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a b s t r a c t

A Projected-Gradient Underdetermined Newton-like algorithm will be introduced for finding a solution of a

Horizontal Nonlinear Complementarity Problem (HNCP) corresponding to a feasible solution of a Mathemati-

cal Programming Problem with Complementarity Constraints (MPCC). The algorithm employs a combination

of Interior-Point Newton-like and Projected-Gradient directions with a line-search procedure that guarantees

global convergence to a solution of HNCP or, at least, a stationary point of the natural merit function asso-

ciated to this problem. Fast local convergence will be established under reasonable assumptions. The new

algorithm can be applied to the computation of a feasible solution of MPCC with a target objective function

value. Computational experience on test problems from well-known sources will illustrate the efficiency of

the algorithm to find feasible solutions of MPCC in practice.
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1

C

Z

M

w

a

w

m

s

x

1

M

(

U

t

s

s

e

t

s

2

d

w

R

L

(

W

i

m

(

h

0

A

. Introduction

A Mathematical Programming Problem with Complementarity

onstraints (MPCC) (Luo, Pang, & Ralph, 1996; Outrata, Kocvara, &

owe, 1998; Ralph, 2007) can be defined in the form

inimize ϕ(x, y, w) subject to H(x, y, w) = 0

and min{x, w} = 0, (1)

here x, w ∈ Rn, y ∈Rm, while ϕ : R2n+m → R, and H : R2n+m → Rr

re continuously differentiable functions. The feasible set of MPCC

ill be denoted by D and min{x, w} denotes a vector of components

in{xi, wi}, i = 1, . . . , n. For all i = 1, . . . , n, the variables xi, wi are

aid to be complementary and satisfy:

i � 0, wi � 0, xiwi = 0, i = 1, . . . , n. (2)
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MPCC has appeared frequently in optimization models and has

ignificant applications in different areas of science, engineering and

conomics (Luo et al., 1996; Outrata et al., 1998; Ralph, 2007). Many

heoretical and application papers in Operations Research, as well as

urvey papers on related topics (Bomze, 2012; Chen, 2000; Júdice,

014; Kovacevic & Pflug, 2014; Lin & Fukushima, 2010), have been

evoted to this problem in recent years. For example, transport net-

ork models were considered in García-Rodenas and Verastegui-

ayo (2008), Walpen, Mancinelli and Lotito (2015), Wu, Yin and

awphongpanich (2011), bilevel optimization in Kovacevic and Pflug

2014), variational inequality formulations in Toyasaki, Daniele and

akolbinger (2014), multiobjective problems with complementar-

ty constraints in Lin, Zhang and Liang (2013), Ye (2011), electricity

arkets in Ehrenmann and Neuhoff (2009), Guo, Lin, Zhang and Zhu

2015), Hu and Ralph (2007), Yao, Oren and Adler (2007), quadratic

rogramming with complementarity constraints in Ralph and Stein

2011), optimality conditions in Pang (2007), order-value applications

n Andreani, Dunder and Martínez (2005), and oligopolistic equilib-

ium in Yao, Adler and Oren (2008), among others.

Clearly, MPCC can be seen as a Nonlinear Programming Prob-

em where the n complementarity constraints min{xi, wi} = 0 are re-

laced with (2) or even with x�w = 0, x � 0, w � 0. Attempts for solv-

ng MPCC by means of nonlinear programming algorithms present

ome difficulties, mainly because these algorithms may converge to

oints from which there exist obvious first-order descent directions.

his issue is a consequence of the so-called double zeros or biactive

ndices, i.e., feasible points satisfying at least a constraint xiwi = 0
EURO) within the International Federation of Operational Research Societies (IFORS).
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with both variables xi and wi equal to zero. These difficulties have

motivated much research on weak forms of stationarity (Ferris &

Pang, 1997; Hoheisel, Kanzow, & Schwartz, 2013; Luo et al., 1996;

Outrata et al., 1998; Ralph, 2007; Scheel & Scholtes, 2000) and sev-

eral algorithms have been designed to compute such weak station-

ary points (Anitescu, 2005; Anitescu, Tseng, & Wright, 2007; Ben-

son, Sen, Shanno, & Vanderbei, 2006; Fang, Leyffer, & Munson, 2012;

Fletcher & Leyffer, 2004; Fukushima, Luo, & Pang, 1998; Fukushima &

Tseng, 2002; Hoheisel et al., 2013; Hu & Ralph, 2004; Jiang & Ralph,

2003; Júdice, Sherali, Ribeiro, & Faustino, 2007, Leyffer, López-Calva, &

Nocedal, 2006; Luo et al., 1996; Outrata et al., 1998; Ralph, 2007).

