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Abstract. Necessary first-order sequential optimality conditions provide adequate theoretical
tools to justify stopping criteria for nonlinear programming solvers. Sequential optimality conditions
are satisfied by local minimizers of optimization problems independently of the fulfillment of con-
straint qualifications. A new condition of this type is introduced in the present paper. It is proved
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new condition. Practical consequences are discussed.
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1. Introduction. Practical algorithms for solving large nonlinear programming
problems are iterative. Consequently, implementations include stopping criteria that
generally indicate when the current iterate is close to a solution. Computer codes
usually test the approximate fulfillment of the KKT conditions [25]. This means that,
with some small tolerance, one tests whether the point is feasible, the gradient of the
Lagrangian is null, and complementarity conditions are satisfied. This procedure is
theoretically justified because it is possible to prove that every local minimizer is the
limit of a sequence of points that satisfy the approximate KKT test with tolerances
going to zero [2, 27]. In terms of [2], this means that every local minimizer satisfies an
approximate KKT (AKKT) condition [2, 27]. This property holds independently of
the fulfillment of constraint qualifications and even in the case that the local minimizer
does not satisfy the exact KKT conditions. For example, in the problem of minimizing
x subject to 22 = 0 the solution * = 0 does not satisfy KKT but satisfies AKKT.

In critical situations, the mere fulfillment of a KKT approximate criterion may
lead to wrong conclusions. Consider the problem

—92)2
(1) Minimize %

subject to z1 =0, z1z2 =0.

The solution of this problem is (0,2)7". Consider the point (g,1)7 for £ > 0, small. The
gradient of the objective function at this point is (0, —1)7 and the gradients of the
constraints are (1,0)7 and (1,¢)T. Therefore, the gradient of the objective function is
a linear combination of the gradients of the constraints with coefficients 1/ and —1/e.
Moreover, the point (g,1)7 is almost feasible in the sense that the sup-norm of the

*Received by the editors November 16, 2009; accepted for publication (in revised form) Octo-
ber 6, 2010; published electronically December 16, 2010. This work was supported by PRONEX-
CNPq/FAPERJ grant E-26/171.164/2003 - APQ1, FAPESP grants 05/02163/8 and 06/53768-0,
CNPq (300900/2009-0 480101/2008-6, 303583/2008-8), and FAPERJ: E-26/102.821/2008.

http://www.siam.org/journals/siopt/20-6/77718.html

tDepartment of Applied Mathematics, Institute of Mathematics, Statistics and Scientific Com-
puting, University of Campinas, Campinas SP, Brazil (andreani@ime.unicamp.br, martinezQime.
unicamp.br).

Hnstitute of Pure and Applied Mathematics, Rio de Janeiro, Brazil (benar@impa.br).

3533

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/24/14 to 143.106.96.182. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3534 R. ANDREANI, J. M. MARTINEZ, AND B. F. SVAITER

constraints vector is €. This means that for arbitrarily small € > 0, the point (g,1)7
fulfills any sensible practical KKT test. This simple example suggests that stronger
requirements are necessary to declare practical convergence of numerical optimization
methods and that, consequently, stronger sequential optimality conditions should be
encountered. Unfortunately, the approximate gradient projection (AGP) and linear
approximate gradient projection (LAGP) conditions introduced in [24] and [2] are
also satisfied at the wrong point (0,1)7 and stopping tests based on them would be
misleading too.

In this paper we introduce the “complementary approximate KKT” (CAKKT)
sequential optimality condition as a remedy for situations such as the one described
above. In the CAKKT stopping test we require, in addition to the usual AKKT test,
that the product of each multiplier with the corresponding constraint value must be
small. In section 3 we will see that this requirement is not satisfied in the example
above, therefore the “wrong” point (0,1)7 does not satisfy CAKKT.

The role of sequential optimality conditions in practical optimization may be
better understood by means of the comparison with classical “pointwise” optimality
conditions. When one uses an iterative algorithm to solve a constrained optimization
problem we need to decide if a computed iterate is an acceptable solution or not. A
pointwise optimality condition is necessarily satisfied at a local minimizer but not at
“approximate local minimizers.” Since, in the iterative framework, one never gets ex-
act solutions, numerical practice always leads to test the “approximate fulfillment” of
pointwise optimality conditions. More specifically, practical codes usually test relaxed
versions of the KKT conditions. This could be a paradoxal decision, because KKT
conditions do not need to be fulfilled at local minimizers if constraint qualifications
do not hold [7]. Nevertheless, computational practice can be justified because it is
possible to show that any local minimizer has the property of having arbitrarily close
neighbors that “approximately fulfill” KKT conditions [2]. Now, the approximate ful-
fillment of KKT conditions may have different definitions. The implementation of the
strong definition given in this paper may help optimization solvers avoid stopping at
false approximate minimizers.

This paper is organized as follows:

In section 2 we survey some results on sequential optimality conditions that will
be useful to understand the main results of the paper. In section 3 we define rigorously
the new condition and we prove that local minimizers necessarily satisfy it. In section
4 we prove that CAKKT is stronger than the AGP condition given in [2, 24] and we
show that CAKKT is a sufficient optimality condition in convex problems. In section 5
we prove that the augmented Lagrangian method with lower-level constraints defined
in [1] produces CAKKT sequences if one assumes that a sum-of-squares infeasiblity
measure satisfies the Lojasiewicz inequality [19, 20]. Conclusions will be stated in the
final section of this paper.

Notation.
o N=1{0,1,2,...}.
e The symbol || - || denotes an arbitrary norm.
o If h: R™ = R™ we denote Vh = (Vhy,...,Vhy).
e Ry ={teR|t>0}.
e If v € R", we denote v, = (max{vy,0}, ..., max{v,,0})7.
e If v € R, we denote v_ = (min{vy,0}, ..., min{v,,0})7.
e If a € R, we denote a2 = (a4)? = ajay.
e B(z,0) ={z€eR"||z—=z| <d}.
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e Pqy(x) is the Euclidean projection of z on §.

