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Sequential optimality conditions are related to stopping criteria for nonlinear programming algorithms.
Local minimizers of continuous optimization problems satisfy these conditions without constraint quali-
fications. It is interesting to discover whether well-known optimization algorithms generate primal–dual
sequences that allow one to detect that a sequential optimality condition holds. When this is the case, the
algorithm stops with a ‘correct’diagnostic of success (‘convergence’). Otherwise, closeness to a minimizer
is not detected and the algorithm ignores that a satisfactory solution has been found. In this paper it will be
shown that a straightforward version of the Newton–Lagrange (sequential quadratic programming) method
fails to generate iterates for which a sequential optimality condition is satisfied. On the other hand, a New-
tonian penalty–barrier Lagrangian method guarantees that the appropriate stopping criterion eventually
holds.
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1. Introduction

Numerical optimization involves the design of algorithms that presumably find the lowest possible

value of a function within some domain. Necessary optimality conditions are useful tools for that

purpose. Points that satisfy necessary conditions, usually called ‘stationary points’, are probable

local minimizers and, in many cases, even global minimizers of the problem. On the other hand,

algorithms that guaranteedly find stationary points are less expensive than algorithms that provide

certificates of global optimality, and can be used as auxiliary tools for global optimizationmethods.

The most popular optimality conditions (Karush–Kuhn–Tucker, or briefly, KKT) say that the

gradient of the objective functionmust belong to a cone defined by the gradients of the constraints.

This condition holds at a local minimizer if some ‘constraint qualification’ is fulfilled. In the

absence of constraint qualifications the gradient of the objective function may not belong to the

cone determined by the gradients of the constraints. This situation was studied in recent papers,

where sequential optimality conditions, which do not require constraint qualifications at all, were

defined and analysed [3,4,35].
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Optimization Methods & Software 647

The case in which the KKT conditions do not hold at a local minimizer, due to the absence of

constraint qualifications, deserves to be studied for several reasons. Lack of linear independence

of constraints is common in applications. In some cases this is due to redundancy or modelling

problems, and degeneration can be removed by pre-processing or model analysis. If, in spite of

those procedures, degeneration remains, it becomes useful to employ algorithms that properly

handle that anomaly. Many examples of ‘abnormal’ problems have been given in [7]. On the

other hand, severe ill-conditioning of the constraints usually causes extremely big Lagrange

multipliers and it is plausible to conjecture thatmethods that deal efficientlywith the non-existence

of multipliers will be successful when multipliers are meaningless due to their extreme size.

Abnormality may also occur when the constraints specify that some lower level function should

be minimized and when, without previous knowledge of the modeller, the problem is infeasible.

Many successful algorithms have been introduced in the last 15 years for large-scale non-

linear programming ([2,9,11–14,16–19,24,25,27,31–33,38–41] and many others). Augmented

Lagrangians, sequential quadratic programming (SQP), interior point, filter and dynamic infea-

sibility techniques have been employed with that purpose. From a practical point of view, it is

interesting to study the behaviour of these methods in the case of local minimizers for which the

classical KKT conditions do not hold.A partial study, addressing external penalty and augmented

Lagrangian methods, may be found in [3]. The main question concerns the fulfillment of sequen-

tial optimality conditions at limit points of sequences generated by the methods. The fulfillment

of a sequential optimality condition guarantees that, in finite time, a stopping criterion based on

that condition will be verified. A rigorous treatment of stopping criteria for bound-constrained

problems may be found in [28].

InSection2we state the theoretical backgroundconcerning sequential optimality conditions and

stopping criteria based on them. In Section 3 we prove negative results concerning the application

of the straightforward SQP method to the nonlinear programming problem. In Section 4 we show

that Newtonian methods based on barriers for inequalities and penalties for equalities behave well

with respect to approximate KKT criteria, when multipliers do not exist. Conclusions are stated

in Section 5.

Notation:The symbol  · will denote the Euclidian norm. If h : R
n → R

m we denote∇h(x) =

(∇h1(x), . . . ,∇hm(x)) and h(x) = ∇h(x)T. The symbol R
n
+ denotes the elements of R

n with

non-negative components, while R
n
++ will be the set of elements of R

n with strictly positive

components. For all x ∈ R
n
++, we denote by X the diagonal matrix with elements x1, . . . , xn.