In this paper, we will discuss how to compute a feasible solution

of the MPCC, that is, a solution of the following Horizontal (possibly

nonlinear) Complementarity Problem (HNCP) Gowda (1995):⎡⎢⎢⎣
H(x, y, w)

x1w1

...
xnwn

⎤⎥⎥⎦ = 0, x ≥ 0, w ≥ 0. (3)

We will assume that r ≤ m + n, so that the number of equations in

(3) is smaller than or equal to the number of unknowns. The case in

which r = m + n has been studied in Andreani, Júdice, Martínez and

Patrício (2011b). The case of H affine has been thoroughly discussed

in the literature (see for instance Júdice (2014) for a recent survey).

The HNCP is NP-hard in this case Murty (1988) but there are many

MPCCs where finding a single feasible solution can be considered as

an easy task Júdice (2014).

The problem of finding a feasible point of MPCC at which the ob-

jective function achieves a target value ct is naturally formulated as

follows:

ϕ(x, y, w) � ct , H(x, y, w) = 0, x � 0, w � 0 and x�w = 0. (4)

Note that the problem (4) can be written as a standard HNCP

adding two auxiliary variables v1 and v2, as follows:

ϕ(x, y, w) + v1 = ct , H(x, y, w) = 0, v1v2 = 0, xiwi = 0,

i = 1, . . . , n, v1 ≥ 0, v2 ≥ 0, x ≥ 0, and w ≥ 0.

(5)

In this paper we will extend the algorithm introduced in Andreani

et al. (2011b), which deals with the case r = n + m, for the un-

derdetermined HNCP (3) where r may be smaller than n + m. The

Projected-Gradient Underdetermined Newton-like algorithm (PGUN)

combines fast interior-point iterations with projected-gradient steps.

A line-search procedure is employed guaranteeing sufficiently reduc-

tion of the natural merit function Andreani, Júdice, Martínez and

Patrício (2011a) associated to HNCP. This will allow us to establish

global convergence of the PGUN algorithm to a solution of HNCP or

to a stationary point of the merit function with a positive function

value. In this case the algorithm terminates unsuccessfully. Fast local

convergence will be established under reasonable hypotheses.

Computational experience with PGUN for solving the HNCP as-

sociated to feasible solutions of some MPCC test problems from a

well-known collection Leyffer (2000) will show that, for many in-

stances, projected-gradient iterations are seldom used and the algo-

rithm is able to converge very fast to a solution of HNCP. For other in-

stances, PGUN converges slowly using projected-gradient iterations

to a stationary point of the merit function that seems not to be a so-

lution of the HNCP. A practical criterion will be introduced to stop

prematurely PGUN and avoid many projected-gradient iterations. As

the natural merit function is nonconvex, the choice of the starting

point is very important for the success of PGUN. Here we will sug-

gest to restart the PGUN algorithm with a new initial point whenever

the criterion mentioned before forced the algorithm to stop prema-

turely. Numerical results with an implementation of PGUN incorpo-

rating these two practical procedures (premature stopping criterion
Please cite this article as: R. Andreani et al., Feasibility problems with com

(2015), http://dx.doi.org/10.1016/j.ejor.2015.09.030
nd restarting) show that the method is in general efficient to solve

he HNCP and seems to perform better than a Projected Levenberg-

arquardt algorithm Kanzow, Yamashita and Fukushima (2005). We

ave also tested PGUN for solving (5) associated to a target ct equal

o the best known objective function value of some MPCCs from the

ollection mentioned before. As discussed in Fernandes, Friedlander,

uedes and Júdice (2001), the introduction of the target constraint

o HNCP makes this problem more difficult to tackle and PGUN has

ore difficulties to solve the HNCP in this case. Despite this, PGUN

as been able to provide a target feasible solution of MPCC for the

arge majority of tested instances.

The organization of this paper is as follows. The properties of the

erit function for the HNCP are studied in Section 2. The algorithm

GUN will be described and its global convergence will be analyzed

n Section 3. Section 4 will be devoted to the local convergence of

he PGUN algorithm. Computational experience with the PGUN al-

orithm will be reported in Section 5 and some conclusions will be

resented in the last section of the paper.

otation: The 2-norm of vectors and matrices will be denoted by ‖·‖.

f there is no risk of confusion we denote (x, y, w) = (x�, y�, w�)�, as

t has been already done in Section 1. We adopt the usual convention

f denoting X the diagonal matrix whose entries are the elements of

∈ Rn. The Moore–Penrose pseudoinverse of the matrix A will be

enoted by A†. The Jacobian matrix of �: Rn →Rm, with components

1, . . . , ϕm, will be defined by

′(z) =

⎡⎢⎢⎢⎢⎣
∂ϕ1

∂z1

(z) . . .
∂ϕ1

∂zn
(z)

...
. . .

...

∂ϕm

∂z1

(z) . . .
∂ϕm

∂zn
(z)

⎤⎥⎥⎥⎥⎦.

We define e = (1, . . . , 1)� and

= {(x, y, w) : x � 0, w � 0}. (6)

The Interior of this set will be denoted by Int(�).

