagonal entries gi(x), i = 1, . . . ,m and hi(x), i = 1, . . . , p, respec-
tively.

Considering the KKT conditions of (NLP), we observe that the above minimiza-
tion problem forces the zero condition ∇xL(x,λ,μ) = 0 and the complementary
slackness 〈g(x), λ〉 = 0. This also happens in Glad and Polak’s estimate. The differ-
ence is that the new one adds the term ‖H(x)μ‖2. Thus, it also enforces the com-
plementarity of equality constraints 〈h(x),μ〉 = 0, even if it is irrelevant in the KKT
conditions. The interesting fact is that this new estimate allows the use of the weaker
assumption, the relaxed LICQ, and it does not lose any properties of Glad and Polak’s
estimate. In fact, the associated problem (1) is equivalent to

min
λ,μ

∥∥∥∥∥∥

⎡

⎣
Jg(x)T Jh(x)T

ζG(x) 0
0 ζH(x)

⎤

⎦
[

λ

μ

]
−

⎡

⎣
−∇f (x)

0
0

⎤

⎦

∥∥∥∥∥∥

2

, (2)

that is, it is a linear least squares problem. The proposition below gives some other
properties associated to the modified multipliers estimate.

Proposition 3.1 Assume that x ∈ R
n satisfies the relaxed LICQ and define the matrix

N(x) ∈ R
(m+p)×(m+p) by

N(x) :=
[
Jg(x)Jg(x)T + ζ 2G(x)2 Jg(x)Jh(x)T

Jh(x)Jg(x)T Jh(x)Jh(x)T + ζ 2H(x)2

]
.

Then

(a) The matrix N(x) is positive definite.
(b) The solution of (1) (equivalently, (2)) is unique and it is given by

[
λ(x)

μ(x)

]
= −N−1(x)

[
Jg(x)

Jh(x)

]
∇f (x).

(c) If (x, λ̄, μ̄) ∈ R
n+m+p satisfies the KKT conditions, then λ̄ = λ(x) and μ̄ = μ(x).

(d) The Jacobian matrices of λ(·) and μ(·) are given by

[
Jλ(x)

Jμ(x)

]
= −N−1(x)

[
R1(x)

R2(x)

]
,
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with

R1(x) := Jg(x)∇2
xxL

(
x,λ(x),μ(x)

) + 2ζ 2Λ(x)G(x)Jg(x)

+
m∑

i=1

em
i ∇xL

(
x,λ(x),μ(x)

)T ∇2gi(x),

R2(x) := Jh(x)∇2
xxL

(
x,λ(x),μ(x)

) + 2ζ 2M(x)H(x)Jh(x)

+
p∑

i=1

e
p
i ∇xL

(
x,λ(x),μ(x)

)T ∇2hi(x),

where Λ(x) := diag(λ1(x), . . . , λm(x)) and M(x) := diag(μ1(x), . . . ,μp(x))

are diagonal matrices respectively with elements λi(x) := [λ(x)]i and μi(x) :=
[μ(x)]i , em

i , e
p
i are the i-th elements of the canonical base of R

m and R
p , re-

spectively, and

∇xL
(
x,λ(x),μ(x)

) := ∇xL(x,λ,μ)|λ=λ(x),μ=μ(x),

∇2
xxL

(
x,λ(x),μ(x)

) := ∇2
xxL(x,λ,μ)|λ=λ(x),μ=μ(x).

Proof (a) Let A(x) ∈ R
(n+m+p)×(m+p) be the matrix associated to the linear least

squares problem (2), that is,

A(x) :=
⎡

⎣
Jg(x)T Jh(x)T

ζG(x) 0
0 ζH(x)

⎤

⎦ . (3)

Without loss of generality, we can write Jg(x)T = [Jg(x)T= |Jg(x)T
=], where Jg(x)=
and Jg(x)
= correspond to the parts of Jg(x) where gi(x) = 0 and gi(x) 
= 0, respec-
tively. In the same way, we can define the matrices Jh(x)=, Jh(x)
=, G(x)
= and
H(x)
=. Thus,

A(x) =

⎡

⎢⎢⎢⎢
⎣

Jg(x)T= Jg(x)T
= Jh(x)T= Jh(x)T
=
0 0 0 0
0 ζG(x)
= 0 0
0 0 0 0
0 0 0 ζH(x)
=

⎤

⎥⎥⎥⎥
⎦

,

and we can see that it has linearly independent columns, by relaxed LICQ (so the
first and third block columns of A(x) are linearly independent) and because of the
nonzero block diagonal matrices G(x)
= and H(x)
=. Furthermore, it is easy to see
that N(x) = A(x)T A(x), so we can conclude that N(x) is nonsingular and positive
definite.
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(b) Differentiating the objective function of problem (2) and setting the result to
zero, we have

A(x)T A(x)

[
λ(x)

μ(x)

]
= A(x)T

⎡

⎣
−∇f (x)

0
0

⎤

⎦ ,

where A(x) is defined in (3). The result follows since N(x) = A(x)T A(x) is nonsin-
gular from (a).

(c) From the KKT conditions, ∇xL(x, λ̄, μ̄) = 0, G(x)λ̄ = 0 and H(x)μ̄ = 0,
so the objective function’s value of (1) at (λ̄, μ̄) is zero. The result follows since the
solution of (1) is unique from (b), and because the objective function’s value is always
nonnegative.

(d) From (b), we have:

−Jg(x)∇f (x) = (
Jg(x)Jg(x)T + ζ 2G(x)2)λ(x) + Jg(x)Jh(x)T μ(x),

−Jh(x)∇f (x) = Jh(x)Jg(x)T λ(x) + (
Jh(x)Jh(x)T + ζ 2H(x)2)μ(x),

which is equivalent to

Jg(x)∇xL
(
x,λ(x),μ(x)

) + ζ 2G(x)2λ(x) = 0, (4)

Jh(x)∇xL
(
x,λ(x),μ(x)

) + ζ 2H(x)2μ(x) = 0. (5)

Note that Eq. (4) gives

m∑

i=1

em
i ∇gi(x)T ∇xL

(
x,λ(x),μ(x)

) + ζ 2G(x)2λ(x) = 0.

Thus, deriving it with respect to x, we obtain

0 =
m∑

i=1

em
i ∇xL

(
x,λ(x),μ(x)

)T ∇2gi(x) + 2ζ 2Λ(x)G(x)Jg(x) + ζ 2G(x)2Jλ(x)

+ Jg(x)
(∇2

xxL
(
x,λ(x),μ(x)

) + Jg(x)T Jλ(x) + Jh(x)T Jμ(x)
)

= R1(x) + Jg(x)Jg(x)T Jλ(x) + Jg(x)Jh(x)T Jμ(x) + ζ 2G(x)2Jλ(x).

Analogously, Eq. (5) yields

0 = R2(x) + Jh(x)Jh(x)T Jμ(x) + Jh(x)Jg(x)T Jλ(x) + ζ 2H(x)2Jμ(x).

These two equations give the desired result. �

Indeed, the idea of weakening the assumption LICQ in R
n was already inves-

tigated by Lucidi in [15]. His idea consists in adding another term in the objec-
tive function of Glad and Polak’s estimate. Since Lucidi considered only problems
with inequality constraints, we adapt his idea in order to solve (NLP). Then, for any
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x ∈ R
n, we can obtain an estimate by solving the following linear least squares prob-

lem:

min
λ,μ

∥∥∇xL(x,λ,μ)
∥∥2 + ζ 2

1

∥∥G(x)λ
∥∥2 + ζ 2

2 α(x)
(‖λ‖2 + ‖μ‖2), (6)

where ζ1, ζ2 > 0 and α(x) := ∑m
i=1 max{gi(x),0}q1 + ∑p

i=1[hi(x)]q2 , with
q1, q2 ≥ 2. The assumption required by this estimate is weaker than Glad and Po-
lak’s and the new estimate (1). In fact, it only asks LICQ in the set of feasible points.

Also, Proposition 3.1 can be rewritten if we replace the new estimate (1) by this
adaptation of Lucidi’s. In particular, the matrix A(x) in (3) is replaced by

Ā(x) :=

⎡

⎢⎢
⎣

Jg(x)T Jh(x)T

ζ1G(x) 0
ζ2α(x)1/2I 0

0 ζ2α(x)1/2I

⎤

⎥⎥
⎦ .

Note that Ā(x) has linearly independent columns if x is infeasible since in this case
α(x) 
= 0. This also holds if x is feasible because of the LICQ assumption. Results
analogous to Proposition 3.1 can be also proved. Even if the assumption required
by (6) is the weakest one proposed, we observe that the term α(x)(‖λ‖2 + ‖μ‖2)

can introduce a dependence among the multipliers that is absent in the new estimate.
This fact will be clearly shown in Sect. 7 with some numerical experiments. Because
of this, for now on we will focus only at the new estimate (1), although all the next
results can be proved if we replace it by (6).