2. Preliminaries. We consider the nonlinear programming problem in the form
(2) Minimize f(x) subject to h(z) =0, g(z) <0,
where f: R™ - R, h: R" - R™, g : R" — RP have continuous first derivatives.

The KKT conditions are fulfilled at a point x € R™ if
3) h(z) =0, g(z) <0,
and there exist A € R™, p € RE such that
(4) Vf(x) + Vh(z)A + Vg(@)p =0,

where p; = 0 for all ¢ such that g;(z) < 0.

Many reformulations of the KKT conditions are possible. For example, the KKT
conditions hold at « € R™ if and only if there exist A € R™, 1 € R such that h(z) = 0,
(4) takes place and

(5) min{—g;(z),u;} =0 forall i=1,...,p.
Clearly, (5) is equivalent to
(6) 9i(x) <0, p; >0, pigi(x) =0 forall i=1,... p.

Usually, nonlinear programming algorithms stop and declare “success” when KKT
conditions are approximately satisfied. However, although different formulations of the
KKT conditions are equivalent, the AKKT fulfillment depends on the formulation.
For example, given a small positive tolerance € > 0, (5) induces a stopping criterion
given by

(7) IV f(z) + Vh(z)X + Vg(z)u| <e,
(8) [A(2)]] <e,

and

(9) |min{—g;(z),pi}[ <e, i=1,...,p.

On the other hand, the stopping criterion induced by (6) involves (7), (8), and

(10) gl(ﬁ) < €, Mg > —-¢, |gl(x)uz| < E,l' = 17 ce oy D-

In practice, different tolerances are used for testing the approximate fulfillment of
different relations.

Stopping criteria based on approximate fulfillment of the KKT conditions make
sense even in the case that exact KKT conditions in the limit do not hold. The reason
for this is that one is generally able to prove that, given a local minimizer z* and
an arbitrary tolerance £ > 0, there exists a point x such that || — 2*|| < ¢ and the
AKKT criterion is fulfilled with tolerance €. The fulfillment of KKT conditions at a
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local minimizer depends on constraint qualifications, but their approximate fulfillment
at an arbitrarily close point does not [2, 24].

We will formulate these concepts in terms of “sequential optimality conditions.”
The AKKT condition introduced in [2] corresponds to the AKKT criterion based
on (7), (8), and (9). We say that a feasible point x* satisfies AKKT if there exist
sequences {z*} C R, {\*} C R™, {y*} C RP such that

(11) lim 2% = z*,
k—o0
(12) Jim IV f(z") + Vh(zF)NE + Vg(®)u*|| =0,
—00
and
(13) klim min{ —g;(z*), u¥} =0, forall i=1,...,p.
—00

In [2] it has been proved that every local minimizer of (2) necessarily satisfies AKKT.

We say that z* satisfies the optimality condition AKKT (strong) if there exist
sequences {zF} C R", {A\*} Cc R™, {¢*} C R% such that (11), (12) are verified and,
in addition,

(14) klim phgi(a®) =0 foralli=1,...,p.
—00

The condition (14) corresponds to the requirement (10). It is easy to see that
AKKT(strong) implies AKKT but the reciprocal is not true.

In the present paper we present an even stronger optimality condition called
CAKKT. In addition to (11), (12), and (14), CAKKT requires that

(15) lim Afhy(2¥) =0 foralli=1,...,m.
k—o0
Clearly, CAKKT is even stronger than AKKT(strong) since the latter does not
make any requirement with respect to complementarity related to equality constraints.
In order to illustrate the strength of CAKKT, we will recall in this paper the
AGP optimality condition introduced by Martinez and Svaiter in [24]. We say that
the feasible point x* satisfies AGP if there exists a sequence {2*} such that

(16) Jim |[Po, (2 = Vf(2*)) — 2 =0,
— 00
where

Qi = {z € R" | Vh(2")T (z — 2%) = 0, min{g;(2"),0}
(17) + V(") T (z —2F) <0,i=1,...,p}.

The attractiveness of AGP is that it does not involve Lagrange multipliers esti-
mates. If ¥ also satisfies all the linear (equality or inequality) constraints involved in
(2) we say that the LAGP condition is satisfied. Properties of LAGP are discussed in
[2].

All the sequential optimality conditions discussed above are obviously satisfied if
the KKT conditions hold. The interesting property is that they are also satisfied at
local minimizers when—due to the lack of fulfillment of constraint qualifications—the
KKT conditions do not hold. This state of facts suggests that sequential optimality
conditions may be contemplated from two different points of view.
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1. Proximity to local minimizers: The CAKKT condition is stronger than other

approximate versions of the KKT conditions. This is essentially due to the
presence of a complementarity requirement involving equality constraints.
In the presence of a nonlinear programming problem such as (2) users are
interested in finding minimizers, not merely stationary points. We will show
that the set of local minimizers is contained in the set of CAKKT points and
the set of CAKKT points is contained in the set of points that satisfy other
AKKT conditions. This suggests that, in the vicinity of a CAKKT point, we
have better chances of being close to a local minimizer than we do in the
vicinity of a point that satisfies alternative AKKT conditions. This argument
is essentially qualitative and we do not have any quantitative evidence, up
to now, of its accuracy. In particular, we do not know how to estimate the
distance of x to a local minimizer, given the degree of fulfillment of CAKKT
at x. However, the set-theoretical argument displayed above suggests that this
is an issue that deserves both practical and theoretical investigation. Observe
that, in the case of problem (1), the CAKKT condition detects that (g,1)7
is not close to the solution (0,2)7 but the AKKT condition does not.
In this paper we are not concerned with the fact that a nonlinear program-
ming problem may be formulated in different ways, giving rise to different
objective functions and constraints. Some reformulations may have better
conditioning properties than others. Our arguments here assume a given for-
mulation. Interaction between reformulations and effectiveness of sequential
optimality conditions remain to be investigated.