For v ∈ R
n, the components of v+ are defined by (v+)i = max{0, vi}, i = 1, 2, . . . , n. We define

e = (1, . . . , 1)T.

2. Background

We will consider nonlinear programming problems given in the form

Minimize f (x) subject to h(x) = 0, g(x) ≤ 0, (1)

where f : R
n → R, h : R

n → R
m and g : R

n → R
p are continuously differentiable functions.

Under suitable constraint qualifications [1,5,6,10,37], if x is a local minimizer of (1), there exist

Lagrange multipliers λ ∈ R
m and μ ∈ R

p
+ such that the following KKT conditions are satisfied:

∇f (x) + ∇h(x)λ + ∇g(x)μ = 0 (2)

and

μigi(x) = 0, for all i = 1, . . . , p. (3)
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648 R. Andreani et al.

In the absence of constraint qualifications, even global minimizers may fail to satisfy the KKT

conditions. However, at every local minimizer x∗, the following ‘approximate Karush–Kuhn–

Tucker’ (AKKT) conditions hold [4]: for all δ, ε > 0 there exist x ∈ R
n, λ ∈ R

m,μ ∈ R
p
+ such

that x − x∗ ≤ δ

∇f (x) + ∇h(x)λ + ∇g(x)μ ≤ ε, (4)

|min{−gi(x),μi}| ≤ ε, for all i = 1, . . . , p, (5)

h(x) ≤ ε and g(x)+ ≤ ε. (6)

Moreover, if f , h and g satisfy a plausible additional smoothness condition, the following

approximate complementarity property, stronger than (5), takes place [3]:

|λihi(x)| ≤ ε, for all i = 1, . . . ,m and |μigi(x)| ≤ ε, for all i = 1, . . . , p. (7)

If (x, λ,μ) ∈ R
n × R

m × R
p
+ satisfies (4), (5) and (6), we say that AKKT(ε) hold at (x, λ,μ).

Analogously, the complementary approximate KKT conditions (CAKKT(ε)) hold at (x, λ,μ) ∈

R
n × R

m × R
p
+ when the inequalities (4), (6) and (7) are fulfilled.

Both (4–5–6) and (4–7–6) define natural stopping criteria for constrained optimization algo-

rithms. However, the question about the suitability of a practical algorithm with respect to the

conditions above arises.We say that an algorithm is ‘suitable’with respect to theAKKT condition

if it generates a sequence {xk , λk ,μk} ⊂ R
n × R

m × R
p
+ such that for all ε > 0 there exists k ∈ N

such that (4)–(6) hold with x = xk , λ = λk and μ = μk . Analogously, an algorithm is suitable

with respect to the CAKKT condition if it generates a sequence {xk , λk ,μk} ⊂ R
n × R

m × R
p
+

such that for all ε > 0 there exists k ∈ N such that (4), (7) and (6) hold with x = xk , λ = λk and

μ = μk .

An algorithm may generate a sequence {xk} that converges to a minimizer x∗ without satisfying

suitability conditions. This means that the generated primal–dual sequence {xk , λk ,μk} fails to

satisfy the stopping criteria defined by approximate KKT conditions for some ε > 0 and for all

k ∈ N. The practical consequence of this fact is that a proper diagnostic of convergence cannot be

obtained. As a consequence, many unnecessary iterations may be performed without satisfying

the stopping criterion, and the algorithm may stop by excess of iterations without realizing that

iterates very close to a solution have been already obtained.

In [3] it was shown that, when we apply the SQP (Newton–Lagrange) [23,36] method to

Minimize x subject to x2 = 0, (8)

we obtain that the generated primal sequence converges to the solution x∗ = 0, but the KKT

residual rk = ∇f (xk) + ∇h(xk)λk converges to 1
3
.

This state of facts led us to study the behaviour of the Newton–Lagrange method when applied

to the KKT system in the case that no constraint qualification holds at the minimizer of the

optimization problem and the KKT conditions do not hold. In the following section we will show

that the behaviour observed in (8) can be expected for most problems of this class.