Now, let us show precisely the idea given by Di Pillo and Grippo [3, 11] for build-
ing an exact penalty function. Essentially, they considered the incorporation of Glad
and Polak’s multipliers estimate [7] in the classical augmented Lagrangian function,
given by Hestenes, Powell, and Rockafellar [12–14], that is,

Lc(x,λ,μ) := f (x) + 〈
λ,g(x)

〉 + c

2

∥∥g(x)
∥∥2 − 1

2c

m∑

i=1

max
{
0,−λi − cgi(x)

}2

+ 〈
μ,h(x)

〉 + c

2

∥∥h(x)
∥∥2

.

In the same way, we can use the new multipliers estimate (λ(·), μ(·)) defined in
Proposition 3.1b. Thus, a possible exact penalty function is given by

wc(x) := Lc

(
x,λ(x),μ(x)

)
, (7)

which has the gradient

∇wc(x) = ∇f (x) + Jg(x)T λ(x) + (
cJg(x)T + Jλ(x)T

)(
g(x) + yc(x)

)

+ Jh(x)T μ(x) + (
cJh(x)T + Jμ(x)T

)
h(x), (8)

where

yc(x) := max

{
0,−λ(x)

c
− g(x)

}
.
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Recently, André and Silva [1] proposed an exact penalty for variational inequal-
ities. Here, we are interested only in variational problems that come from the first-
order necessary optimality conditions of (NLP). More precisely, we are interested
in finding a feasible point x̄ ∈ X such that 〈∇f (x̄), x − x̄〉 ≥ 0 for all x ∈ X. To
solve this kind of problem, these authors incorporated the multipliers estimate in
the augmented Lagrangian for variational inequalities proposed by Auslender and
Teboulle [16]:

Lc(x,λ,μ) := ∇f (x) + Jg(x)T λ + cJg(x)T max

{
g(x),−λ

c

}

+ Jh(x)T μ + cJh(x)T h(x).

Note that Lc(x,λ,μ) is equal to ∇xLc(x,λ,μ), the gradient of the classical aug-
mented Lagrangian for optimization with respect to the first variable. Once again,
using the new estimate (λ(·),μ(·)), we define

Wc(x) := Lc

(
x,λ(x),μ(x)

)

= ∇xL
(
x,λ(x),μ(x)

) + cJg(x)T
(
g(x) + yc(x)

) + cJh(x)T h(x). (9)

Observe that ∇wc(x) is equal to Wc(x) plus some terms that depend on second-
order information, that is, Wc(x) does not contain Jλ(x) and Jμ(x), which have
∇2f (x), ∇2gi(x) and ∇2hi(x) in their formulas. This is important because, as we
will see in the next section, KKT points of (NLP) are related to the system of equa-
tions Wc(x) = 0. Therefore, because of the absence of second-order terms, we can
use Newton-type methods to search for such KKT points. Besides the interpretation
associated to the augmented Lagrangian for variational inequalities, we point out that
a similar approach, using exact penalty functions, was proposed by Bertsekas in [17].
However, his formulation considers only equality constraints, which allows us to ig-
nore discussions about assumptions like the strict complementarity and the (strong)
second-order sufficient conditions.

4 Exactness Results

Let us now present the exactness properties for Wc defined in (9). We point out that we
follow the structure presented by Di Pillo and Grippo [3, 11] and André and Silva [1].
The difference, besides the multipliers estimate that defines Wc, is the enunciation of
the results using the infeasibility measure defined below.

Definition 4.1 Let F : R
n → R be the infeasibility measure defined by

F (x) := 1

2

(∥∥max
{
0, g(x)

}∥∥2 + ∥∥h(x)
∥∥2)

,

with gradient

∇F (x) = Jg(x)T max
{
0, g(x)

} + Jh(x)T h(x).
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Note that F (x) = 0 if and only if x is feasible. Moreover, we say that x is a stationary
point of the infeasibility measure F if and only if ∇F (x) = 0. Clearly, a feasible point
is also a stationary point of F but the converse is not always true.

We claim that a point satisfies the KKT conditions if and only if it is a solution of
the system of equations Wc(x) = 0, under some conditions. One implication of this
statement is given below.

Proposition 4.1 Let (x,λ,μ) be a KKT triple associated to the problem (NLP) with
x ∈ R ⊂ R

n. Then, Wc(x) = 0 for all c > 0.

Proof Proposition 3.1(c) ensures that λ = λ(x) and μ = μ(x). Then the statement
follows directly from the definition of Wc and the KKT conditions. �

The other implication of the statement can be true if c is large enough and if, for
example, the zeros of Wc are bounded. It is not true only if, instead of a KKT point,
we find a stationary point of F that is infeasible for (NLP). Before the main theorem,
we consider two additional results and we introduce the simple notation

R++ := {c ∈ R : c > 0}
for positive numbers.

Proposition 4.2 Let {xk} ⊆ R ⊂ R
n and {ck} ⊂ R++ be sequences such that

ck → ∞, xk → x̄ ∈ R and Wck
(xk) = 0 for all k. Then x̄ is a stationary point of F .

Proof By definition of Wck
(xk), we have

∇xL
(
xk,λ

(
xk

)
,μ

(
xk

)) + ckJg
(
xk

)T max
{
g
(
xk

)
,−λ

(
xk

)
/ck

}

+ ckJh
(
xk

)T
h
(
xk

) = 0.

Since λ(·) and μ(·) are continuous by relaxed LICQ and recalling that f , g, and h are
C 2 functions, we can divide the above equality by ck and take the limit to conclude
that

Jg(x̄)T max
{
g(x̄),0

} + Jh(x̄)T h(x̄) = 0,

that is, ∇F (x̄) = 0. �

Proposition 4.3 Let x̄ ∈ R ⊂ R
n be a feasible point of the problem (NLP). Then

there exist c̄, δ̄ > 0 (which depend on x̄) such that if ‖x − x̄‖ ≤ δ̄ with x ∈ R, c ≥ c̄

and Wc(x) = 0, then (x,λ(x),μ(x)) is a KKT triple associated to (NLP).

Proof First, it is easy to show that

Yc(x)λ(x) = −cYc(x)
(
g(x) + yc(x)

)
, (10)
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where Yc(x) := diag((yc)1(x), . . . , (yc)m(x)) is a diagonal matrix with diagonal en-
tries (yc)i(x), i = 1, . . . ,m. Hence, from (4), we obtain

Jg(x)∇xL
(
x,λ(x),μ(x)

) = −ζ 2G(x)2λ(x)

= −ζ 2G(x)
(
G(x) + Yc(x)

)
λ(x) + ζ 2G(x)Yc(x)λ(x)

= −ζ 2G(x)Λ(x)
(
g(x) + yc(x)

) + ζ 2G(x)Yc(x)λ(x).

Combining the last result with (10), we have

1

c
Jg(x)∇xL

(
x,λ(x),μ(x)

) = −ζ 2G(x)

(
1

c
Λ(x) + Yc(x)

)(
g(x) + yc(x)

)
.

And the definition of Wc gives

1

c
Jg(x)Wc(x) = 1

c
Jg(x)∇xL

(
x,λ(x),μ(x)

) + Jg(x)Jg(x)T
(
g(x) + yc(x)

)

+ Jg(x)Jh(x)T h(x)

= −ζ 2G(x)

(
1

c
Λ(x) + Yc(x)

)
(
g(x) + yc(x)

)

+ Jg(x)Jg(x)T
(
g(x) + yc(x)

) + Jg(x)Jh(x)T h(x). (11)

Moreover, Eq. (5) yields

Jh(x)∇xL
(
x,λ(x),μ(x)

) = −ζ 2H(x)2μ(x),

and thus

1

c
Jh(x)Wc(x) = −1

c
ζ 2H(x)2μ(x) + Jh(x)Jg(x)T

(
g(x) + yc(x)

)

+ Jh(x)Jh(x)T h(x)

= Jh(x)Jg(x)T
(
g(x) + yc(x)

)

+
(

Jh(x)Jh(x)T − 1

c
ζ 2H(x)M(x)

)
h(x). (12)

Combining the results from (11) and (12), we can write

1

c

[
Jg(x)

Jh(x)

]
Wc(x) = Kc(x)

[
g(x) + yc(x)

h(x)

]
, (13)

with

Kc(x) :=
[

(Kc(x))1 Jg(x)Jh(x)T

Jh(x)Jg(x)T (Kc(x))2

]
,

where
(
Kc(x)

)
1 := Jg(x)Jg(x)T − ζ 2G(x)

(
(1/c)Λ(x) + Yc(x)

)
,
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(
Kc(x)

)
2 := Jh(x)Jh(x)T − (1/c)ζ 2H(x)M(x).

Observing that x̄ is feasible, if c → ∞, then we have yc(x̄) → −g(x̄) and, therefore,
Kc(x̄) → N(x̄). Since relaxed LICQ implies that N(x̄) is nonsingular, by continuity,
there exist c̄ and δ̄ such that if ‖x − x̄‖ ≤ δ̄, c ≥ c̄, then Kc(x) is also nonsingular.