2. Efficiency of algorithms: When a practical algorithm for solving (2) converges
to a feasible point that satisfies some constraint qualification, this feasible
point is generally guaranteed to fulfill the KKT conditions. More generally,
limit points of practical algorithms usually satisfy some sequential optimal-
ity condition, although only a few methods have been analyzed from this
point of view up to now. In [2] it was shown that not all the sequential
optimality conditions are equivalent. Here we will show that a particular se-
quential optimality condition (CAKKT) is strictly stronger than the others
we know; its strength derives from the approximate complementarity with
respect to equality constraints. The question arises whether particular algo-
rithms are convergent to such CAKKT points. The obvious conjecture is that
algorithms having this convergence property have more chances to converge
to minimizers. Of course, many other factors are involved in algorithmic ef-
ficiency. Nevertheless, it is interesting to detect theoretical properties having
practical interpretations that may be corroborated (or not) by experiments.

3. CAKKT is a necessary optimality condition. In this section we prove
that CAKKT is a necessary optimality condition, independently of the fulfillment of
constraint qualifications.

Asin (11), (12), and (14), we say that «* € R™ fulfills the CAKKT condition for
problem (2) if

h(z*) =0, g(z*) <0

and there exists a sequence {z*} that converges to z* and satisfies the following:
e For all k € N there exist A¥ € R™, % € R such that

(18) Jim [V (@) + VA" A" + Vg )| =0
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and
m p
1 ky . k k - k =
(19) klgngoglkihl(x )|+;|/ngz($ )| =0.

Points that satisfy the CAKKT condition will be called “CAKKT points.” If z*
satisfies the KKT conditions then it necessarily fulfills CAKKT, taking 2% = 2*, \F =
N, pF = p* for all k € N, where \* € R™, u* € R” are the Lagrange multipliers
associated with x*. The interesting cases are the ones in which the KKT conditions
do not hold.

In the following lemma we show that the nonnegativity of x* in the definition of
CAKKT can be relaxed.

LEMMA 3.1. A feasible point x* satisfies the CAKKT condition if and only if
there exist sequences {x*} C R™, {\*} Cc R™, {u*} C RP such that limg_,o 2% = x*,
(18) and (19) hold, and, in addition, there exists a nonnegative sequence €y that tends
to zero such that

(20) pk > —ep forall i=1,...,p, keN.

Proof. The fact that CAKKT implies (20) is trivial. On the other hand, if (20)
holds, by the continuity of Vg, it is easy to see that (18) and (19) remain true replacing
pf by max{uf,0}. 0O

LEMMA 3.2. Assume that the feasible point x* satisfies the CAKKT condi-
tion. Then, there exist sequences {z*} C R", {\} c R™ {uF} C REL such that
limg o0 2% = 2%, (18) and (19) hold, and, in addition,

(21) pk =0 for all i such that g;(z*) < 0.

Proof. Assume that * satisfies CAKKT and let 2%, \F, u* be such that (18) and
(19) hold.
If g;(z*) < 0, then, by the continuity of g; and (19), one has that

(22) lim pf =o0.

k— o0

Define for all i such that g;(z*) < 0, k € N, ji¥ = 0. Clearly, (19) and (21) hold if one
replaces ¥ by fi¥. Moreover, by (22) and the boundedness of Vg;(z*), (18) also holds
replacing p¥ by fi¥. This completes the proof. 0O

Properties (18) and (19) provide the natural stopping criterion associated with
CAKKT. Given small positive tolerances € feas, Eopt, Emuit corresponding to feasibility,
optimality (18), and the new condition (19), an algorithm that aims to solve (2) should
stop and declare “convergence” when, for suitable multipliers \* € R™, u* € R

(23) [7(z")]| < efeas: 19(2") 41| < Efeas,
(24) IV f(2*) + VR(F) A + Vg(a®) ¥ < eopt,
and

(25) |/\fhi(xk)| < Emults |u§gj(xk)| <émue foralli=1,....m, j=1,...,p.
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In the nonlinear programming software Algencan [1]} and other augmented La-
grangian algorithms [11] the convergence stopping criterion is given by (23), (24),
and

(26) ¥ = 0 whenever g;(z") < —€.omp-

In order to show that this criterion might not be sufficient to detect good approxi-
mations to the solution, let us come back to the example given in the introduction of
this paper, where n =2, m =2,p =0,

(27) f(l’l,ﬂ?z) = w

and

(28) hi(z1,x9) = x1, ha(z1,22) = T122.

Taking € feqs = €opt = Ecomp = Emuit = € and || - || = || - ||oc one has that the point

% = (e,1)7 satisfies (23), (24), (26) with \¥ = —1/e and A = 1/e. However,
Aihy (z¥) = =1, Asho(2*) =1

therefore z* does not fulfill (25) if €,,u¢ < 1.

The proof that CAKKT is a genuine necessary optimality condition is given below.
This proof uses a penalty reduction technique employed in [2, 7, 16, 24] for analyzing
different optimality conditions.

THEOREM 3.3. Let z* be a local minimizer of (2). Then, x* satisfies CAKKT.

Proof. Let § > 0 be such that f(z*) < f(z) for all feasible  such that ||z—x*|| < 4.
Consider the problem

(29) Minimize f(z)+ ||z —z*||3 subject to h(x) =0, g(z) <0, z € B(z*,0).

*

Clearly, z* is the unique solution of (29). Let z* be a solution of

P
(30) Minimize f(x)+|\x—x*|\§+'%k [|h(x)||§+Zgz(x)i] subject to x € B(z*,4).
i=1
By the compactness of B(z*,§), 2* is well defined for all k. Clearly,
P
* k *

B Sl I + et | < s

i=1

By the convergence theory of external penalty methods [12] one has that limy_,o, 2 =
2*. Therefore, by (31) and the continuity of f,

p
: k «2 . Pk kY2 k2 | _
Jim Ja* = o[+ 5 |1Ga I+ ot R
Thus,
m p
: k\2 k\2
(32) Jim. [;pkhi(x) +;pkgl-(a: )4 =0.

L Algencan is available at www.ime.usp.br/~egbirgin/tango.
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Define

(33) M= pph(a®), p* = prg(a®)y.