3. Newton’s method and the fulfillment of approximate KKT conditions

Let us consider the optimization problem

Minimize f (x) subject to h(x) = 0, (9)

where f , h : R
1 → R

1 are continuously differentiable functions.
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Optimization Methods & Software 649

If f (x) = x and h(x) = x2, it can be shown that, independently of the initial approximation, if

(xk , λk) is generated by the Newton–Lagrange method, one has that the limit of the KKT residual

rk = f (xk) + λkh
(xk) is always 1

3
[3]. If f (x) = x and h(x) = x3 then lim rk = 7

19
. In this section

we will show that a pattern for this behaviour exists.

Our objective in this section is not to show that, in the absence of regularity, the Newton’s

method may not converge. Of course, this is well known and examples of this situation should

be futile. We are interested in cases in which the primal sequence {xk} does converge to the true

solution but convergence cannot be detected by the computation of the KKT residual.

The KKT (with feasibility) conditions for (9) are

f (x) + λh(x) = 0, h(x) = 0. (10)

Applying Newton’s method to (10), we obtain the following iteration scheme:



f (xk) + λkh
(xk) h(xk)

h(xk) 0



dk

λk+1



= −



f (xk)

h(xk)



, (11)

where dk = xk+1 − xk . For simplicity, we will denote hk = h(xk). The iterations are well defined

under the condition that h
k = 0 for all k = 0, 1, 2, . . . Let us assume that lim xk = x∗. Therefore,

lim dk = 0 and, from (11), we have that h(x∗) = 0. If h(x∗) = 0, i.e. x∗ is a regular point, then

it is a well-known result that lim λk = λ∗ with f (x∗) + λ∗h
(x∗) = 0. Let ν > 1 be such that

h(j)(x∗) = 0 for j = 1, . . . , ν − 1 but h(ν)(x∗) = 0. From Taylor’s theorem we can write

hk = cνe
ν
k + o(eν

k), (12)

h
k = νcνe

ν−1
k + o(eν−1

k ), (13)

h
k = ν(ν − 1)cνe

ν−2
k + o(eν−2

k ), (14)

where cν = h(ν)(x∗)/ν! = 0 and ek = xk − x∗. Now, from Equation (11)

λk+1 = −
1

h
k

[f
k + (f

k + λkh

k )dk] = −

1

h
k



f
k + f

k dk − λk
h
k hk

h
k



. (15)

Thus,

λk+1h

k+1 =

h
k+1

h
k



−f
k − f

k dk + λkh

k

h
k hk

(h
k)

2



, (16)

and then, defining

yk = λkh

k , αk =

h
k+1

h
k

, βk = f
k + f

k dk and γk =
h
k hk

(h
k)

2
, (17)

we can establish the following linear iteration:

yk+1 = αk[−βk + γkyk]. (18)

Let us compute the limits of the sequences {αk}, {βk} and {γk}. Clearly, lim βk = f (x∗). Now

lim γk = lim
[ν(ν − 1)cνe

ν−2
k + o(eν−2

k )][cνe
ν
k + o(eν

k)]

[νcνe
ν−1
k + o(eν−1

k )]2

= lim
ν(ν − 1)c2ν

[νcν]2
= 1 −

1

ν
≡ γ∗ (19)
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650 R. Andreani et al.

and

lim αk = lim
νcνe

ν−1
k+1 + o(eν−1

k+1)

νcνe
ν−1
k + o(eν−1

k )
= lim



ek+1

ek

ν−1

= lim



1 +
dk

ek

ν−1

= lim



1 −
hk

h
kek

ν−1

= lim



1 −
cνe

ν
k + o(eν

k)

[νcνe
ν−1
k + o(eν−1

k )]ek

ν−1

= lim



1 −
1

ν

ν−1

= γ ν−1
∗ . (20)

Observe that γ∗ is the well-known linear convergence rate for Newton’s method in the case of a

zero with multiplicity ν. Since lim |αkγk| = γ ν
∗ < 1, the sequence {yk} defined by (18) converges

to some y∗. Therefore, it is easy to show that

y∗ =
γ ν−1

∗

γ ν
∗ − 1

f (x∗), (21)

and then, the KKT residual rk = f
k + λkh


k = f

k + yk converges to

r∗ = f (x∗) + y∗ =



1 +
γ ν−1

∗

γ ν
∗ − 1



f (x∗) ≡ ν f
(x∗). (22)

It follows that r∗ = 0 only if f (x∗) = 0 (x∗ is an unconstrained stationary point of f ) or ν = 1

(1 = 0), which corresponds to regularity of x∗. In particular, we have 2 = 1
3

and 3 = 7
19

.