. Stationary points of the sum of squares

The HNCP (3) may be expressed in the form

(x, y, w) = 0, x ≥ 0, w ≥ 0, (7)

here F : Rn+m+n −→ Rr+n is given by

(x, y, w) =

⎡⎢⎢⎢⎣
H(x, y, w)

x1w1

...

xnwn

⎤⎥⎥⎥⎦, (8)

nd H : Rn+m+n → Rr has continuous first derivatives.

We define the natural merit function:

f (x, y, w) = ‖F(x, y, w)‖2 (9)

nd we consider the problem

Minimize f (x, y, w) subject to (x, y, w) ∈ �, (10)

here � is defined in (6). From now on we will denote z = (x, y, w).

It is well known that, if z∗ is an unconstrained stationary point

f “Minimize ‖�(z)‖2” and the residual �(z∗) is not null, then the

ows of the �′(z∗) are linearly dependent. In general, this property is

ot true in the presence of bound constraints. In what follows, gen-

ralizing a result proved in Andreani et al. (2011a), we prove that the

on-full-rank property also holds in the case of problem (10) with the

efinitions (8) and (9).

heorem 2.1. Suppose that z = (x, y, w) ∈ � is a stationary point of

10). Then,
plementarity constraints, European Journal of Operational Research
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(a) if H(z) = 0 or H′
y(z) is full row-rank, then z is solution of (7);

(b) if ‖F(z)‖ 
= 0, the rows of the Jacobian F ′(z) are linearly

dependent.

roof. If z is a stationary point of (10), then

1

2
∇ f (z) = F ′(z)�F(z) =

⎡⎣H′
x(z)� W

H′
y(z)� 0

H′
w(z)� X

⎤⎦
⎡⎢⎢⎢⎣

H(z)

x1 w1

...

xn wn

⎤⎥⎥⎥⎦ =

⎡⎣γ

0

α

⎤⎦, (11)

xi γi = 0, i = 1, . . . , n,

wi αi = 0, i = 1, . . . , n,

x ≥ 0, γ ≥ 0, w ≥ 0, and α ≥ 0. (12)

(a) If H(z) = 0, we deduce that:

W

X

]⎡⎢⎣x1 w1

...

xn wn

⎤⎥⎦ =
[
γ

α

]
.

Thus, x̄iw̄i = 0 for all i = 1, . . . , n and z is a solution of (7).

On the other hand, if H′
y(z) is full row-rank, then, by (11), H(z) = 0.

herefore, as proved above, we have that z is solution of (7).

(b) Suppose now that F(z) 
= 0. By (11), if xi = wi = 0 for some i ∈
1, . . . , n}, the column r + i of

H′
x(z)� W

H′
y(z)� 0

H′
w(z)� X

⎤⎦
s null, Then the the rows of F ′(z) are linearly dependent.

Assume that xik
> 0 and wik

> 0 for q indices ik, k = 1, . . . , q be-

onging to {1, . . . , n}. Then there are three possible cases:

Case 1: q = n;

Case 2: q = 0;

Case 3: 1 ≤ q < n.

In Case 1, the stationarity imposes that the derivatives of f with

espect to all the variables must vanish. Therefore,

H′
x(z)� W

H′
y(z)� 0

H′
w(z)� X

⎤⎦
⎡⎢⎢⎢⎣

H(z)

x1 w1

...

xn wn

⎤⎥⎥⎥⎦ = 0,

ith xiwi > 0 for all i = 1, . . . , n. Then, the rows of F ′(z) are linearly

ependent.

Let us now consider Case 2. Since the case in which there exists

such that x̄i = w̄i = 0 has already been considered, we have that

¯i + w̄i > 0 for all i = 1, . . . , n. Then, we may assume without loss of

enerality that x̄i = 0, w̄i > 0 for all i = 1, . . . , n. Then, by (11),

H′
x(z)� W̄

H′
y(z)� 0

H′
w(z)� 0

⎤⎦[
H(z)

0

]
−

⎡⎣γ

0

0

⎤⎦ = 0. (13)

Thus,

H′
y(z)� 0

H′
w(z)� 0

][
H(z)

0

]
=

[
0

0

]
.

This implies that the matrix

H′
y(z)� 0

H′
w(z)� 0

]

Please cite this article as: R. Andreani et al., Feasibility problems with com

(2015), http://dx.doi.org/10.1016/j.ejor.2015.09.030
as at most r − 1 linearly independent columns. Therefore, the

atrix

H′
x(z)� W̄

H′
y(z)� 0

H′
w(z)� 0

⎤⎦
as at most n + r − 1 linearly independent columns. Since X̄ = 0, this

mplies that

H′
x(z)� W̄

H′
y(z)� 0

H′
w(z)� X̄

⎤⎦
as at most n + r − 1 linearly independent columns. Thus F ′(z̄) has at

ost n + r − 1 linearly independent rows. Since F ′(z̄) has n + r rows,

t turns out that this Jacobian is not full row-rank.