Then, by (32) and (33),

k—oo | 4
=1

(59 i | S0 )]+ 3 )| =0,

Thus, (19) follows from (33) and (34).
The proof of (18) is standard. For k large enough, one has that ||2* — z*|| < §;
therefore, the gradient of the objective function must vanish. Thus, by (30),

m p
VFER) 420" —27) + ) prehi(®)Vhi(@*) + ) prgi(z®) 4 Vgi(a*) = 0.
=1 =1

By (33), since ||z* — 2*|| — 0 we have that
klim [V f(z*) 4+ Vh(zM)AF + V()| = 0.
—o0

Thus, (18) is proved. O

4. Strength of the CAKKT condition. In this section we deal with the
problem of proximity between points that satisfy CAKKT and local minimizers, from
a qualitative point of view. We will show that if a point z* satisfies CAKKT, then
it satisfies KKT or fails to satisfy a weak constraint qualification. We will prove this
result using an intermediate result: we prove first that the fulfillment of CAKKT
implies the fufillment of AGP and that the reciprocal property is not true. AGP was
proved to be a strong optimality condition in the sense that it implies KKT or the
absence of a weak constraint qualification in [2, 14, 27]. In [2] it was proved that AGP
implies AKKT. These results suggest that points that satisfy CAKKT are more likely
to be local minimizers than points that merely satisfy AGP, or points that do not
satisfy the weak constraint qualification. Therefore, points that are in the proximity
of a CAKKT point have more chances to be close to local minimizers than points that
approximately fulfill AGP.

In this section we are concerned with the first issue addressed in section 2 of
this paper: the results presented here support the conjecture that the fulfillment of
CAKKT is a better indicator of proximity to local minimizers than the fulfillment of
other AKKT conditions.

A necessary optimality condition should be as strong as possible. Moreover, as we
will see in the next section, algorithmically oriented optimality conditions should be
associated with some implementable nonlinear programming algorithm. A plausible
conjecture is that the property of converging to points that satisfy strong necessary
optimality conditions is linked to the practical efficiency of the algorithm.

In this section we will see that CAKKT is strong. We will show that any CAKKT
point satisfies the KKT conditions or fails to fulfill the constant positive linear de-
pendence (CPLD) constraint qualification.? The CPLD condition was introduced in

2A feasible point z* is said to satisfy the CPLD condition if the existence of linear dependent
gradients of active constraints, with nonnegative coefficients associated with inequalities, implies that
the same gradients are linearly dependent in a neighborhood of z* [4, 26].
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[26] and, in [4], it was proved that it implies the quasinormality constraint qualifi-
cation [7]. Since CPLD is a weak constraint qualification (strictly weaker than the
Mangasarian—Fromovitz condition [21]) the property

(35) KKT or not-CPLD

is a strong necessary optimality condition. The property that CAKKT implies (35)
will follow as a corollary of a stronger result. For stating this result we use a different
sequential optimality condition introduced in [24], analyzed in [2], and employed in
several algorithmically oriented papers ([13, 14, 15, 22, 23] and others).

Recall that a feasible point z* satisfies the AGP property if there exists a sequence
{z*} that converges to x* and satisfies

(36) lim [ Po, (2% = Vf(4) = 2*] = 0,

where 0 is the set of points z € R" that satisfy

(37) Vh(z*)T(z —2*) =0
and
(38) Vy(a*)" (@ — 2*) + g(«*) - <.

Note that z* always belong to the polytope defined by (37) and (38).

If, in addition, z* fulfills the linear (equality or inequality) constraints of (2)
defined by a set of indices Ij;,, we say that z* satisfies the LAGP condition associated
with Ij;,. It can be shown that LAGP is strictly stronger than AGP [2]. Moreover,
both AGP and LAGP are strictly stronger than (35) [2, 14].

We now show that CAKKT implies AGP.

THEOREM 4.1. Assume that x* is a feasible CAKKT point of (2). Then, z*
satisfies the AGP condition. Moreover, if all the elements of a sequence {x*} associated
with the CAKKT definition fulfill all the linear constraints corresponding to a set of
indices Iy, then x* satisfies the LAGP condition associated with Ip;,. Finally, if
x* satisfies the CPLD constraint qualification, this point fulfills the KKT optimality
conditions.

Proof. Assume that {2*} C R™ converges to x* and satisfies (18) and (19). Let
y* be the solution of

(39) Minimize ||[z" — V f(z*)] — y]|2
subject to y € Qg, where ) is the set of points defined by
Vhi(z®)T(y—aF)=0,i=1,...,m,
Vgi(a®)T (y — 2) > 0, if gi(a*) > 0,
gi(z®) + Vgi ()T (y — 2%) > 0 if g;(2*) < 0.

The objective function of (39) is a strictly convex quadratic and Qy, is defined by
linear constraints. Since 2* € €, one has that € is nonempty and, so, y* exists and is
the unique solution of this problem. We wish to show that limy_, [|y*—2*| = 0. Since
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the constraints of (39) are linear, the KKT conditions are fulfilled at y*. Therefore,
there exist {\*} C R™, {zi*} C R% such that

(40)
(41)
(42)
(43)

(44)
and

(45)

(46)

¥ — "+ Vf(2*) + VAN + Vg(a*)a* = o,
Vhi(xk)T(yk — xk) =0,i=1,...,m,
Vgi(@®)T (y* —a*) <0, if gi(z*) > 0,

gi(a*) + Vgi(a") T (y* — 2*) <0 if gi(a*) <0,

ﬁngi(xk)T(yk - xk) =0if gi(xk) >0,

17 gi(2*) + i Vgi(a®) " (y* — a*) = 0if gi(2*) < 0.
By (41), (42), (43), and (44), premultiplying (40) by (y* — 2*)T, we obtain

ly* =I5+ VTG =2+ Y mVeh) (-t =0
gi (zF)<0

By (45), when g;(«*) < 0, we have that

1V gi(a®) T (y* — aF) = —f gi(aF).