Moreover, ν is an increasing function of ν with limν→∞ ν = (e− 2)/(e− 1) ≈ 0.418, where

e is Euler’s number.

Therefore, we proved that, whenwe employ theNewton–Lagrangemethod for solving (9), even

in the situation of convergence to a solution of the problem, the approximate KKT conditions fail

to be satisfied (thus, the corresponding optimality stopping criterion never takes place) except in

the trivial cases in which the point is regular or the limit is an unconstrained stationary point. As

a consequence, there are strong reasons to introduce more stable forms of Newton’s method for

solving this problem.

4. Newton-like methods that satisfy approximate KKT conditions

Let us consider the problem

Minimize f (x) subject to h(x) = 0, x ≥ 0, (23)

where f : R
n → R and h : R

n → R
m are sufficiently smooth. With the employment of slack

variables every nonlinear programming problem can be reduced to the form (23). Given ρ > 0,

μ > 0, we define the penalty–barrier function ρ,μ by

ρ,μ(x) = f (x) +
ρ

2
h(x)2 − μ

n


i=1

log(xi), (24)

for all x ∈ R
n
++. If x /∈ R++, we define ρ,μ(x) = ∞. For all x ∈ R

n
++ we have

∇ρ,μ(x) = ∇f (x) + ρ∇h(x)h(x) − μX−1e. (25)
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Optimization Methods & Software 651

Thus, the optimality condition ∇ρ,μ(x) = 0 is

∇f (x) + ρ∇h(x)h(x) − μX−1e = 0. (26)

Condition (26) is obviously equivalent to

∇f (x) + ∇h(x)λ − z = 0, h(x) −
λ

ρ
= 0, XZe− μe = 0. (27)

The application of Newton’s method to the nonlinear system (27) yields

⎡

⎢

⎢

⎣

Hk + Dk ∇h(xk) −I

h(xk) −
I

ρ
0

Zk 0 Xk

⎤

⎥

⎥

⎦

⎡

⎢

⎣

x − xk

λ − λk

z − zk

⎤

⎥

⎦
=

⎡

⎢

⎢

⎢

⎣

−∇f (xk) − ∇h(xk)λk + zk

−h(xk) +
λk

ρ

−XkZke+ μe

⎤

⎥

⎥

⎥

⎦

, (28)

where

Hk ≡ ∇2L(xk , λk) = ∇2f (xk) +

m


i=1

λki ∇
2hi(x

k), (29)

and Dk is a correction matrix that, as we will see later, may be used to guarantee good descent

properties of the direction generated by (28).

The linear system (28) is equivalent to

⎡

⎢

⎢

⎣

Hk + Dk ∇h(xk) −I

h(xk) −
I

ρ
0

Zk 0 Xk

⎤

⎥

⎥

⎦

⎡

⎣

dk

λ

z

⎤

⎦ =

⎡

⎢

⎣

−∇f (xk)

−h(xk)

μe

⎤

⎥

⎦
, (30)

where dk = x − xk . By the last block of equations of (30) we have that

z = X−1
k (μe− Zkd

k). (31)

Replacing (31) in the first block of (30), this system becomes

⎡

⎣

Hk + Dk + X−1
k Zk ∇h(xk)

h(xk) −
I

ρ

⎤

⎦



dk

λ



=



−∇f (xk) + μX−1
k e

−h(xk)



. (32)

Now, we want to verify whether the direction dk provided by (32) is a descent direction for

ρ,μ. From (32), we have λ = ρ[h(xk) + h(xk)dk]. Therefore, by the first block of (32)

(Hk + Dk + X−1
k Zk)d

k + ∇h(xk)ρ[h(xk) + ∇h(xk)Tdk] = −∇f (xk) + μX−1
k e, (33)

and thus,

[Hk + Dk + X−1
k Zk + ρ∇h(xk)∇h(xk)T]dk = −∇f (xk) + μX−1

k e− ρ∇h(xk)h(xk)

= −∇ρ,μ(xk). (34)

Thismeans that the fact thatdk is a descent direction forρ,μ is linked to the positive definiteness

of [Hk + Dk + X−1
k Zk + ρ∇h(xk)∇h(xk)T]. On the other hand, the positive definiteness of this

matrix is connected with the inertia of the matrix of the system (32). If this matrix does not have
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652 R. Andreani et al.

the correct inertia, we can add a suitable diagonal matrix to the upper-left block in order to obtain

the desired descent property.