Let us now consider Case 3. Suppose, without loss of generality,

hat

i, wi > 0 for i = 1, . . . , q < n (14)

nd

i = 0, wi > 0 for i = q + 1, . . . , n. (15)

Splitting the first block of (11) into two blocks corresponding to its

rst q and last n − q equations, using (12), (14) and (15), calling Ĥ′
x(z)

o the matrix formed by the first q rows of H′
x(x̄, ȳ, z̄)�, and callinĝ to the diagonal q × q matrices whose entries are w̄1, . . . , w̄q, we

btain:

Ĥ′
x(z)� Ŵ

H′
y(z)� 0

H̄′
w(z)� X̄

H̃′
w(z)� 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

H(z)

x1 w1

...

xq wq

⎤⎥⎥⎥⎦ =

⎡⎣0

0

0

⎤⎦. (16)

Therefore, the matrix

=

⎡⎢⎢⎣
Ĥ′

x(z)� Ŵ

H′
y(z)� 0

H̄′
w(z)� X̄

H̃′
w(z)� 0

⎤⎥⎥⎦
as at most r + q − 1 linearly independent columns. Now define

˜ ′
x(z)� as the matrix containing the last n − q rows of H′

x(z)�, W̃ as

he diagonal matrix whose entries are w̄q+1, . . . , w̄n, and

=

⎡⎢⎢⎢⎢⎢⎣
Ĥ′

x(z)� Ŵ 0

H̃′
x(z)� 0 W̃

H′
y(z)� 0 0

H̄′
w(z)� X̄ 0

H̃′
w(z)� 0 0

⎤⎥⎥⎥⎥⎥⎦
Since B comes from adding n − q rows and columns to A, the ma-

rix B has at most n + r − 1 linearly independent columns. But, by

11), (14), and (15), we have that B = F ′(z)�. Therefore, the Jacobian

s not a full row-rank matrix, as we wanted to prove. �

. Projected gradient underdetermined Newton-like algorithm

nd global convergence

In this section we introduce a Projected Gradient Underdeter-

ined Newton-like (PGUN) Algorithm for the solution of the (pos-

ibly) underdetermined system (8). This algorithm is an extension of

he method introduced in Andreani et al. (2011b) for the solution of
plementarity constraints, European Journal of Operational Research
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this system when the number of equalities is equal to the number

of variables, i.e., when r = n + m. PGUN generates iterates lying in-

side Int(�) and combines interior-point Newton-like and projected-

gradient directions with a line-search procedure Li and Fukushima

(2000). The steps of the PGUN method are presented below.

PGUN Algorithm

Step 0: Initial setup: Consider γ > 0 and γ k > 0 for all k ∈ N and

such that
∑∞

k=0 γk = γ < ∞. Let τ ∈ (0, 1), σ ∈ (0, 1), 0 <

η1 < η2, ρ > 0, β ∈ (0, 1
2 ), cbig > csmall > 0, csmall < 1. Let

z0 = (x0, y0, w0) ∈ Int(�). Assume that zk = (xk, yk, wk) ∈
Int(�),σ k ∈ [0, 1/6], τ k ∈ [τ , 1), and ηk ∈ [η1, η2]. Then,

the steps for obtaining zk+1 = (xk+1, yk+1, wk+1) ∈ Int(�) or

declaring finite convergence are the following:

Step 1: Declare finite convergence if the scaled projected–gradient

is zero: Compute g(zk, ηk) = P�(zk − ηk∇ f (zk)) − zk. If

g(zk, ηk) = 0, stop. (An approximate stationary point of (10)

has been obtained.)

Step 2: Newton-like direction: Compute, if possible, dk = (dk
x , dk

y,

dk
w) ∈ Rn+m+n satisfying

H′(zk)dk + H(zk) = 0 (17)

and

xk
i wk

i + xk
i

(
dk

w

)
i
+ wk

i

(
dk

x

)
i
= μk

i , (18)

where μk ≥ 0 and

‖μk‖∞ ≤ σk

(xk)�wk

n
. (19)

If such a direction dk does not exist or if ‖dk‖ > cbig, go to

Step 4.

Step 3: Compute the maximum steplength: Compute

αbreak
k = max{α ≥ 0 | zk + αdk ∈ �} (20)

and

αmax
k = min

{
1, τkα

break
k

}
. (21)

If αmax
k

≤ csmall min{1,‖dk‖}, go to Step 4. Otherwise, go to

Step 5.

Step 4: Projected gradient direction: Compute (or re-define) dk =
g(zk, ηk), and set αmax

k
= τk.

Step 5: Line–search: Set α = αmax
k

.

Step 5.1: If

‖F(zk + αdk)‖ ≤ ‖F(zk)‖ − ρ‖αdk‖2 + γk (22)

set αk = α and go to Step 6.

Step 5.2: Choose αnew ∈ [βα, (1 − β)α], set α = αnew and go

to Step 5.1.

Step 6: Compute the new iterate: Choose zk+1 ∈ � such that

‖F(zk+1)‖ ≤ ‖F(zk + αkdk)‖. (23)

End.