Therefore, by (46),

g% — 2¥(3 + V) - 2P = > AFgiah)T.
gi(x*)<0

Then, since ji¥ > 0, we have

(47)

Iy — ¥ < V£ (o — o)

Now, by (18), there exist sequences {\*} C RP, {y*} c R, {v*} C R" such that

m p
Vb + Z N (%) + Zusgi(xk) =" = 0.
i=1 i=1

Therefore,

YT (-t 3 AT )+ 3 )T ) (b o

i=1

Thus, by (41),

~VHER) (=2t =Y uEVaie) (Gt - 2F) - (F - a) T

=1
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= Y wVaEh) W -+ D V)T (R - 2b) - (o - 2Tk
gi(zk)<0 gi(zk)>0

By (42), since p* > 0, one has that ¥V, (2%)T (y* — 2*) < 0 whenever g;(z*) > 0;
therefore,

—VEERT @ —aR) < YT Vg ("t - 2b) = (yF - 2F) Tk
gi(x*)<0

= > wle@) +VaEh) @ - - D piai®) — (o =2k
gi(z*)<0 gi(z*)<0

Thus, by (43), since u* > 0, we have

Vi)W =) <= > ulaia®) — (vF —aM) Tk

gi(z#)<0
<= Y ufa@®) + [0 ollyt — ¥
gi(z#)<0
Therefore, by (47),
(48) Iy = 2" 3 < > uFgi@®)] + 10F[lally® — 2%
gi(z*)<0

By (19), limy o |1¥g;(z%)| = 0 for all 4, so the sequence {||y* — z*||} is bounded
and, taking limits in both sides of (48), we obtain that limy_, ||y* — 2*|| = 0, as we
wanted to prove. Therefore, x* satisfies the AGP condition.

The second part of the proof is immediate. If {z*} satisfies all the linear con-
straints corresponding to the indices in Ij;,, it satisfies the LAGP condition associated
to this set.

Finally, if * satisfies the CPLD constraint qualification, the fulfillment of KKT
follows from the fulfillment of AGP [2, 14, 27]. 0

We will show now that CAKKT is strictly stronger than AGP. (Recall that AGP
is strictly stronger than AKKT [2].) Consider, once more, the problem defined by
(27) and (28). Define 2* = (1/k,1)T. Clearly, Qi = {2*} for all k € N. Therefore,
P, (2% — Vf(2F)) = 2% and || Po, (2% — Vf(2¥)) — 2¥|| = 0 for all & € N. Therefore,
x* = (0,1)7 satisfies AGP.

Let us show now that a sequence 2% fulfilling (18) and (19) cannot exist. If such

a sequence exists, we have 2% = (xgk),xék))T and \F = (/\:(Lk),)\ék))T satisfying
(49) lim 2z =0, lim 2" =1
k—o0 k—o0

such that, by (18),

(k)
. 0 k) (1 (k) [ T3 (0
(50) klzﬂo(xgw_Q)“l <0>+/\2 )=o)
and, by (19),

(51) klggo )\gk)a:gk) =0
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(52) klgigo /\gk)xgk)xgk) =0.
By (50) we have
lim AR AR 88 — o
and

(53) Jlim 2+ AP R =9

k— o0

By (49) and (53), we have
lim /\ék)xgk) =1
k—o0
Therefore, since limg_ o xék) =1,

lim )\gk)xgk)xgk) = lim xék) =1
k—o0 k—o0

This contradicts (52). Therefore, a sequence satistying (49), (50), (51), and (52) cannot
exist. Thus z* is not a CAKKT point. By Theorem 4.1, CAKKT is strictly stronger
than AGP.

We finish this section with an additional strongness result. In fact, we will show
that, in the convex case, CAKKT is a sufficient optimality condition for global mini-
mizers. As a consequence, in convex problems, CAKKT is equivalent to global mini-
mization.

THEOREM 4.2. Assume that, in problem (2), the functions f and g;,i =1,...,p
are convexr and hy,...,hy, are affine. Let z* be a feasible point that satisfies the
CAKKT condition. Then, x* is a global minimizer of (2).

Proof. Assume that {z*}, {\F}, {u*} are given by (18), (19). Let z be a feasible
point of (2). By the convexity of f and the constraints, we have, for all k € N,

f(z) = f(@*) + V(") (z - 2),
hi(z) = hi(z®) + Vhi(e®) T (z —2F) = 0,i=1,...,m,

gi(2) > gi(z®) + Vg (2T (z — 2¥),i=1,...,p.
Therefore, since h(z) = 0 and g(z) <0,

F(2) = f(@*) + V) (z - " +ZA’“ )+Zp;ufgi<z>
> fa®) + V)T (z — 2 +ZA’€ By + Vhi(2®)T (2 — 2*)]
+Zul 9i(*) + Vgi(a")T (2 — 2*)]
= f(a®) + +ZAth —|—Z,LLZVQZ T(z — k)

+ Z N hi(a®) + Zﬂfgi(l’k
=1 =1
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Thus,

J(z)> lim fa)+ lim [(z — 287 [VF(*) + V()N + V(e

~ k—oo

m p
- kp (K ko (xF
e

Then, by the continuity of f and the properties (18), (19), we have that f(z) >
f(z*). O

5. A practical algorithm that generates CAKKT points. This section
concerns the second issue mentioned in section 2 of the present paper. Since we know
that the CAKKT optimality condition is strong, the obvious conjecture is that algo-
rithms that guaranteedly find CAKKT points may be, in some sense, more efficient
than algorithms that may converge to feasible points that do not fulfill the CAKKT
condition.

A first step along this direction will be to discuss an implementable algorithm
that generates sequences converging to CAKKT points. We exclude from our analysis
“global optimization algorithms” like the one introduced in [8] that guaranteedly con-
verge to global minimizers using more expensive procedures than the ones generally
affordable in everyday practical optimization. Algorithms that converge to global min-
imizers obviously satisfy CAKKT, since even local minimizers satisfy this condition,
as shown in Theorem 3.1.

Our results in this section make use a generalization of the Lojasiewicz inequality
[5, 9, 19, 20].

One says that the continuously differentiable function F' : R® — R satisfies the
Lojasiewicz inequality [5, 19, 20] at Z if there exists 6 > 0, § € (0,1), ¢ > 0 such that,
for all x € B(z,0),

(54) |F(z) = F(2)° < ¢| VF(2)].