This discussion motivates the definition of the following algorithm, the description of which

follows the essential lines of [41], except that external penalties are used instead of filters.

Algorithm 1 Let (x0, λ0, z0) ∈ R
n
++ × R

m × R
n
++ be the initial approximation to the primal–

dual solution. Let μ0 > 0 and ρ0 > 0 be the initial barrier and penalty parameters, respectively.

We initialize safeguarding parameters βmax
0 ≥ 1 ≥ βmin

0 > 0 and θ0 > 0. The required accuracy

for convergence will be given by ε > 0.

Step 1. (Initialization) Initialize the outer iteration counter j ← 0 and the global iteration

counter k ← 0. Set τ0 = max{0.99, 1 − μ0}.

Step 2. (Check Optimality of Subproblem) If

∇ρj ,μj
(xk)∞ ≤ 10max



μj,
1

ρj



, (35)

replace

λk = ρkh(x
k), zk = μjX

−1
k e, (36)

and go to Step 3. Else, go to Step 5.

Step 3. (Check approximate KKT) Define the KKT residual

rk = ∇f (xk) + ∇h(xk)λk − zk . (37)

If

max{rk∞, h(xk)∞, XkZke∞} ≤ ε, (38)

stop.

Step 4. (Define new inner parameters) Compute

μj+1 = min
μj

5
,μ1.5

j



, ρj+1 = max{5ρj, ρ
1.5
j }, (39)

θj+1 ∈ (0, θj], β
min
j+1 ∈ (0,βmin

j ], βmax
j+1 ≥ βmax

j and

τj+1 = max{0.99, 1 − μj+1}. (40)

Set j ← j + 1.

Step 5. (Newton Step) Solve the linear system

⎡

⎣

Hk + X−1
k Zk + Dk ∇h(xk)

h(xk) −
I

ρj

⎤

⎦



dk

λ



=



−∇f (xk) + μjX
−1
k e

−h(xk)



, (41)

whereDk = ckI (ck > 0) is obtained by an inertia-correction procedure (see [41]) that guarantees

that dk is a descent direction for ρj ,μj
. Compute

z = X−1
k (μje − Zkd

k). (42)

Step 6. (Check adequacy of the search direction) If dk = 0, replace

λk ← ρjh(x
k), zk ← X−1

k μje, (43)

and go to Step 2. Note that test (35) can be in fact skipped because it will be automatically satisfied

in this case.
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Optimization Methods & Software 653

If ∇ρj ,μj
(xk)Tdk ≥ −θj∇ρj ,μj

(xk) · dk, replace

dk ← −∇ρj ,μj
(xk) (44)

and go to Step 7. If dk > βmax
j ∇ρj ,μj

(xk), replace

dk ← dkβmax
j ∇ρj ,μj

(xk)/dk. (45)

If dk < βmin
j ∇ρj ,μj

(xk), replace

dk ← dkβmin
j ∇ρj ,μj

(xk)/dk. (46)

Step 7. (Backtracking) Obtain, by means of backtracking, starting with the trial step t = 1, a

step tk > 0 such that

ρj ,μj
(xk + tkd

k) ≤ ρj ,μj
(xk) + 0.001tk∇ρj ,μj

(xk)Tdk . (47)

Define xk+1 = xk + tkd
k , λk+1 = λk + tk(λ − λk), zk+1 = zk + tzk(z − zk), where

tzk = max{t ∈ (0, 1] | zk + t(z − zk) ≥ (1 − τj)z
k}. (48)

Set k ← k + 1 and go to Step 2.

Many variations for the inertia-correction process may be employed. Modifications that pre-

serve order of convergence in the sense of [20] deserve to be analysed. The theoretical results

considered here are not affected by different choices ofDk . The employment of (44)–(46) requires

some additional explanation. Although the Newton direction computed at Step 5 is necessarily

a descent direction for the merit function, this direction might not satisfy the sufficient require-

ments for guaranteeing global convergence of the (essentially unconstrained) subproblem. Such

requirements (angle condition and proportionality with respect to the gradient) are tested at Step 6

and the direction is corrected in the case that at least one of them does not hold.