Given zk not satisying the stopping criterion g(zk, ηk) = 0, the fact

that zk+1 is well defined follows trivially from Step 5, using γ k > 0.

The global convergence of PGUN is established in Theorem 3.1.

Theorem 3.1. Given zk = (xk, yk, wk) such that xk > 0, wk > 0 and g(zk,

ηk) 
= 0), the point (xk+1, yk+1, wk+1) ∈ Int(�) is always well defined.

Moreover, if {zk} is a sequence generated by Algorithm PGUN and z∗ is

a cluster point such that limk∈K1
zk = z∗, where K1 ⊂ N is an infinite

subsequence of indices, then:

1. z∗ is a stationary point of Minimize f(z) subject to z ∈ �.

2. If F′(z∗) is a full row-rank matrix, then F(z∗) = 0.
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3. If K1 contains infinitely many indices k such that dk is computed (at

Step 2) as a Newton-like direction, then F(z∗) = 0.

roof. The stationarity of z∗ and the fact that F(z∗) = 0 when K1

ontains infinitely many Newton-like iterations follow exactly as

n Andreani et al. (2011b), where the theorem was proved for the

square) case in which n + m = r. In the general case considered here

he second part of the thesis is a consequence of the stationarity of z∗

nd Theorem 2.1. �

. Local convergence

At Step 2 of PGUN one considers the linear system given by (17)

nd (18). If this linear system is incompatible the algorithm goes to

tep 4 where a projected gradient direction is computed. All along

his section we will assume that, whenever (17)–(18) is compatible,

he computed direction dk will be the minimum-norm solution of

hat system. This implies that dk belongs to the range space of F′(zk)�

nd

k = F ′(zk)†

[
−H(zk)

−XkWke + μk

]
, (24)

here μk ≥ 0 satisfies (19).

Note that the minimum-norm Newtonian direction associated

ith the system F(z) = 0 would be obtained taking μk = 0 in (24).

In Theorem 3.1 we proved that limit points of a sequence gener-

ted by PGUN are necessarily stationary points of the natural merit

unction f. Moreover, when the Jacobian of F is full row-rank at a

imit point, this point is a solution of the problem. Finally, every limit

oint of a subsequence of iterates xk such that dk is always computed

t Step 2 is necessarily a solution of the nonlinear system. These

lobal convergence results will be complemented in this section by

ocal characterizations that tell us something about convergence of

he whole sequence and its speed of convergence.

The local results that will be presented in this section are closely

elated with the local convergence results of Newton’s method for un-

erdetermined nonlinear systems. Roughly speaking, we are going to

rove that, in a neighborhood of a solution at which the Jacobian has

ull row-rank, PGUN reduces to something very similar to Newton’s

ethod with the minimum norm choice of the solution of the linear

ystem and, as a consequence, enjoys the local convergence proper-

ies of that method. However, the identification of the local PGUN and

ewton’s method in that case is not complete because μk may not be

ero in (24).

Recall that PGUN does not admit negative components of (xk, wk).

herefore, the search direction is multiplied by a factor αk
max that in-

ibits the possibility of taking a trial point with non-positive com-

onents in (x, w). For proving that, eventually, PGUN behaves as a

ure Newton-like method, we need to prove that αk
max is as close to

as desired. This essentially means that we do not need to trun-

ate the direction computed at (24). We will prove this property in

heorem 4.1. In Theorem 4.2 we will prove that, if the Jacobian has

ull row-rank at a limit point, the whole sequence converges to that

imit point. As a by-product we will prove that, eventually, αk = αmax
k

,

hich means that the first trial point at Step 5 of PGUN is accepted

ecause the norm of F decreases as required by (22). The conse-

uence of Theorems 4.1 and 4.2 is that, for k large enough, PGUN

s very similar to Newton’s method with the Moore–Penrose pseu-

oinverse choice of linear-system solution. The fact that αk = αmax
k

,

ogether with Theorem 4.1, implies that αk ≈ 1. Therefore, the re-

ult of Theorem 4.3 (superlinear and quadratic convergence) is not

urprising, since this is the type of result that is typically obtained

or Newton’s method in the underdetermined and regular case. Here

e could invoke well-known results as the ones given by Chen and

amamoto (1994) but we prefer include the complete proof for the

ake of completeness.
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.1. Behaviour of the maximum steplength

In this section we aim to prove that, in a neighborhood of a so-

ution z∗ of (7) such that F′(z∗) is full row-rank, the steplength αmax
k

,

omputed at Step 3 of PGUN (formulas (20) and (21)), with dk com-

uted at Step 2, can be taken as close to 1 as desired. This means

hat, given an arbitrary δ < 1, if zk is close enough to the solution,

he maximal steplength αbreak
k

is bigger than δ. This result has been

roved in the case that 2n + m = r + n (square system) in Andreani

t al. (2011b). The proof in the rectangular case is more involved since

he solution of the Newtonian linear system is not unique.