The properties of functions that satisfy this inequality have been studied in several
recent papers in connection with minimization methods, complexity theory, asymp-
totic analysis of partial differential equations, and tame optimization [5, 6, 9, 10, 17].
Smooth functions satisfy this inequality under fairly weak conditions. For example,
analytic functions fulfill the Lojasiewicz inequality [9, 20].

We say that the smooth function F': R™ — R satisfies the generalized Lojasiewicz
(GL) inequality at T if there exist 6 > 0, F : B(Z,d) — R such that lim,_,z ¢(x) =0
and for all z € B(Z,d), one has

(55) [F(z) = F(z)| < (@) VE ()]

Clearly, the fulfillment of (54) implies that (55) holds, but the reciprocal is not
true. To see this, define

F(x):ef\Tl\ if x#0,

F(0)=0.
This function satisfies GL at & = 0, since
|[F(z) - FO) _
— = =2 = 0.
|F' ()]
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However, for all § € (0, 1),

[F(a) = FO _ 5 10
F(@)

Therefore, F' does not satisfy the Lojasiewicz inequality.

If the functions hy(z)?, ..., hm(2)%, g1(2)?, ..., gp(z)? satisfy GL at Z with respect
to the neighborhood B(Z,0d), it is easy to see that the function defined by ®(z) =
St hi(z)? + Y% gi(z)? satisfies GL at Z in the same neighborhood. Moreover,
sums, products, quotients with non-null denominators, and compositions of analytic
functions are analytic [18]. As a consequence of these two facts, the GL condition is
satisfied at every feasible point of a constrained optimization problem (2), provided
that the functions h;,g; are analytic. In fact, much weaker sufficient smoothness
conditions guarantee the fulfillment of this property [9].

We will analyze the augmented Lagrangian algorithm with arbitrary lower-level
constraints described in [1].3 For the description of this algorithm, let us formulate
the nonlinear programming problem in the form

(56) Minimize f(x) subject to h(z) =0, g(z) <0, h(x) =0, g(z) <0,

where f,h,g are as in (2) and b : R — R™ ¢ : R® — R are continuously differen-
tiable. B

We say that h(z) = 0,g(x) < 0 are “lower-level constraints.” These constraints
are usually simpler than the “upper-level constraints” h(z) = 0,g(x) < 0, which
means that minimizing (only with) lower-level constraints is easier than minimizing
with general constraints. Frequently, lower-level constraints are given by upper and
lower bounds of the form ¢ < z < w.

For all x € R™, we define the “upper-level infeasibility” by

(57) ®(z) = [|h(@)]13 + lg(x)+1I3.

Note that, for all z € R”,
(58) Vo(z) =2 [ Z hi(z)Vhi(z) + Z 9i(z)+Vy; (x)} .

Forallz € R®", A€ R™, i € Rﬁ, p > 0, the “displaced upper-level infeasibility”

will be defined by
2 i 2
|5}
2 P/ +ll2

The augmented Lagrangian Lyx ;r ,, () is given by

(60) L3 pp(2) = f(2) + p@5 5, ().

The general description of the augmented Lagrangian algorithm with lower-level
constraints [1] is given below. In [1] it was proved that feasible limit points that satisfy
the CPLD constraint qualification [4, 26] are KKT points.

(59) o5, ,(2) = [Hh(x) +%

3A freely available implementation of this method may be found at www.ime.usp.br/~egbirgin/
tango.
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Algorithm 5.1. Let e; | 0, \¥ € [Mnin, Mnaz]™, 1F € [0, pmaz)? for all k € N,

p1>0,7€(0,1),v>1.

(61)

and

(62)

(63)

For all k = 1,2, ... we compute z* € R", \¥ € Rz, pk e R’ such that

IV Lsw gy, (%) + VR(2F) A + Vg(a®)p¥ | < ex,

k. ok

1a(z")II < ex, llg(z®)+ ]| < ex,

Ef = 0 whenever gi(xk) < =&y

We define, for all i =1,...,p,

_ﬂk
Vi = max {gi(ﬂck), —Z}
Pk
Ifk=1or
IIla.X{Hh(xk)”7 Hvk”} < rmax{”h(xk*l)H, ”Vk,l”}

we define pg1 > pr. Else, we define pr+1 > vpi.

Remarks.
e In general, we define prp11 = pg if (63) holds and pri1 = 7ypr otherwise

[1]. Here we prefer to use the more general form, in which pr11 > pr and
Pk+1 > vpi for theoretical reasons. The global convergence results of [1] hold
for this formulation without modifications and the more general formulation
is useful to analyze more general optimization problems [3].

In Theorem 5.1 we will assume that the approximate Lagrange multipliers
PUR uF associated with lower-level constraints are bounded. This is a reason-
able assumption because, in practical terms, lower-level constraints should be
simple (complicated constraints should be included in the upper level) and
complications due to the lack of fulfillment of constraint qualifications should
not be expected in the lower level. The theorem obviously holds if there are
no lower-level constraints at all, so that all the constraints are submitted to
the penalty-Lagrangian treatment. Theorem 5.1 also includes, as a particular
case, the classical external penalty method [12] with an approximate stopping
criterion for the subproblem.

The convergence results of [1] apply to Algorithm 5.1. In [1] it was proved
that feasible limit points that satisfy the CPLD constraint qualification are
KKT points. Under the relaxed GL assumption (64), Theorem 5.1 presents a
stronger result, showing that feasible limit points satisfy the CAKKT condi-
tion.

THEOREM 5.1. Assume that x* is a feasible limit point of a sequence generated by

Algorithm 5.1 and that the sequences {\*}, {1*} are bounded. In addition, assume that
there exist 6 > 0, ¢ : B(x*,0) = R, lim,_,,~ ¢(x) = 0 such that, for all x € B(z*,),

(64)

|[@(2) — (z7)] < () [V (2)[],

where ® is defined by (57). Then, x* satisfies CAKKT.
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Proof. Define, for all k =1,2,...,
(65) A= N prh(a®), b = (1F + prg(a®)) -
y (60), (61), and (65) one has
IV £ (2") + Vh(z* )N + Vg(a* )" + VA)A" + V() ut|| < e

forall k =1,2,....