Now, consider any x and c such that ‖x − x̄‖ ≤ δ̄, c ≥ c̄ and Wc(x) = 0. Then
Eq. (13) implies that g(x) + yc(x) = 0 and h(x) = 0 because Kc(x) is nonsingular.
Plugging these equations into the definition of Wc gives ∇xL(x,λ(x),μ(x)) = 0.
Furthermore,

g(x) + yc(x) = 0 ⇔ max
{
g(x),−λ(x)/c

} = 0 ⇒ 0 ≥ g(x) ⊥ λ(x) ≥ 0,

and we conclude that (x,λ(x),μ(x)) is a KKT triple. �

Combining these results, we now obtain the following theorem.

Theorem 4.1 Let {xk} ⊆ R ⊂ R
n and {ck} ⊂ R++ be sequences such that ck → ∞

and Wck
(xk) = 0 for all k. Also, consider {xkj } a subsequence of {xk} such that

xkj → x̄ ⊂ R. Then, either there exists K such that (xkj , λ(xkj ),μ(xkj )) is a KKT
triple associated to (NLP) for all kj > K , or x̄ is a stationary point of F that is
infeasible for (NLP).

Proof By Proposition 4.2, the point x̄ is stationary of F . If x̄ is feasible, then we can
conclude, using the Proposition 4.3, that there exists K such that (xkj , λ(xkj ),μ(xkj ))

is KKT for all kj > K . �

Observe that a subsequence {xkj } of the above theorem exists if, for example, {xk}
is bounded. The next result is an immediate consequence of this theorem. But in this
case, we assume that all stationary points of the infeasibility measure F are feasible.
This property holds if, for example, the functions gi , i = 1, . . . ,m are convex and hi ,
i = 1, . . . , p are affine, which was assumed in André and Silva’s work [1]. The prop-
erty also holds under the extended Mangasarian–Fromovitz constraint qualification,
used by Di Pillo and Grippo [3].

Corollary 4.1 Assume that there exists c̄ > 0 such that the set

Z := {
x ∈ R

n : Wc(x) = 0, c > c̄
}

is bounded with Z ⊂ R. Assume that all stationary points of F are feasible for (NLP).
Then, there exists c̃ > 0 such that if Wc(x) = 0 and c > c̃ then (x,λ(x),μ(x)) is a
KKT triple associated to (NLP).

Proof Suppose that there is no such c̃. So, there exist sequences {xk} ⊂ R
n and {ck} ⊂

R++ with Wck
(xk) = 0 and ck → ∞ and such that (xk, λ(xk),μ(xk)) is not KKT.

But for ck > c̄, we have xk ∈ Z, which is bounded. So, there exists a convergent
subsequence {xkj } of {xk}. This is not possible from Theorem 4.1 and because there
is no stationary point of F that is infeasible. �
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A drawback of the above result is the boundedness assumption, which is not easily
verifiable. For nonlinear complementarity problems, that is, a particular case of vari-
ational inequalities, the boundedness was ensured by exploiting coercivity or mono-
tonicity properties of the problem data [1]. For nonlinear programming, one approach
is to use an extraneous compact set containing the problem solutions as in [2, 3, 11].
In this case, the sequence generated by an unconstrained algorithm could cross the
boundary of this set, where the exactness property does not hold, or could not admit a
limit point. To overcome such difficulty, the incorporation of barrier terms in the ex-
act penalty function has been investigated [15, 18]. As a future work, we could extend
the results given here to construct these functions, called exact barrier functions [18].

Let us show now that KKT points are not only equivalent, under some assump-
tions, to the system of equations Wc(x) = 0, but also to the system ∇wc(x) = 0,
where wc is defined in (7).

Corollary 4.2 Let x̄ ∈ R ⊂ R
n be a feasible point of (NLP). Then, there exist

c̄, δ̄ > 0 (which depend on x̄) such that if ‖x − x̄‖ ≤ δ̄ with x ∈ R, c ≥ c̄ and
∇wc(x) = 0, then (x,λ(x),μ(x)) is a KKT triple associated to (NLP).

Proof The proof is analogous to the proof of Proposition 4.3. In this case, we have

Kc(x) :=
[
(Kc(x))11 (Kc(x))12
(Kc(x))21 (Kc(x))22

]
,

where

(
Kc(x)

)
11 := Jg(x)Jg(x)T − ζ 2G(x)

(
1

c
Λ(x) + Yc(x)

)
+ 1

c
Jg(x)Jλ(x)T ,

(
Kc(x)

)
12 := Jg(x)Jh(x)T + 1

c
Jg(x)Jμ(x)T ,

(
Kc(x)

)
21 := Jh(x)Jg(x)T + 1

c
Jh(x)Jλ(x)T ,

(
Kc(x)

)
22 := Jh(x)Jh(x)T − 1

c
ζ 2H(x)M(x) + 1

c
Jh(x)Jμ(x)T .

Taking c → ∞, we can also conclude that Kc(x̄) → N(x̄) and the result follows. �

Corollary 4.3 Let {xk} ⊆ R ⊂ R
n and {ck} ⊂ R++ be sequences such that ck → ∞

and ∇wck
(xk) = 0 for all k. Consider {xkj } a subsequence of {xk} with xkj → x̄ ⊂ R.

Then, either there exists K such that (xkj , λ(xkj ),μ(xkj )) is a KKT triple associated
to (NLP) for all kj > K , or x̄ is a stationary point of F that is infeasible for (NLP).

Proof It is easy to show that Proposition 4.2 still holds if we replace Wc with ∇wc.
Then, the results follows directly from the proof of Theorem 4.1, replacing the Propo-
sition 4.3 with Corollary 4.2. �

We proceed now to the equivalence of minimizers of (NLP) and the unconstrained
penalized problem. Denote by Gf and Lf the sets of global and local solutions
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of (NLP), respectively. Moreover, for each c > 0, denote the sets of global and local
solutions of the penalized problem minx wc(x), respectively, by Gw(c) and Lw(c).
First, let us prove that wc is a weakly exact penalty function for the problem (NLP)
in the sense of [3, 18], where we remove the extraneous compact set.

Definition 4.2 The function wc is a weakly exact penalty function for (NLP) if and
only if there exists some c̄ > 0 such that Gw(c) = Gf for all c ≥ c̄.

The following assumption is required to the proof.

Assumption 4.1 It holds that ∅ 
= Gf ⊂ R and Lw(c) ⊂ R for c large enough. Note
that the last one implies Gw(c) ⊂ R for c sufficiently large.

Before presenting the main theorem concerning global minimizers, let us consider
some additional results.

Lemma 4.1 The function wc defined in (7) at x ∈ R
n can be written as

wc(x) = f (x) + 〈
λ(x), g(x) + yc(x)

〉 + c

2

∥∥g(x) + yc(x)
∥∥2

+ 〈
μ(x),h(x)

〉 + c

2

∥∥h(x)
∥∥2

.

Proof Observe that

〈
λ(x), g(x) + yc(x)

〉 + c

2

∥∥g(x) + yc(x)
∥∥2

= 〈
λ(x), g(x)

〉 + c

2

∥∥g(x)
∥∥2 + 〈

λ(x), yc(x)
〉 + c

2

∥∥yc(x)
∥∥2 + c

〈
g(x), yc(x)

〉

= 〈
λ(x), g(x)

〉 + c

2

∥∥g(x)
∥∥2 +

〈
yc(x),

c

2
yc(x) − c

(
−λ(x)

c
− g(x)

)〉
. (14)

Let us consider two cases:

1. For i such that [yc(x)]i = −λi(x)/c − gi(x), we have

[
yc(x)

]
i

(
c

2

[
yc(x)

]
i
− c

(
−λi(x)

c
− gi(x)

))
= − c

2

[
yc(x)

]2
i
.

2. Otherwise, for i such that [yc(x)]i = 0, we have

[
yc(x)

]
i

(
c

2

[
yc(x)

]
i
− c

(
−λi(x)

c
− gi(x)

))
= 0 = − c

2

[
yc(x)

]2
i
.

Thus, (14) is equivalent to

〈
λ(x), g(x)

〉 + c

2

∥∥g(x)
∥∥2 − c

2

∥∥yc(x)
∥∥2

,

and the conclusion follows. �
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Lemma 4.2 Let (x,λ,μ) be a KKT triple associated to the problem (NLP) such that
x ∈ R. Then, wc(x) = f (x) for all c > 0.

Proof Since x satisfies relaxed LICQ, λ(x) = λ. From the KKT conditions, h(x) = 0
and 0 ≤ λ(x) ⊥ g(x) ≤ 0, which is equivalent to g(x) + yc(x) = 0. Then the proof
follows from the formula of wc given in Lemma 4.1. �

Proposition 4.4 Let {xk} ⊆ R ⊂ R
n and {ck} ⊂ R++ be sequences such that {xk}

is bounded, ck → ∞ and xk ∈ Gw(ck) for all k. If Assumption 4.1 holds, then there
exists K such that xk ∈ Gf for all k > K .