heorem 4.1. Assume that Algorithm PGUN is applied to problem (7)

nd that z∗ is a solution at which the Jacobian F′(z∗) is full row-rank.

ssume that δ ∈ (0, 1). Then, there exists ε > 0 such that, whenever

zk − z∗‖ ≤ ε one has that dk is well defined by (17) and (18) and αbreak
k

δ.

roof. Assume that F′(z∗) is full row-rank and F(z∗) = 0. Denote W

Rn × n the diagonal matrix whose entries are w1, . . . , wn and X the

iagonal matrix whose entries are x1, . . . , xn. Then,

′(z) =
[

H′
x(z) H′

y(z) H′
w(z)

W 0 X

]
∈ R(r+n)×(2n+m)

.

Since F′(z∗) is full row-rank, x∗
i

and w∗
i

cannot be zero simulta-

eously. Without loss of generality (perhaps changing the names of

ome variables xi and wi), we may assume that x∗
i

= 0 and w∗
i

> 0 for

ll i = 1, . . . , n. So,

′(z∗) =
[

H′
x(z∗) H′

y(z∗) H′
w(z∗)

W∗ 0 0

]
.

Therefore, by the linear independence of the rows of F′(z∗), the

atrix
[
H′

y(z∗) H′
w(z∗)

]
is full row-rank.

Let ε > 0 be such that, for all z such that ‖z − z∗‖ ≤ ε,

′(z) and H′
yw(z) ≡

[
H′

y(z) H′
w(z)

]
are full row-rank. (25)

Since H has continuous first derivatives, (25) implies that ‖F′(z)†‖
nd ‖H′

yw(z)†‖ are uniformly bounded for all z such that ‖z − z∗‖
ε.

For a generic z = (a, b, c), a > 0, c > 0 such that ‖z − z∗‖ ≤ ε, and

≥ 0 ∈ Rn we define x, y, and w in such a way that (x − a, y − b, w −
) is the minimum norm solution of:

H′
x(a, b, c)(x − a) + H′

y(a, b, c)(y − b) + H′
w(a, b, c)(w − c)

= −H(a, b, c),

C(x − a) + A(w − c) = −Ca + μ.

(26)

Clearly, x, y, w are functions of a, b, c, and μ but we do not make

his dependence explicit in order to simplify the notation.

By the boundedness of ‖F′(a, b, c)†‖,

lim
z,μ)→(z∗,0)

‖x − a‖ = lim
(z,μ)→(z∗,0)

‖w − c‖ = lim
(z,μ)→(z∗,0)

‖y − b‖ = 0.

(27)

So,

lim
z,μ)→(z∗,0)

(x, w) = (x∗, w∗) = (0, w∗). (28)

By (26) and simplifying the notation, we have that:

H′
x H′

y H′
w

C 0 A

]⎡⎣x − a

y − b

w − c

⎤⎦ =
[ −H

−Ca + μ

]
∈ Rr+n

. (29)

Taking the minimum norm solution of (29), we have that (x −

, y − b, w − c)� belongs to the range space of F′(z∗)�. Therefore,
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here exist q ∈ Rp and t ∈ Rn such that

x − a

y − b

w − c

⎤⎦ =

⎡⎣(H′
x)

� C

(H′
y)

� 0

(H′
w)� A

⎤⎦[
q

t

]
∈ Rm+2n

. (30)

Therefore,

x − a = (H′
x)

�q + Ct

y − b = (H′
y)

�q

w − c = (H′
w)�q + At

(31)

Thus, by (29) and (31),

H′
x(H′

x)
� + H′

y(H′
y)

� + H′
w(H′

w)� H′
xC + H′

wA

C(H′
x)

� + A(H′
w)� C2 + A2

][
q

t

]
=

[ −H

−Ca + μ

]
(32)

Therefore,

= −(C2 + A2)−1(C(H′
x)

� + A(H′
w)�)q − (C2 + A2)−1(Ca − μ).

(33)

By the first equation of (32) and (33) we have that:

(H′
x(H′

x)
� + H′

y(H′
y)

� + H′
w(H′

w)�)

−(H′
xC + H′

wA)(C2 + A2)−1(C(H′
x)

� + A(H′
w)�))q

= −H + (H′
xC + H′

wA)(C2 + A2)−1(Ca − μ). (34)

Note that

C2 + A2)−1 = C−1(I + C−1A2C−1)−1C−1. (35)

Let us define H̃′ = H′
x(H′

x)
� + H′

y(H′
y)

� + H′
w(H′

w)� − (H′
xC + H′

wA)

C2 + A2)−1(C(H′
x)

� + A(H′
w)�).

Then, by (35),

˜ ′ = H′
x(H′

x)
� + H′

y(H′
y)

� + H′
w(H′

w)�

−(H′
x + H′

wAC−1)(I + C−1A2C−1)−1((H′
x)

� + C−1A(H′
w)�).