Therefore, we only need to prove (19), both for the upper-level and the lower-
level constraints. Without loss of generality we assume that the whole sequence {z*}
converges to z*.

The proof of (19) for the lower-level constraints (replacing A\* by A*, 1% by pF,
h by h, and g by g) follows trivially from the feasibility of z*, the continuity of h, g,

and the boundedness of {\*, /*}.

Consider now the case in which {p;} is bounded above. By (65), we have that
{\F} and {;/*} are bounded. Moreover, by the choice of p1, defining V* as in (62),
we have that limy_, ||[V*| = 0. Clearly, since a* is feasible, limy_, o AFh;(2%) = 0
and, if g;(z*) = 0, limg_,00 ¥ g;(z¥) = 0. In the case that g;(z*) < 0, since V¥ — 0,
we have that

ok
lim 22 —o.
k—oo pp
Then, by the boundedness of {py},
. ko
Jim 7t =0

Thus, ¥ + prgi(z*) < 0 for k large enough. Therefore, by (65), u¥ = 0 for k large
enough. This implies that limy_, o ¥ g;(z%) = 0 also in the case that g;(z*) < 0.
This completes the proof of (19) in the case that {py} is bounded.
Let us consider now the case in which limy_, pr = co. By (60), (61), the con-
tinuity of f,Vh, Vg, and the boundedness of {Ak}, {u*}, we have that there exists
M > 0 such that B

(66) PV @3k s, ()] < M

for all k.
Now, for all z € R™, we have

<hi (z) + Ak) )+ ZP: <gz B >+ng-(a:")

.

ZV@;k)ﬁk)pk (33) o

= 3 @) Vh() + 3 0i(0) Ve +Z il
1 =1
4 if
i\ — — gi\T le
+Z[<g()+ >+ 9()+] 9:(x)

Pk

Therefore, by (66),

lox (3 hi(a®)V +Zgz )+ Vgi(*))
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+ D NThH) + D (orgi(a") + )+ — g (@) 419" < 20

for all k.
Thus,
k(D R )+ Zgz )+ Vgi(z"))|
i=1
m B p
SIDONEVR(F) + [(orgi(a®) + 1)+ — prgi(a®) 1]V (2") | + 2M
i i=1
for all k.
Note that

[(prgi(2®) + B8) 4 — prgi(a®™)+| < A

Then, by (58), the boundedness of {z*}, {\*}, and {i*}, and the continuity of
Vh and Vg, there exists M; > 0 such that

p
eV (e \_znpkzh )+ 3 gula*) 1 Vaula)I| < My
=1

for all k.
Since z* is feasible, we have that ®(z*) = 0. Therefore, by (64),

lok® (") < (")l pp V(") < Myp(2")
for all k. Since limg_,o (2¥) = 0 this implies that

p
hm pr® (") = hm Zpkh 2y Zpkgi(xk)i) =0.

Thus, foralli=1,....m, j=1,...,p,
- (RN\2 - (kY2
e pphi(z%)7 =0, lim prgi(z")3 = 0.
But, since * is feasible, we have that limy_,o [|2(2%)| = limg— o0 [|g(a*) 4[| = 0.
Therefore, by the boundedness of {\*} and {i*},
lim |AFR(2®) = lim |[N¥ + pphi(2®)]hi(z%)] = 0
k—o0 k— o0
foralli=1,...,m, and
Jim ufgi(a®) 4] = lim |(F + prgi(a®)) 4 gi(2") 1| = 0
—00 k—o0
foralli=1,...,p
If g;(x*) < 0 one has that g;(z*) < g:(2*)/2 < 0 for k large enough. Since pj, — oo
we have that ¥ + prgi(z¥) < 0 and, so, u¥ = 0 for k large enough.

Assume, finally, that g;(x*) = 0 and there exists an infinite set of indices K such
that g;(x*) < 0. In this case,

uf = (af + gi(a*)); <k

for all k € K. Therefore, by the boundedness of {iif} we also have that
limpe i pFg;(2*) = 0. This completes the proof. O
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Counterexample. We will show that, if the GL assumption does not hold,
Algorithm 5.1 may generate a sequence that does not satisfy (19).
Consider the problem

(67) Minimize z subject to h(z) =0,
where
4. (1Y .
h(z) =a"sin| — ) if z#0,
x
and h(0) = 0. -
We will use Algorithm 5.1 with A* = 0 for all k. Therefore, the algorithm reduces

to an external penalty method. We will show that, for a choice of pr — oo, the
sequence {zx} generated by the algorithm tends to z. = 0 and does not satisfy

lim zh(zk) = 0.
—00

We have

(68) h'(z) = 2? {43: sin (%) — cos (%ﬂ

if . #£0, h'(0) =0.
Let us define, for all z # 0,

(69) R(z) = dasin (é) ~ cos (é) +ab

and, for all k =1,2,...,

1 1
2%kn T k12

(70) 2 =
Then, for all k =1,2,...,
R(z)=—1+2p <0
and
R(yx) = 4yi + i, > 0.
Therefore, for all k =1,2,... there exists zx € (yx, zx) such that

(71) R(xy) = 0.

By (70) we have that yx — 0,z — 0. Therefore, since z € (yk, 2k), limg_ 00 z = 0.
Moreover, since zx € (Y, 2x) we have that

1z < 1/ap < 1/yg
and, by (70),

2k < 1/xp < (2k 4+ 1/2)7.
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Therefore, for all k =1,2, ...,

1
72 in | — .
(72) sin <$k> >0
Since zx — 0, we have that limg_,o xg sin(1/x;) = 0. Then, by (69) and (71),
. 1
(73) lim cos <—> =0.
k—o0 Tk

By (72) and (73), we have that

1
lim sin (—) =1.
k—o0 Tk

Therefore, for k large enough,

(74) sin <%k> > %
By (68) and (71),
(75) W (zr) = —x3,

forall k=1,2,....
Now, for k large enough, define

-1

(76) Pk = W) (@)

By (75), we have

-1 1
Pk = e sin(1/zp) (—20)

z) sin(1/xy)

By (74), pi is well defined for k large enough and limg_, o pr = oo. Taking an
appropriate subsequence we may assume, without loss of generality, that

(77) Pk+1 = VPk

forall k=1,2,....
Now, by (60), in this case we have

Lj‘kvﬁkmk (xk) =z + p—;h(ﬂik)z
Thus, by (76),
VL gt (@) = L+ prh(ai) (ax) = 0.