Proof Assume that the assertion is false, that is, for all K , there exists k > K such that
xk /∈ Gf . First, let x̂ ∈ Gf , which exists by Assumption 4.1. Since x̂ is a KKT point
and satisfies relaxed LICQ (also from Assumption 4.1), we have, from Lemma 4.2,

wck

(
xk

) ≤ wck
(x̂) = f (x̂) (15)

for all k. The boundedness assumption of {xk} guarantees that there exists a sub-
sequence of {xk} converging to x̄ ∈ R

n. Without loss of generality, we can write
limk→∞ xk = x̄. So, taking the supremum limit in both sides of (15) gives

lim sup
k→∞

wck

(
xk

) ≤ f (x̂). (16)

Now, from Lemma 4.1, wck
can be written as

wck

(
xk

) = f
(
xk

) + 〈
λ
(
xk

)
, g

(
xk

) + yck

(
xk

)〉 + ck

2

∥∥g
(
xk

) + yck

(
xk

)∥∥2

+ 〈
μ

(
xk

)
, h

(
xk

)〉 + ck

2

∥∥h
(
xk

)∥∥2
.

Thus, inequality (16) implies, by continuity of the involved functions, that h(x̄) = 0
and g(x̄) + max{0,−g(x̄)} = 0, which implies g(x̄) ≤ 0. Moreover, it is easy to see
that f (x̄) ≤ lim supk→∞ wck

(xk). Therefore, f (x̄) ≤ f (x̂) and x̄ ∈ X, that is, x̄ ∈ Gf .
Since x̄ is feasible and satisfies relaxed LICQ by Assumption 4.1, there exist c̄ and

δ̄ as in the Corollary 4.2. Let K̄ be sufficiently large such that ‖xk − x̄‖ ≤ δ̄, ck ≥ c̄

and xk ∈ Gw(ck) ⊂ R for all k > K̄ . Since xk ∈ Gw(ck) implies ∇wck
(xk) = 0, the

same corollary ensures that xk is KKT, and thus feasible, for all k > K̄ . Moreover,
Lemma 4.2 and inequality (15) yield

f
(
xk

) = wck

(
xk

) ≤ f (x̂)

for all k > K̄ . We conclude that for such K̄ , xk ∈ Gf for all k > K̄ , which gives a
contradiction. �

Proposition 4.5 Suppose that Assumption 4.1 holds. Then Gw(c) ⊆ Gf implies that
Gw(c) = Gf for all c > 0.
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Proof Let c > 0 and x̃ ∈ Gw(c). As Gw(c) ⊆ Gf , x̃ is a KKT point, and thus, by
Lemma 4.2, wc(x̃) = f (x̃). On the other hand, let x̂ ∈ Gf such that x̂ 
= x̃. Since x̂

is also a KKT point and satisfies relaxed LICQ by Assumption 4.1, once again by
Lemma 4.2, we have wc(x̂) = f (x̂). Therefore, by the definition of global solutions,

wc(x̃) = f (x̃) = f (x̂) = wc(x̂).

We conclude that x̂ ∈ Gw(c) and the result follows. �

The above two propositions can be put together and the result is as follows.

Theorem 4.2 If there exists c̄ > 0 such that Z̄ := ⋃
c≥c̄ Gw(c) is bounded and As-

sumption 4.1 holds, then wc is a weakly exact penalty function for the problem.

Proof From Proposition 4.5, it is sufficient to show that there exist c̃ > 0 such that
Gw(c) ⊆ Gf for all c ≥ c̃. Suppose that there are sequences {xk} ⊂ Z̄ and {ck} ⊂ R++
with ck ≥ c̄, ck → ∞ and xk ∈ Gw(ck) for all k. Since Z̄ is bounded, Proposition 4.4
guarantees that there exists K such that xk ∈ Gf for all k > K . The result follows
taking c̃ = cK . �

The drawback of the definition of weakly exact penalty functions is that uncon-
strained minimization algorithms do not ensure to find global solutions in general.
With this in mind, we prove that wc is essentially an exact penalty function. Once
again, following [3, 18] and removing the extraneous compact set, we have the fol-
lowing definition.

Definition 4.3 The function wc is an exact penalty function for (NLP) if and only if
there exists c̄ > 0 such that Gw(c) = Gf and Lw(c) ⊆ Lf for all c ≥ c̄.

In other words, wc is an exact penalty if it is weakly exact and any local minimizer
of the unconstrained problem is a local solution of the constrained one, when c is
sufficiently large.

First, let us show that the equality from Lemma 4.2 becomes an inequality if the
considered point is not KKT but only feasible.

Lemma 4.3 Let x ∈ R
n be a feasible point for (NLP). Then, wc(x) ≤ f (x) for all

c > 0.

Proof Fix some c > 0. From Lemma 4.1, wc(x) can be written as

wc(x) = f (x) +
m∑

i=1

[
ȳc(x)

]
i
+ 〈

μ(x),h(x)
〉 + c

2

∥∥h(x)
∥∥2

,

where
[
ȳc(x)

]
i
:= λi(x)

(
gi(x) + [

yc(x)
]
i

) + c

2

(
gi(x) + [

yc(x)
]
i

)2
.
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Since h(x) = 0, it is enough to see that [ȳc(x)]i ≤ 0 for all i = 1, . . . ,m. Thus, con-
sider two cases:

1. For an index i such that [yc(x)]i = −λi(x)/c − gi(x), we have

[
ȳc(x)

]
i
= λi(x)

(
−λi(x)

c

)
+ c

2

(
−λi(x)

c

)2

= −λ2
i (x)

2c
≤ 0.

2. For an index i such that [yc(x)]i = 0, that is, λi(x)/c + gi(x) ≥ 0, we have

[
ȳc(x)

]
i
= λi(x)gi(x) + c

2
g2

i (x) = c

2
gi(x)

[
2

(
λi(x)

c
+ gi(x)

)
− gi(x)

]
.

As gi(x) ≤ 0, the term between the box brackets is nonnegative. Thus, we have
[ȳc(x)]i ≤ 0 and the conclusion follows. �

The results concerning local minimizers are similar to Theorem 4.1 and Corol-
lary 4.3 in the sense that, if a local solution of the original problem is not recovered,
then we end up in a stationary point of the infeasibility measure F that is infeasible
for (NLP).

Theorem 4.3 Let {xk} ⊆ R ⊂ R
n and {ck} ⊂ R++ be sequences such that ck → ∞

and xk ∈ Lw(ck) for all k. Let {xkj } be a subsequence of {xk} such that xkj → x̄ ⊂ R.
If Assumption 4.1 holds, then either there exists K such that xkj ∈ Lf for all kj > K ,
or x̄ is a stationary point of F that is infeasible for (NLP).

Proof Since xkj ∈ Lw(ckj
) implies ∇wckj

(xkj ) = 0 for all kj , from Corollary 4.3,

there is K such that xkj is KKT for all kj > K or x̄ is a stationary point of F that
is infeasible. Considering the first case and fixing kj > K , from Lemma 4.2, there
exists a neighborhood V (xkj ) of xkj such that

f
(
xkj

) = wckj

(
xkj

) ≤ wckj
(x) for all x ∈ V

(
xkj

)
.

The above statement is clearly true for all x ∈ V (xkj ) ∩ X. Thus, using Lemma 4.3,
we conclude that f (xkj ) ≤ wckj

(x) ≤ f (x) for all x ∈ V (xkj ) ∩ X. This means that

xkj ∈ Lf for all kj > K , which completes the proof. �

Corollary 4.4 Assume that there exists c̄ > 0 such that
⋃

c>c̄ Lw(c) is bounded. Con-
sider also that Assumption 4.1 holds and that all stationary points of F are feasible
for (NLP). Then, there exists c̃ > 0 such that if x ∈ Lw(c) and c > c̃, then x ∈ Lf .

Proof Suppose that the statement is false. So, there exist sequences {xk} ⊂ R
n and

{ck} ⊂ R++ with xk ∈ Lw(ck) and ck → ∞ and such that xk /∈ Lf . But for ck > c̄, we
have xk ∈ ⋃

c>c̄ Lw(c), which is bounded. So, there exists a convergent subsequence

{xkj } of {xk}. The contradiction follows from Theorem 4.3 and because there is no
stationary point of F that is infeasible. �
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The previous results allow us to develop an algorithm to solve the problem (NLP).
In particular, Theorem 4.1 and Corollary 4.3 show that we can find a KKT point if we
solve the systems of equations Wc(x) = 0 or ∇wc(x) = 0 for a large enough c. Since
Wc is semismooth and its formula does not contain second-order terms (see (9)), a
semismooth Newton method can be used to solve Wc(x) = 0. It remains to show an
easy way to choose the parameter c. Also, convergence results using the semismooth
Newton method should be presented, as well as a globalization idea. The next three
sections will be dedicated to these topics.

5 Updating the Penalty Parameter

As we noted before, we need a way to choose the penalty parameter c. Following [1],
we consider the dynamical update of parameter proposed by Glad and Polak [7]. The
idea is to create a function, which is called test function, that measures the risk of
computing a zero of Wc that is not KKT. First, define the following function:

ac(x) := g(x) + yc(x) = max

{
g(x),−λ(x)

c

}
.