(36)

By (36), since A → 0, we have that H̃′ → H′
y(z∗)H′

y(z∗)� +
′
w(z∗)H′

w(z∗)�.

Since the matrix
[
H′

y H′
w

]
is full row-rank, we have that, if (a, b,

) is close enough to z∗, H̃′ is nonsingular and its inverse is bounded.

hen, recalling that, by (34),

= (H̃′)−1(−H + (H′
xC + H′

wA)(C2 + A2)−1(Ca − μ)), (37)

e obtain that q is bounded if (a, b, c) is close enough to the solution

nd μ is close enough to 0. Moreover, since Ca − μ → 0, we have that

= q(a, b, c,μ) tends to zero as (a, b, c) tends to z∗ and μ tends to

ero.

In other words,

lim
z,μ)→(z∗,0)

q(a, b, c,μ) = 0. (38)

Analogously, by (33),

lim
z,μ)→(z∗,0)

t(a, b, c,μ) = 0. (39)

Recall that x − a = (H′
x)

�q + Ct. Then, by (33),

t = −C((C2 + A2)−1(C(H′
x)

� + A(H′
w)�)q − (C2 + A2)−1(Ca − μ))

= −CC−1(I + C−1A2C−1)−1C−1C((H′
x)

� + C−1A(H′
w)�)q

−CC−1(I + C−1A2C−1)−1C−1C(a − C−1μ)

= −(I + C−1A2C−1)−1((H′
x)

� + C−1A(H′
w)�)q

−(I + C−1A2C−1)−1(a − C−1μ) (40)
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and

x = (H′
x)

�q + Ct + a

= (I − (I + C−1A2C−1)−1)a + (I − (I + C−1A2C−1)−1)(H′
x)

�q

−(I + C−1A2C−1)−1(C−1A(H′
w)�)q + (I + C−1A2C−1)−1C−1μ.

(41)

Observe that

I − (I + C−1A2C−1)−1 = I − I −
∞∑
j=1

(−1) j(C−1A2C−1) j

= C−1A2C−1

(
I +

∞∑
j=1

(−1) j(C−1A2C−1) j

)
.

Then, by (41),

x = C−1A2C−1

(
I +

∞∑
j=1

(−1) j(C−1A2C−1) j

)
a

+C−1A2C−1

(
I +

∞∑
j=1

(−1) j(C−1A2C−1) j

)
((H′

x)
�q)

− AC−1(I + C−1A2C−1)−1((H′
w)�)q + (I + C−1A2C−1)−1C−1μ.

Therefore, for all i = 1, . . . , n we have that

xi ≥ (ci)
−2(ai)

2

[(
I +

∞∑
j=1

(−1) j(C−1A2C−1) j

)
a

]
i

+(ci)
−2(ai)

2

[(
I +

∞∑
j=1

(−1) j(C−1A2C−1) j

)
((H′

x)
�q)

]
i

−(ci)
−1ai[(I + C−1A2C−1)−1((H′

w)�)q]i. (42)

Our objective now is to investigate the possible values of α ∈ [0, 1]

such that

αxi + (1 − α)ai = 0 (43)

or

αwi + (1 − α)ci = 0. (44)

If (44) takes place, then

α = ci

ci − wi

. (45)

But, by (27) and since w∗
i

> 0, an α ∈ [0, 1] satisfying (45) cannot

exist if ε is small enough.

Therefore, we only need to analyze the values of α that satisfy

(43).

By (43), α = 1 + α
xi
ai

. Then, by (42),

α ≥ 1 + α
(ci)

−2(ai)
2

ai

[(
I +

∞∑
j=1

(−1) j(C−1A2C−1) j

)
a

]
i

+ (ci)
−2(ai)

2

ai

[(
I +

∞∑
j=1

(−1) j(C−1A2C−1) j

)
((H′

x)
�q)

]
i

− (ci)
−1ai

ai

[(I + C−1A2C−1)−1(H′
w)�q]i.

Thus,

α ≥ 1 + α(ci)
−2ai

[(
I +

∞∑
j=1

(−1) j(C−1A2C−1) j

)
a

]
i

+α(ci)
−2ai

[(
I +

∞∑
j=1

(−1) j(C−1A2C−1) j

)
(H′

x)
�q

]
i

−αc [(I + C−1A2C−1)−1(H′ )�q] (46)
i w i
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By (38) and (46), given any δ ∈ [0, 1), and taking ε small enough

e obtain that α = 1. Consequently, αbreak
k

≥ δ. �

.2. Convergence of the whole sequence

Assumption L. For all z, z′ ∈ �,

F ′(z) − F ′(z′)‖ ≤ L‖z′ − z‖ ∀ z, z′ ∈ � ⊂ Rm+2n
. (47)

As a consequence, for all z, z′ ∈ �,

F(z′) − F(z) − F ′(z)(z′ − z)‖ ≤ L

2
‖z′ − z‖2. (48)

heorem 4.2. Assume that Assumption L holds, z∗ ∈ � is a cluster point

f a sequence generated by Algorithm PGUN, F′(z∗) is full row-rank and,

or k large enough, we choose

k+1 = zk + αkdk (49)

t Step 6 of the algorithm. Assume, further, that cbig (used at Step 2 of

lgorithm PGUN) is greater than 4‖F′(z∗)†‖ and limk→∞ τk = 1. Then,

imk−→∞ zk = z∗ and

k = αmax
k (50)

or k large enough.

roof. Let K1 be an infinite sequence of indices such that limk∈K1
zk =

∗. By Theorem 3.1, z∗ is a stationary point of f over �.