This means that the sequence {z} is defined by the application of Algorithm 5.1 to
the problem (67) with A* = 0 for all k and the penalty parameters given by (76).

Now, assume that, for all k =1,2,..., A\; is an approximate Lagrange multiplier
such that (18) holds. Then

lim 1+ Aok (%) = 0.
k—o0
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Therefore, by (75),

lim 1 — \g2) =0

k—o0

and, so,

(78) Jim ey = 1.
Now,

in(1
Aeh(zk) = /\kxi sin(1/x) = /\kxzw
Tk

By (74) and (78), since z — 0, we deduce that

lim Agh(zy) = co.
k—oc0

Therefore, (19) does not hold.

6. Conclusions. In the first section of this paper we motivated the introduction
of a new strong AKKT condition using a simple example that shows that points that
approximately fulfill KKT conditions may be far from true minimizers. It can be
argued, however, that efficient nonlinear programming solvers will not compute these
kinds of points and, thus, they will ultimately succeed in the optimization purpose. In
fact, we showed in section 4 that this is the case of the augmented Lagrangian method
defined in [1]. Nevertheless, “wrong points” that approximately satisfy classical KKT
conditions may occur as initial approximations to the solution of a problem, when the
user has no control of starting points, as is usually the case when the optimization
problem is a part of a more complex model. In practical terms, this indicates that
the stopping criterion associated with the CAKKT condition (including the fact that
the product between multipliers and constraints must be small, even in the case of
equality constraints) should be used in practical nonlinear optimization codes. More
precisely, we endorse the position that the stopping criterion based on CAKKT should
be tested whenever one is using an algorithm that guaranteedly produces CAKKT
sequences. As a consequence, the theoretical question about the CAKKT behavior of
optimization algorithms has a clear practical relevance.

Little research has been dedicated to the study of optimality conditions in the
case that KKT does not hold. Since, as shown in this paper, local minimizers satisfy
CAKKT, this corresponds to the case in which some multipliers tend to infinity.
Many practical problems may have this characteristic and, thus, algorithms should be
equipped with adequate procedures to deal with such anomaly. Moreover, numerical
behavior of practical algorithms in the case of very large multipliers probably emulates
the non-KKT case. Very likely, well-established implemented optimization algorithms
include heuristics that make it possible to cope with degenerate situations, but it
is also plausible that many numerical phenomena may be explained in terms of the
theoretical behavior in the presence of divergent sequences of multipliers.

A popular point of view in numerical optimization is that one always tries to solve
a KKT system, with an obvious preference to solutions that represent minimizers.
However, there is no unique way to define a KKT system, although all the KKT
formulations have the same exact solutions. For example, consider the constrained
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optimization problem with only equality constraints. In this case there is a general
agreement that the KKT (Lagrange) system of equations is

(79) Vf(z) + Vh(z)A =0, h(z)=0.

In fact (79) is a square nonlinear system and variations of Newton’s method are often
successful for solving it. Now, (79) is obviously equivalent to

(80) Vf(z)+ Vh(z)A =0, h(z) =0, \hi(z) =0,i=1,...,m,

but equivalence disappears when, roughly speaking, we admit that multipliers may
tend to infinity. In this case, the approximate fulfillment of (79) corresponds to the
AKKT condition, but the approximate fulfillment of (80) gives rise to the CAKKT
condition. In this sense, the systems are not equivalent and, as we saw before, we have
good reasons to prefer, in some cases, the rectangular form (80).

As it is well known, sequential quadratic programming (SQP) algorithms corre-
spond to Newton’s method applied to the nonlinear system given by the KKT condi-
tions [25]. A natural question, addressed by one of the referees of the first version of
this paper, is whether SQP sequences that converge to feasible points always provide
multipliers satisfying the CAKKT relation (19). Similar questions may be formulated
with respect to all modern practical algorithms. The rectangular form (80) seems to
suggest that the answer is negative in the case of SQP. When one applies Newton’s
method to the KKT system associated with the problem of minimize f(x) = x subject
to h(x) = 22 = 0 one gets a sequence (xy, A\ ) such that zp — 0, \r, — 00, Agh(x) — 0
but ||V f(zr) + Vh(zg)Ak|| converges to 1/3. Therefore, although 2* = 0 satisfies
CAKKT for an appropriate sequence of Lagrange multipliers, the multipliers provided
by Newton’s method are not the ones that guarantee the fulfillment of the CAKKT
conditions. Curiously, the complementarity condition is satisfied by this sequence but
the Lagrange condition (18) is not.

Motivated by the example above, we studied the practical behavior of Newton’s
method in KKT systems corresponding to other problems of the form

Minimize f(x) subject to hi(x)? =0,i=1,...,m.

Since the gradients of all the constraints vanish at feasible points, KKT conditions
hold at a solution only in the improbable situation that the gradient of f also vanishes.
Surprisingly, in many cases, Newton’s method behaved as in the first one-dimensional
example: (a) convergence to the primal solution ocurred; (b) the Lagrangian residual
corresponding to (18) did not tend to zero; (c) the product of each multiplier approx-
imation with the corresponding feasibility residual converged to zero. Several open
questions are suscitated by these observations. One one hand, it should be interesting
to discover sufficient theoretical conditions under which Newton’s method necessar-
ily exhibits such behavior. On the other hand, variations of the Newton sequence
that possibly guarantee CAKKT verification should be studied and their practical
efficiency should be compared with existing versions of the Newton-SQP method.
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