Note that for all c > 0, ac(x) = 0 is equivalent to 〈g(x), λ(x)〉 = 0, g(x) ≤ 0 and
λ(x) ≥ 0. Hence, we can define a test function by

tc(x) := −∥∥Wc(x)
∥∥2 + 1

cγ

(∥∥ac(x)
∥∥2 + ∥∥h(x)

∥∥2)
,

with γ > 0. It is easy to show that tc is continuous because of the continuity of the
involved functions. Next proposition shows that tc is in fact a test function.

Proposition 5.1 The following statements are equivalent:

(a) (x,λ(x),μ(x)) is a KKT triple associated to the problem.
(b) Wc(x) = 0, ac(x) = 0 and h(x) = 0.
(c) Wc(x) = 0 and tc(x) ≤ 0.

Proof It follows directly from the formulas of Wc(x), ac(x), and tc(x) and the defi-
nition of KKT triple. �

Let us show now that for all x̄ ∈ R, either x̄ is a stationary point of F that is
infeasible for (NLP), or there exists c̄ large enough such that tc(x) ≤ 0 for all c ≥ c̄

and all x in a neighborhood of x̄. From Proposition 5.1, this second case reveals us a
way to update the parameter c. More precisely, for each computation of a zero of Wc,
we increase the value of c if the test tc at this point is greater that zero.

Lemma 5.1 Let S ⊆ R ⊂ R
n be a compact set with no KKT points. Then, either

there exist c̄, ε̄ (which depend on S) such that ‖Wc(x)‖ ≥ ε̄ for all x ∈ S and all
c ≥ c̄; or there exist {xk} ⊂ S, {ck} ⊂ R++ such that ck → ∞, ‖Wck

(xk)‖ → 0 and
{xk} converges to a stationary point of F that is infeasible for (NLP).
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Proof If the first condition does not hold, then there exist two sequences {xk} ⊂ S

and {ck} ⊂ R++ such that xk → x̄ ∈ S, ck → ∞ and ‖Wck
(xk)‖ → 0. Recalling the

definition of Wck
and using the continuity of the functions involved (λ(·) and μ(·) are

continuous by relaxed LICQ), we have

∇f
(
xk

) + Jg
(
xk

)T
λ
(
xk

) + Jh
(
xk

)T
μ

(
xk

)

+ ck

(
Jg

(
xk

)T max
{
g
(
xk

)
,−λ

(
xk

)
/ck

} + Jh
(
xk

)T
h
(
xk

)) → 0.
(17)

As ck → ∞, Jg(x̄)T max{g(x̄),0} + Jh(x̄)T h(x̄) = 0, that is, x̄ is a stationary point
of F . Suppose by contradiction that x̄ is feasible and define

λ̄k := λ
(
xk

) + ck max
{
g
(
xk

)
,−λ

(
xk

)
/ck

} = max
{
λ
(
xk

) + ckg
(
xk

)
,0

}
,

μ̄k := μ
(
xk

) + ckh
(
xk

)
.

It follows from (17) that ∇f (xk)+Jg(xk)T λ̄k +Jh(xk)T μ̄k → 0. By continuity, we
conclude that λ̄k → λ̄ ≥ 0, μ̄k → μ̄ and ∇f (x̄) + Jg(x̄)T λ̄ + Jh(x̄)T μ̄ = 0. Also,
the definition of λ̄k shows that if g(x̄) < 0 then λ̄ = 0. Therefore, (x̄, λ̄, μ̄) is a KKT
triple, which is a contradiction because x̄ ∈ S and S has no KKT points. �

Proposition 5.2 For all x̄ ∈ R ⊂ R
n, either x̄ is a stationary point of F that is

infeasible for (NLP), or there exist c̄, δ̄ > 0 such that if c ≥ c̄ and if ‖x − x̄‖ ≤ δ̄

with x ∈ R, then tc(x) ≤ 0.

Proof Suppose that the second assertion does not hold, that is, there are sequences
{xk} ⊂ R

n and {ck} ⊂ R++ such that xk → x̄, ck → ∞ and tck
(xk) > 0 (which shows

directly that, for all k, xk is not a KKT point). Let us consider two cases.

1. Assume that x̄ is not a KKT point. Consider the Lemma 5.1 applied to the set
S := {xk} ∪ {x̄}. Then, we have that x̄ is either an infeasible stationary point of F
or we have

tck

(
xk

) ≤ −ε̄2 + 1

c
γ

k

(∥∥ack

(
xk

)∥∥2 + ∥∥h
(
xk

)∥∥2)

for all k large enough. Since c
γ

k → ∞, we have a contradiction in this last case
and the claim follows.

2. Assume now that x̄ is a KKT point. Equation (13) gives

Kck

(
xk

)[
ack

(xk)

h(xk)

]
= 1

ck

[
Jg(xk)

Jh(xk)

]
Wck

(
xk

)

for all k. Let us recall that Kck
(xk) converges to a nonsingular matrix N(x̄) and

Jg(xk), Jh(xk) converge respectively to Jg(x̄) and Jh(x̄). Hence, for sufficiently
large k, we have

∥∥∥∥

[
ack

(xk)

h(xk)

]∥∥∥∥ ≤ 1

ck

∥∥N−1(x̄)
∥∥∥∥Wck

(
xk

)∥∥
∥∥∥∥

[
Jg(x̄)

Jh(x̄)

]∥∥∥∥ .
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Squaring both sides of the above inequality gives

∥∥ack

(
xk

)∥∥2 + ∥∥h
(
xk

)∥∥2 ≤ 1

c2
k

∥∥N−1(x̄)
∥∥2∥∥Wck

(
xk

)∥∥2(∥∥Jg(x̄)
∥∥2 + ∥∥Jh(x̄)

∥∥2)
.

Thus,

tck

(
xk

) = −∥∥Wck

(
xk

)∥∥2 + 1

c
γ

k

(∥∥ack

(
xk

)∥∥2 + ∥∥h
(
xk

)∥∥2)

=
(

1

c
γ+2
k

∥∥N−1(x̄)
∥∥2(∥∥Jg(x̄)

∥∥2 + ∥∥Jh(x̄)
∥∥2) − 1

)∥∥Wck

(
xk

)∥∥2
,

which is not positive as c
γ+2
k → ∞, giving again a contradiction. �

We finish this section with a strategy to dynamically update the penalty parameter
and a theorem associated to it.

Algorithm 5.1 Dynamical update of the penalty parameter.

1. Let A(x, c) be an algorithm that computes a zero of Wc.
Initialize x0 ∈ R

n, c0 > 0, ξ > 1 and γ > 0. Set k = 0.
2. If xk is a KKT point of the problem, stop.
3. While tck

(xk) > 0, do ck = ξck .
4. Compute xk+1 = A(xk, ck), set k = k + 1 and go to step 2.

Theorem 5.1 Let {xk} ⊆ R ⊂ R
n be a sequence computed by Algorithm 5.1. If {xk}

is bounded and infinite, then for each one of its accumulation points in R, either it
satisfies the KKT conditions or it is stationary point of F that is infeasible for (NLP).

Proof Let x̄ be an accumulation point of {xk}. Then, by Proposition 5.2, if x̄ is not
a stationary point of F that is infeasible, then tck

(xk) ≤ 0 for all large enough k. Let
c̄ be the largest computed ck value. Since x̄ is a feasible accumulation point of an
algorithm that computes a zero of Wc, we have Wc̄(x̄) = 0. Also, the continuity of tc̄
gives tc̄(x̄) ≤ 0 and we conclude that x̄ is KKT. �

6 Local Convergence Results

In the same way as André and Silva’s penalty function [1], Wc is not differentiable,
but it is semismooth, which means that we can solve Wc(x) = 0 using an extension
of the Newton method for these kinds of equations. The convergence theorem of
semismooth Newton method [23, Chap. 7] shows that if x∗ is a KKT point and all
the elements of the B-subdifferential ∂BWc(x

∗) of Wc at x∗ are nonsingular (with c

large enough), then the method converges superlinearly. If, in addition, ∇2f , ∇2gi ,
i = 1, . . . ,m and ∇2hi , i = 1, . . . , p are locally Lipschitz continuous, then Wc is
strongly semismooth and the convergence of the method is quadratic.
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We present now the proof of the convergence rate following the structure of
Facchinei, Kanzow and Palagi’s manuscript [22]. First, we obtain a characterization
of the elements of the B-subdifferential at a KKT point. To make it possible let us
introduce some notations. Let x∗ be a KKT point and λ∗ the associated multiplier for
inequality constraints. Then, denote by

I ∗ := I=
(
x∗) and I ∗

0 := {
i ∈ I ∗ : λ∗

i = 0
}

the index set of active constraints at x∗ (see Definition 3.1) and the indices of degen-
erate constraints, that is, those that are active with null multipliers.

Theorem 6.1 Let (x∗, λ∗,μ∗) be a KKT triple associated to the problem (NLP) with
x∗ ∈ R. Then, for any H ∈ ∂BWc(x

∗), with c > 0 sufficiently large, there exists an
index set I ⊆ I ∗

0 (which depends on H ) such that

H = ∇2
xxL

(
x∗, λ∗,μ∗) +

∑

i∈I∗\I
∇gi

(
x∗)(∇λi

(
x∗)T + c∇gi

(
x∗)T )

+
p∑

i=1

∇hi

(
x∗)(∇μi

(
x∗)T + c∇hi

(
x∗)T )

.