Lemma 4.1 Algorithm 1 is well defined and generates iterates xk ∈ R
n
++,λk ∈ R

m and zk ∈ R
n
++.

Proof Recall that x0 ∈ R
n
++.We want to show that, if the stopping criterion (38) does not hold at

iteration k, then the next iterate xk+1 ∈ R
n
++ is computed in finite time. This is trivial when dk =

0 because xk+1 = xk in that case. Thus, we need to prove that Step 7 (backtracking) is successful

in the process of finding tk that fulfills (47). Using an inductive argument we may assume that

xk ∈ R
n
++. Then, for t > 0 small enough, we have that xk + tdk ∈ R

n
++ andρj ,μj

(xk + tdk) < ∞.

So, (47) represents a standard Armijo descent condition for the function ρj ,μj
. Its fulfillment for

small tk follows from well-known arguments of unconstrained optimization [36, Chapter 3].

Finally, by construction, λk ∈ R
m and zk ∈ R

n
++ for all k. �

From now on we assume that the sequence {xk} generated by Algorithm 1 is bounded. (This

assumption is trivially verified when one replaces the constraints x ≥ 0 by  ≤ x ≤ u and we

perform the corresponding modifications on the algorithm.) By construction, xk ∈ R
n
++ for all

k ∈ N. Employing traditional arguments of unconstrained optimization, we will prove that, for

all j = 0, 1, 2, . . ., there exists k = k(j) such that (35) holds.

Lemma 4.2 For all j = 0, 1, 2, . . . there exists k = k(j) such that the criterion (35) holds.
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Proof Assume, by contradiction, that there exists j such that (35) fails to hold for all k. Then,

there exists k0 such that, for all k ≥ k0, the test (35) is performed and fails to hold. By the

boundedness of the whole sequence, there exists a convergent subsequence {xk}k∈K contained

in {xk}k≥k0 , where K is an infinite subset of N. Since ρj ,μj
(xk) ≤ ρj ,μj

(xk0) for all k ≥ k0, the

limit point x∗ of {xk}k∈K belongs to R
n
++. (Otherwise the subsequence {ρj ,μj

(xk)}k∈K would

tend to infinity.) If the sequence {tk}k∈K is bounded away from zero, (46) and (44) imply that

limk∈K ρj ,μj
(xk) = −∞, which is impossible. Therefore limk∈K tk = 0. This implies that there

exists t̄k > tk such that limk∈K t̄k = 0 and

ρj ,μj
(xk + t̄kd

k) > ρj ,μj
(xk) + 0.001t̄k∇ρj ,μj

(xk)Tdk (49)

for all k ∈ K . Now, since x∗ ∈ R
n
++ and {dk}k∈K is bounded, it turns out that xk + t̄kd

k ∈ R
n
++

for k ∈ K large enough. Therefore, using the mean value theorem in the inequality

ρj ,μj
(xk + t̄kd

k) − ρj ,μj
(xk) ≥ 0.001t̄k∇ρj ,μj

(xk)Tdk , (50)

invoking (44) and (46), and taking limits for k ∈ K , we finally find that ∇ρj ,μj
(x∗) = 0. This

means that (35) holds for k large enough. �

In the following lemma we prove that every limit point of the sequence {xk(j)} is a stationary

point of the squared infeasibility norm h(x)2.

Lemma 4.3 Assume that x∗ is a limit point of {xk(j)}. Then x∗ is a stationary point of h(x)2

subject to x ≥ 0.