Proof Recalling the definition of Wc, we have

Wc(x) = ∇f (x) + Jg(x)T
(
λ(x) + cg(x)

) + cJg(x)T yc(x)

+ Jh(x)T
(
μ(x) + ch(x)

)

= ∇f (x) +
m∑

i=1

(
λi(x) + cgi(x)

)∇gi(x) + c

m∑

i=1

(yc)i(x)∇gi(x)

+
p∑

i=1

(
μi(x) + chi(x)

)∇hi(x).

Let H ∈ ∂BWc(x
∗) be arbitrarily given. The relaxed LICQ assumption ensures that

λ∗ = λ(x∗) and μ∗ = μ(x∗). Then

H = ∇2f
(
x∗) +

m∑

i=1

(
λ∗

i + cgi

(
x∗))∇2gi

(
x∗)

+
p∑

i=1

(
μ∗

i + chi

(
x∗))∇2hi

(
x∗) + cH̃

+
m∑

i=1

∇gi

(
x∗)(∇λi

(
x∗)T + c∇gi

(
x∗)T )

+
p∑

i=1

∇hi

(
x∗)(∇μi

(
x∗)T + c∇hi

(
x∗)T )
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= ∇2
xxL

(
x∗, λ∗,μ∗) + c

m∑

i=1

gi

(
x∗)∇2gi

(
x∗)

+
m∑

i=1

∇gi

(
x∗)(∇λi

(
x∗)T + c∇gi

(
x∗)T )

+ cH̃ +
p∑

i=1

∇hi

(
x∗)(∇μi

(
x∗)T + c∇hi

(
x∗)T )

, (18)

for some H̃ ∈ ∂BW̃c(x
∗), where

W̃c(x) :=
m∑

i=1

(yc)i(x)∇gi(x).

By the definition of B-subdifferential, there is a sequence {xk} ⊂ R
n converging to

x∗ such that xk is a F -differentiable point of W̃c for all k and H̃ = limk→∞ JW̃c(x
k).

Now, let us analyze the differentiability of (yc)i(x) := max{0,−λi(x)/c − gi(x)} for
all i = 1, . . . ,m. To do this, we consider three cases:

1. If i ∈ I ∗ \ I ∗
0 , then (yc)i is continuously differentiable around x∗. Furthermore,

since λ∗
i > 0, we have for k big enough

λi

(
xk

)
> 0 ⇒ −λi(x

k)

c
< 0 ⇒ (yc)i

(
xk

) = 0.

Hence,

∇(yc)i
(
x∗) = lim

k→∞∇(yc)i
(
xk

) = 0.

2. If i /∈ I ∗, then (yc)i is continuously differentiable around x∗. Since gi(x
∗) < 0,

we have for k big enough,

gi

(
xk

)
< 0 ⇒ −gi

(
xk

)
> 0 ⇒ −λi(x

k)

c
− gi

(
xk

)
> 0,

where the last implication follows from the fact that λi(x
k) → 0 by complemen-

tarity conditions. This implies (yc)i(x
k) = −λi(x

k)/c − gi(x
k) and, therefore,

∇(yc)i
(
x∗) = lim

k→∞∇(yc)i
(
xk

) = −∇λi(x
∗)

c
− ∇gi

(
x∗).

3. If i ∈ I ∗
0 , then we have another three possibilities.

(a) If −λi(x
k)/c − gi(x

k) > 0 for all k (or for infinitely many k), then we have
(yc)i(x

k) = −λi(x
k)/c − gi(x

k). Hence,

lim
k→∞∇(yc)i

(
xk

) = −∇λi(x
∗)

c
− ∇gi

(
x∗). (19)
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(b) If −λi(x
k)/c − gi(x

k) < 0 for all k, we have (yc)i(x
k) = 0. Then we obtain

lim
k→∞∇(yc)i

(
xk

) = 0.

(c) If −λi(x
k)/c−gi(x

k) = 0 for all k, then (yc)i will be nondifferentiable unless
−∇λi(x

k)/c − ∇gi(x
k) = 0. Since ∇gi(x

k) is nonzero by relaxed LICQ and
c is sufficiently large, we conclude that this equality does not hold.

Define now the following index set:

I := {
i ∈ I ∗

0 : equality (19) holds
}
.

Also note that (yc)i(x
∗) = −gi(x

∗). In fact, if gi(x
∗) = 0, then (yc)i(x

∗) = 0, be-
cause −λ∗

i /c ≤ 0. On the other hand, if gi(x
∗) < 0, in view of complementarity

conditions, we have λ∗
i = 0 and so (yc)i(x

∗) = −gi(x
∗). In this way, we have the

following representation of H̃ :

H̃ =
m∑

i=1

(yc)i
(
x∗)∇2gi

(
x∗) +

∑

i /∈I∗
∇gi

(
x∗)

(
−∇λi(x

∗)T

c
− ∇gi

(
x∗)T

)

+
∑

i∈I

∇gi

(
x∗)

(
−∇λi(x

∗)T

c
− ∇gi

(
x∗)T

)

= −
m∑

i=1

gi

(
x∗)∇2gi

(
x∗)

+
∑

i /∈I∗\I
∇gi

(
x∗)

(
−∇λi(x

∗)T

c
− ∇gi

(
x∗)T

)
. (20)

Finally, putting together equalities (18) and (20), we have

H = ∇2
xxL

(
x∗, λ∗,μ∗) + c

m∑

i=1

gi

(
x∗)∇2gi

(
x∗)

+
m∑

i=1

∇gi

(
x∗)(∇λi

(
x∗)T + c∇gi

(
x∗)T )

− c

m∑

i=1

gi

(
x∗)∇2gi

(
x∗) −

∑

i /∈I∗\I
∇gi

(
x∗)(∇λi

(
x∗)T + c∇gi

(
x∗)T )

+
p∑

i=1

∇hi

(
x∗)(∇μi

(
x∗)T + c∇hi

(
x∗)T )
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= ∇2
xxL

(
x∗, λ∗,μ∗) +

∑

i∈I∗\I
∇gi

(
x∗)(∇λi

(
x∗)T + c∇gi

(
x∗)T )

+
p∑

i=1

∇hi

(
x∗)(∇μi

(
x∗)T + c∇hi

(
x∗)T )

,

which gives the desired result. �

In order to prove their convergence rate result, Facchinei, Kanzow, and Palagi [22]
used an assumption called weak regularity, which is defined below.

Definition 6.1 A KKT triple (x∗, λ∗,μ∗) is said weakly regular if and only if, for all
I ⊆ I ∗

0 , the Hessian ∇2
xxL(x∗, λ∗,μ∗) is not singular on the subspace

UI := {
d ∈ R

n : 〈∇gi

(
x∗), d

〉 = 0, i ∈ I ∗ \ I,
〈∇hi

(
x∗), d

〉 = 0, i = 1, . . . , p
}
, (21)

or, in other words, if

PUI
∇2

xxL
(
x∗, λ∗,μ∗)d 
= 0 for all d ∈ UI , d 
= 0,

with PUI
denoting the orthogonal projection onto UI , and for all subset I ⊆ I ∗

0 .

Since they were interested in variational inequalities, we propose related condi-
tions that guarantee fast convergence, which seems more natural in the optimization
context. The first one is the well-known second-order sufficient condition.

Definition 6.2 A KKT triple (x∗, λ∗,μ∗) satisfies the second-order sufficient condi-
tion if and only if

〈∇2
xxL

(
x∗, λ∗,μ∗)d, d

〉
> 0 for all d ∈ UI∗

0
∩ U0, d 
= 0,

where, UI∗
0

is defined in (21) with I = I ∗
0 and

U0 := {
d ∈ R

n : 〈∇gi

(
x∗), d

〉 ≤ 0 for all i ∈ I ∗
0

}
. (22)

Unfortunately, this condition is not sufficient to prove the convergence rate. An
additional assumption that ensures fast convergence is the strict complementarity,
that is, I ∗

0 = ∅. But this is a strong condition, in the sense that it does not hold in
many cases. Classical results in sequential quadratic programming [24, Chap. 18],
for example, use these two conditions, but more recent works in this area [25, 26] use
instead the strong second-order sufficient condition, which we recall below.

Definition 6.3 A KKT triple (x∗, λ∗,μ∗) satisfies the strong second-order sufficient
condition if and only if

〈∇2
xxL

(
x∗, λ∗,μ∗)d, d

〉
> 0 for all d ∈ UI∗

0
, d 
= 0.
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This condition is also required in recent works about exact merit functions [19, 20],
and ensures the convergence rate. However, it can be proved that it is more restrictive
than weak regularity.

Lemma 6.1 Let (x∗, λ∗,μ∗) be a KKT triple. If it satisfies the strong second-order
sufficient condition, then it is weakly regular.