Proof By Lemma 4.2 we have that, for all j = 0, 1, 2, . . ., there exists k(j) such that

∇ρj ,μj
(xk(j)) ≤ 10max



μj,
1

ρj



. (51)

By (39), lim μj = 0 and lim ρj = ∞, and then, by (25)

lim[∇f (xk(j)) + ρj∇h(x
k(j))h(xk(j)) − μjX

−1
k(j)e] = 0. (52)

Consequently,

lim



1

ρj
∇f (xk(j)) + ∇h(xk(j))h(xk(j)) −

μj

ρj
X−1
k(j)e



= 0. (53)

Suppose that x∗
i > 0. Since lim μj = 0 and lim ρj = ∞, we obtain, by (53), that

[∇h(x∗)h(x∗)]i = 0. (54)

Consider now the case in which x∗
i = 0. Since lim ∇f (xk(j))/ρj = 0 and [μjX

−1
k(j)e]i > 0 for all

j = 0, 1, 2, . . ., it follows from (53) that

[∇h(x∗)h(x∗)]i ≥ 0. (55)

Since ∇h(x)2 = 2∇h(x)h(x), (54) and (55) imply the desired result. �

Lemma 4.3 says that, in terms of feasibility, Algorithm 1 enjoys the best property that can be

expected for an affordable method: to find points that, being stationary for h(x)2, are probable

local minimizers of infeasibility. No algorithm can guarantee feasibility without further assump-

tions. In the following theorem we prove that, in the case that the algorithm finds almost feasible
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points, the AKKT stopping criterion takes place. Note that this desirable property does not hold

for the Newton–Lagrange method, as shown in Section 4.

Theorem 4.4 Assume that for infinitely many indices j we have h(xk(j))∞ ≤ ε. Then, there

exists k such that the stopping criterion (38) holds.

Proof By Lemma 4.2, for all j = 0, 1, 2, . . . we have that

∇ρj ,μj
(xk(j))∞ ≤ 10max



μj,
1

ρj



. (56)

From (39), we have that lim μj → 0 and lim ρj → ∞, therefore, for j large enough

∇ρj ,μj
(xk(j))∞ ≤ ε. (57)

Therefore, by (25) and (36)

∇f (xk(j)) + ∇h(xk(j))λk(j) − zk(j)∞ ≤ ε. (58)

Therefore, the thesis follows from (35) and (36). �

Theorem 4.4 says that, even in the case that KKT conditions do not hold at the solution of

the problem, if the algorithm converges to a feasible point, the stopping convergence criterion

(38) is satisfied. Observe that (38) corresponds to the AKKT optimality condition defined in [4],

but it is close to the stronger CAKKT condition of [3], since, in (38), the product form of the

complementarity is used instead of the weaker ‘minimum’ form (5).

5. Conclusions

Thenegative results presented inSection3of this paper indicate that theNewton–Lagrangemethod

is essentially inadequate for dealing with optimization problems in which KKT conditions do not

hold. In this case, onewishes to ‘solve’a nonlinear system that has no solutions at all.Consequently,

the sense inwhich these systems should be ‘solved’corresponds to approximateKKTcriteria [3,4].

Practical optimization algorithms always test (approximately) the KKT conditions for reporting

‘convergence’. This test reflects the feeling that, in some sense, the KKT conditions should hold at

the solution, even if Lagrange multipliers tend to infinity. Such feeling is supported by theoretical

results [3,4], since we know that local minimizers of constrained optimization problems really

satisfy sequential optimality conditions. As a consequence, the analysis of algorithms from the

point of view of approximate fulfillment of KKT conditions, without regularity assumptions,

seems to be a theoretical issue with practical relevance.

Here we proved that the penalty–barrier Newtonian algorithm generates sequences that satisfy

an approximate KKT condition. The same conclusion probably holds for the null-space primal–

dual algorithmof Liu andYuan [30] and the exact augmentedLagrangianmethods of [19] and [16].

According to Section 2 of this paper, the conclusion seems to be negative for algorithms strongly

based in the ‘pure’ form of SQP, although the ‘suitability’ of stabilized sequential quadratic pro-

gramming methods [21,22,29,42,43] and other stabilized Newton methods [8,15,34] with respect

to approximate KKT conditions remains to be an open problem. Approximate KKT conditions

should also be studied from the point of view of image space analysis [26].

Let us finish this paper emphasizing that our theoretical results are inspired by the necessity of

explaining practical aspects of implementable optimization methods. Constrained optimization
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656 R. Andreani et al.

methods stop when approximate KKT conditions are verified. The question that we wish to

answer in every particular case is: does this algorithm reliably stop? The answer is easy when

KKT conditions hold, but, what about the case in which Lagrange multipliers do not exist? A

lot of research can be expected analysing well-established practical methods with respect to this

property.
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