Proof Since I ⊆ I ∗
0 implies UI ⊆ UI∗

0
, the strong second-order sufficient condition

can be written as

〈∇2
xxL

(
x∗, λ∗,μ∗)d, d

〉
> 0 for all d ∈ UI , d 
= 0 and all I ⊆ I ∗

0 .

Fix I ⊆ I ∗
0 and d ∈ UI with d 
= 0. Since PUI

is symmetric and d ∈ UI ,

0 <
〈∇2

xxL
(
x∗, λ∗,μ∗)d, d

〉 = 〈
PUI

∇2
xxL

(
x∗, λ∗,μ∗)d, d

〉
.

This shows that PUI
∇2

xxL(x∗, λ∗,μ∗)d 
= 0, and thus the weak regularity holds. �

Remark The converse implication is not necessarily true. Indeed, we have the follow-
ing counterexample: n = 2, m = 3 and p = 0, with f (x) := −x2, g1(x) := −x2

1 +x2,
g2(x) := −x1 and g3(x) := x1. In this case, we obtain x∗ = (0,0)T , I ∗ = {1,2,3}
and ∇xL(x∗, λ∗) = 0 implies that λ∗

1 = 1 and λ∗
2 = λ∗

3. If λ∗
2 = λ∗

3 = 0, we have
I ∗

0 = {2,3}. Thus, we obtain U{2} = U{3} = U∅ = {(0,0)T }, U0 = {d ∈ R
2 : d1 = 0},

and UI∗
0

= {d ∈ R
2 : d2 = 0}. For the case I = I ∗

0 , we have

PUI∗
0
∇2

xxL
(
x∗, λ∗)d = PUI∗

0

[−2d1
0

]
=

[−2d1
0

]

= 0

for all d ∈ UI∗
0

, d 
= 0. Therefore, the weak regularity is satisfied. However,

〈∇2
xxL

(
x∗, λ∗)d, d

〉 = −2d2
1 ≤ 0,

which shows that the strong second-order sufficient condition is not satisfied.

Recalling that we desire a natural condition in the context of optimization, and as
an alternative, we propose to use the second-order sufficient condition with another
condition associated to the nonsingularity of the Hessian ∇2

xxL(x∗, λ∗,μ∗), which is
similar to weak regularity.

Assumption 6.1 Let (x∗, λ∗,μ∗) be a KKT triple. Then the second-order sufficient
condition (see Definition 6.2) holds and

PUI∗
0
∇2

xxL
(
x∗, λ∗,μ∗)d 
= 0 for all d ∈ UI∗

0
\ U0, d 
= 0,

recalling that UI∗
0

is defined in (21) for I = I ∗
0 and U0 is defined in (22).
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Theorem 6.2 Let (x∗, λ∗,μ∗) be a KKT triple associated to the problem (NLP) with
x∗ ∈ R. If Assumption 6.1 holds, then all matrices of the B-subdifferential ∂BWc(x

∗)
are nonsingular for all sufficiently large c > 0.

Proof Assume for the purpose of contradiction that there are sequences {ck} ⊂ R++
and {Hk} ⊂ R

n×n such that ck → +∞ and Hk ∈ ∂BWck
(x∗) is singular for all k.

Then there exists {dk} ⊂ R
n with ‖dk‖ = 1, such that HT

k dk = 0 for all k and, con-
sequently, 〈HT

k dk, dk〉 = 0 for all k. Consider, without loss of generality, that {dk}
converges to some vector d∗ ∈ R

n. From Theorem 6.1, for each k, there is a subset
Ik ⊆ I ∗

0 such that

HT
k dk = ∇2

xxL
(
x∗, λ∗μ∗)dk +

∑

i∈I∗\Ik

〈∇gi

(
x∗), dk

〉(∇λi

(
x∗) + ck∇gi

(
x∗))

+
p∑

i=1

〈∇hi

(
x∗), dk

〉(∇μi

(
x∗) + ck∇hi

(
x∗)). (23)

Since there are finitely many subsets Ik , we may assume that Ik = I for all k. Thus,

〈
HT

k dk, dk
〉 = 〈∇2

xxL
(
x∗, λ∗,μ∗)dk, dk

〉 +
∑

i∈I∗\I

〈∇gi

(
x∗), dk

〉〈∇λi

(
x∗), dk

〉

+ ck

∑

i∈I∗\I

〈∇gi

(
x∗), dk

〉2 +
p∑

i=1

〈∇hi

(
x∗), dk

〉〈∇μi

(
x∗), dk

〉

+ ck

p∑

i=1

〈∇hi

(
x∗), dk

〉2
.

Dividing the above expression by ck , taking ck → +∞ and recalling that, for all k,
〈HT

k dk, dk〉 = 0, it follows that

∑

i∈I∗\I

〈∇gi

(
x∗), dk

〉2 +
p∑

i=1

〈∇hi

(
x∗), dk

〉2 → 0,

which implies that 〈∇gi(x
∗), d∗〉 = 0 for all i ∈ I ∗ \ I and 〈∇hi(x

∗), d∗〉 = 0 for all
i = 1, . . . , p, that is, d∗ ∈ UI . Now, observe that for all k,

∑

i∈I∗\I

〈∇gi

(
x∗), dk

〉∇gi

(
x∗) ∈ U⊥

I and
p∑

i=1

〈∇hi

(
x∗), dk

〉∇hi

(
x∗) ∈ U⊥

I .

In fact, for all d ∈ UI ,

∑

i∈I∗\I

〈∇gi

(
x∗), dk

〉〈∇gi

(
x∗), d

〉 = 0 and
p∑

i=1

〈∇hi

(
x∗), dk

〉〈∇hi

(
x∗), d

〉 = 0,
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because of the definition of UI . This fact, the equality (23) with Ik = I , and the fact
that HT

k dk = 0 for all k, show that

0 = PUI
∇2

xxL
(
x∗, λ∗μ∗)dk + PUI

[ ∑

i∈I∗\I

〈∇gi

(
x∗), dk

〉∇λi

(
x∗)

]

+ PUI

[
p∑

i=1

〈∇hi

(
x∗), dk

〉∇μi

(
x∗)

]

for all k. Taking k → ∞ in the above equality, we obtain

PUI
∇2

xxL
(
x∗, λ∗μ∗)d∗ = 0, (24)

once again because d∗ ∈ UI .
Note now that if d∗ /∈ U0, then we have a contradiction because of Assumption 6.1

and since I ⊆ I ∗
0 implies UI ⊆ UI∗

0
. On the other hand, if d∗ ∈ U0, then equality (24),

the fact that d∗ ∈ UI and the symmetry of PUI
imply that

0 = 〈
PUI

∇2
xxL

(
x∗, λ∗μ∗)d∗, d∗〉 = 〈∇2

xxL
(
x∗, λ∗μ∗)d∗, d∗〉,

which contradicts the second-order sufficient condition. �

From Lemma 6.1, it is easy to see that the convergence result above can be proved
if we replace the Assumption 6.1 with the strong second-order sufficient condition or
the weak regularity.

7 Globalization and Numerical Experiments

To globalize the method, we can just use the merit function ‖Wc(·)‖2/2. But this
happens to be nondifferentiable. Besides, recalling the formulas of ∇wc and Wc in (8)
and (9), we observe that a minimizer x of wc should satisfy

∇wc(x) = Wc(x) + second-order terms = 0.

Thus, a stationary point of wc is a zero of Wc, if we ignore the second-order terms.
In Theorem 4.1 and Corollary 4.3, we saw that these terms are ignored when x is a
KKT point because, in this case, ∇wc(x) = Wc(x) = 0. This means that we can use
the exact penalty wc as the merit function. Also, the method can be considered as a
Gauss–Newton-type method, in the sense that we can ignore second-order terms at
the points that we are interested in.

The final algorithm is given below.

Algorithm 7.1 Gauss–Newton-type method to minimize wc , using Wc to compute
the search direction and with dynamical update of the penalty parameter.

1. Choose x0 ∈ R
n, c0 > 0, ξ > 1, ε1 ≥ 0, ε2, ε3 ∈ (0,1) and σ ∈ (0,1/2). Set k = 0.
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2. If ‖∇wck
(xk)‖ ≤ ε1, stop.

3. While tck
(xk) > 0, do ck = ξck .

4. Compute Wck
(xk) and take Hk ∈ ∂BWck

(xk).
5. Find dk such that Hkd

k = −Wck
(xk).

6. If 〈∇wck
(xk), dk〉 > −ε2‖dk‖‖∇wck

(xk)‖ or ‖dk‖ < ε3‖∇wck
(xk)‖,

set dk = −∇wck
(xk).

7. Find tk ∈ (0,1] such that wck
(xk + tkd

k) ≤ wck
(xk) + σ tk〈∇wck

(xk), dk〉 with a
backtracking strategy.

8. Set xk+1 = xk + tkd
k , k = k + 1 and go to step 2.

Observe that in step 6 we verify if dk is a sufficient descent direction and if the
norm condition is satisfied. If not, we replace it with the steepest descent direction.
Concerning the stepsize tk , we do an Armijo-type line search at step 7. It is important
to see that for each Armijo-type iteration, we have to compute the functional value
wck

(xk + tkd
k) that requires the multipliers estimates λ(xk + tkd

k) and μ(xk + tkd
k),

which means to solve a linear least squares problem. Since the matrix associated to
this system of equations changes for each point, this strategy may be computationally
expensive if many Armijo iterations are required.

To increase the robustness of the implementation, we also use nonmonotone line
search [27] and quadratic interpolation for the backtracking strategy. When the steep-
est descent direction is taken instead of the Newton direction, we use the spectral
step [28] to compute the initial stepsize of the iteration. One fundamental aspect in
a globalization scheme is to verify if, eventually, the Newton direction is chosen and
the unit stepsize is taken. When one of these conditions fails, then the globalization
procedure deteriorates the superlinear convergence and the so-called “Maratos effect”
occurs. Unfortunately, we have no formal proof that ensures that the “Maratos effect”
does not show up. However, this seems not to affect the numerical behavior, as we
will discuss later.

Let us now begin to describe the implementation of the Algorithm 7.1. We im-
plemented it in Python and we consider the following values of parameters: γ = 2,
ξ = 10, ζ = 2.0, σ = 10−4 (following [1]) and ε1 = ε2 = ε3 = 10−8 (following [29,
30]). To compute an element of the B-subdifferential ∂BWck

(xk), we also have to
choose a convexity parameter because of the maximum function contained in the for-
mula of Wck

(xk). We choose the one that vanishes λi and not gi . Besides, we use the
routine lstsq from SciPy library to solve the linear least squares problem associ-
ated to the estimates. Moreover, if Hk ∈ ∂BWck

(xk) is computationally singular, then
we add on it a multiple of the identity matrix in order to solve the system of equations
(step 5 of Algorithm 7.1). At step 2, we also consider as an alternative stopping cri-
terion that the point satisfies the KKT conditions within a prefixed tolerance of 10−8.
Furthermore, we limit the maximum number of iterations in 100000 and the time in
10 minutes. With all these implementation details, numerical experiments was done
using the CUTE collection [31] modeled in AMPL [32].

We considered all constrained problems of such collection with at most 300 vari-
ables and constraints, which returns 328 problems. In order to have a comparison
parameter, we also tested these problems with ALGENCAN [29, 30], an augmented
Lagrangian method. The method proposed here does not make distinctions between
box constraints and the other inequality ones as ALGENCAN do. Thus, to make
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a more significant comparison, we modify ALGENCAN’s interface with AMPL in
order to not differentiate these box constraints. We also cut off extrapolations, New-
tonian steps and acceleration of this solver, in order to make ALGENCAN to behave
as a pure augmented Lagrangian algorithm. Moreover, in the same way of ALGEN-
CAN, we make the initial penalty parameter of the exact penalty method being de-
pendent of the problem. Since updates of the penalty parameter with the test function
are not so frequent [1, 7], we also add a dynamical update of parameter using an
analysis of the infeasibility measure used by ALGENCAN.

First, let us point out that the computational time is not considered here, because
the implementation of the exact penalty method is not mature as ALGENCAN. We
verified that ALGENCAN solved 297 problems, while the exact penalty method
solved 282. If we ignore the (few) cases where the implementations fail because
of functions evaluations, we have an effective robustness of 92.52 % and 87.31 %,
respectively for ALGENCAN and for the exact penalty. Most of the failures of the
exact penalty are due to the high condition numbers of the matrices associated to sys-
tem of equations for the computation of the multipliers estimate, or the big values of
penalty parameters, which cause numerical instabilities. Furthermore, in 7 problems,
the exact penalty returned a stationary point of the infeasibility measure F that is in-
feasible. Concerning the total number of functions evaluations for each problem, the
exact penalty method performs better. To clarify this fact, a performance profile [33],
drawn on the subset of problems solved by both solvers, is presented in Fig. 1a. This
result is interesting particularly for problems such that these evaluations are compu-
tationally expensive, which clearly appears in the literature [34, 35].

On the other hand, the total number of systems of equations is smaller with
ALGENCAN, as shown in Fig. 1b. We note, however, that this comparison is not
totally appropriate because it makes sense only in the case that the number of vari-
ables n do not differ a lot from the total number of constraints m + p. Let us recall
that Algorithm 7.1 solves basically one n × n system for iteration during the com-
putation of Newton’s step, and at least one (n + m + p) × (m + p) system during
the Armijo-type line search. In ALGENCAN’s case, we only have n × n systems
to solve for each inner iteration. Despite this, the comparison clearly shows that the
Armijo-type line search is expensive, and thus should be avoided.

Another result refers to the number of iterations of the exact penalty against the
number of inner iterations of ALGENCAN. In such a case, the exact penalty has the
advantage, as it could be seen in Fig. 1c. Observe that the number of iterations in the
exact penalty method is equal to the number of n × n systems, except for rare cases
when the B-subdifferential matrix is computationally singular. This result suggests
that if we replace the Armijo-type line search for some strategy that requires few
(n + m + p) × (m + p) systems, then the total number of systems of equations in
both algorithms could not differ so much. For further research, trust region methods
could be a replacement for the Armijo-type line search.

As we noted before, we could not ensure that the “Maratos effect” does not oc-
cur, so we also search for a counterexample in the CUTE problem set that we had
considered. We observe that there are 10 instances where the Newton directions with
unit stepsizes are not eventually taken. However, in these cases the matrices asso-
ciated to the systems of equations for the computation of Newton directions or the
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Fig. 1 Performance profiles for the exact penalty algorithm and the ALGENCAN

multipliers estimates have a high condition number (at least 108). Numerically, this
means that the Newton directions or the multipliers estimates are not computed ac-
curately, and hence we can not really use them to decide that the “Maratos effect”
occurs. Most likely, the numerical instabilities are the main reason for the numerical
behavior in these problems. In all the other cases, if the assumption of relaxed LICQ
at the KKT point is satisfied (which we ask in Theorem 6.2), the solver based on
the exact penalty does not show the “Maratos effect.” Although the theoretical ques-
tion is not answered, the lack of a clear example of the “Maratos effect” in the 282
problems solved give high expectations about the global convergence of the proposed
method.

Let us close this section with a brief comparison between the multipliers esti-
mates (1) and (6), which we will refer just as the new estimate and Lucidi’s estimate
respectively. First, recall that the last one can be used to define the penalty function (7)
in the same way as the new one. We also recall that Lucidi’s estimate requires LICQ
only in the set of feasible points, a weaker assumption than the relaxed LICQ, re-
quired by the new estimate, which is a clear theoretical advantage.

However, our numerical experiments with Lucidi’s estimate showed that it may
impact the robustness of the method unless a careful tuning of the parameters ζ1 and
ζ2 is performed. We believe that the reason for this behavior is related to the term
α(x)(‖λ‖2 + ‖μ‖2) appearing only in (6), where α(x) is a measure of the infeasi-
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bility of x. This term introduces a tendency to select small multipliers whenever x

is infeasible. In particular, infeasibility with respect to a single constraint impacts
the multipliers associated to the other constraints. This behavior may lead to a larger
increase of the penalty parameter, to achieve feasibility, when compared to an exact
penalty based on the new estimate.

Depending on the values of the parameters ζ1 and ζ2, the necessity of a larger c

can also be observed using the 328 problems from the CUTE test set. A large c can
increase the possibility of converging to a stationary point of the infeasibility mea-
sure F that is infeasible for (NLP). In fact, while working on a Lucidi’s version of the
code we could see that it would fail returning such points in 7 up to 15 test problems,
depending on the choice of parameters. This contrasts with a shorter range from 7 up
to 10 problems observed with the penalty using the new multipliers estimate. Note,
however, that with a careful choice of the parameters, both penalties solved 282 prob-
lems. The number of failures due to convergence to stationary points of F is also the
same (in the case, 7 problems). Such result was established using the parameters
ζ1 = ζ2 = 2 and it was the best robustness result that we obtained using Lucidi’s es-
timate. One might conjecture that using small values for ζ2 yields better robustness,
but we could not confirm this behavior in our framework. Actually, for ζ2 = 10−6 the
number of problems solved decreases slightly to 279. Using ζ2 = 10−8 the number
of problems solved decreases more significantly to 266.

Finally, a natural question is if the multipliers estimate proposed by Glad and
Polak in [7] performs well or not in practice. We recall that such estimate is obtained
by solving a problem like (1) without the term ‖H(x)μ‖2. We end up solving 271
problems from the CUTE test set that we are considering, and all unsolved problems
by the new estimate were also not solved when using Glad and Polak’s estimate.

8 Conclusion

As far as we know, numerical experiments with medium-sized test problems and
exact merit functions for optimization (like Di Pillo and Grippo’s [3]) had not been
considered yet in the literature, except for exact augmented Lagrangians in the recent
paper of Di Pillo et al. [20]. Here, we extend the penalty function for variational
inequalities [1] in order to solve optimization problems, and we observe that in this
case Di Pillo and Grippo’s exact penalty could be used as a merit function. Further
investigations into the implementation should be done, in particular, concerning the
expensive Armijo-type line search.
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