The choice of dk at Step 2 of the algorithm gives:

′(zk)dk + H(zk) = 0 (51)

nd

xk
i

[
dk

w

]
i
+ wk

i

[
dk

x

]
i
+ xk

i wk
i

)2 = σ 2
k

〈xk, wk〉2

n2
≤ σ 2

k

∑n
i=1 (xk

i
wk

i
)2

n
.

So,

n

i=1

(
xk

i

[
dk

w

]
i
+ wk

i

[
dk

x

]
i
+ xk

i wk
i

)2 ≤ σ 2
k

n∑
i=1

(
xk

i wk
i

)2 ≤ σ 2
k ‖F(zk)‖2.

Then, by (51),

F ′(zk)dk + F(zk)‖ ≤ σk‖F(zk)‖. (52)

Since F′(z∗) is full row-rank, there exists ε1 > 0 such that ‖F′(z)†‖
M1 ≡ 2‖F′(z∗)†‖ and F′(z) is full row rank whenever ‖z − z∗‖ ≤ ε1.

oreover, F ′(z)†F ′(z)F ′(z)† = F ′(z)†. Therefore, by (52), for k ∈ K1

arge enough and ‖zk − z∗‖ ≤ ε1,

dk‖ =
∥∥∥∥F ′(zk)†

[
−H(zk)

−XkWke + μk

]∥∥∥∥
=

∥∥∥∥F ′(zk)†F ′(zk)F ′(zk)†

[ −H(zk)

−XkWke + μk

]∥∥∥∥
= ‖F ′(zk)†F ′(zk)dk‖ ≤ ‖F ′(zk)†‖‖F ′(zk)dk + F(zk) − F(zk)‖
≤ ‖F ′(zk)†‖(‖F ′(zk)dk + F(zk)‖ + ‖F(zk)‖) ≤ M1(1 + σk)

‖F(zk)‖. (53)

By Theorem 3.1, we have that F(z∗) = 0. Moreover, since cbig ≥
‖F′(z∗)†‖, if ‖zk − z∗‖ ≤ ε1, k ∈ K1, large enough, we have that

F(zk)‖ ≤ 1 and (53) implies that dk is computed at Step 2.

Define M2 = 2‖F ′(z∗)‖. Then, since F and F′ are continuous,

(z∗) = 0. By (53) and Theorem 4.1 there exists ε2 ∈ (0, ε1] such that

or all k ∈ N such that ‖zk − z∗‖ ≤ ε2, we have that:

(i) ‖dk‖ ≤ M1(1 + σk)‖F(zk)‖;

(ii) αmax
k

≥ max{1 − 1
12M1M2

, 11
12 };

(iii) ‖F′(zk)‖ ≤ M2;

(iv) ‖F(zk)‖ ≤ 1

12LM2
1

;

(v) ρ‖αmaxdk‖2 ≤ 1
2 ‖F(zk)‖.
k
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a

Then, for all k ∈ N such that ‖zk − z∗‖ ≤ ε2,

F(zk + αmax
k dk)‖

≤ ‖F(zk + αmax
k dk) − F(zk) − αmax

k F ′(zk)dk‖
+‖F(zk) + αmax

k F ′(zk)dk‖
≤ L

2
(αmax

k )2‖dk‖2 + ‖F(zk) + F ′(zk)dk‖ + (1 − αmax
k )‖F ′(zk)dk‖

≤ L

2
(αmax

k )2‖dk‖2 + σk‖F(zk)‖ + (1 − αmax
k )‖F ′(zk)dk‖

≤ L

2
(αmax

k )2M2
1(1 + σk)

2‖Fzk‖2 + σk‖F(zk)‖
+ (1 − αmax

k )‖F ′(zk)‖M1(1 + σk)‖Fzk‖
≤

(
L

2
(αmax

k )2M2
1‖F(zk)‖ + σk

+ (1 − αmax
k )(1 + σk)M2M1

)
‖F(zk)‖

≤ 1

2
‖F(zk)‖ ≤ ‖F(zk)‖ − ρ‖αmax

k dk‖2 + γk. (54)

Therefore, by (22), for all k ∈ N such that ‖zk − z∗‖ ≤ ε2, we have

hat αk = αmax
k

(proving (50)),

k+1 = zk + αmax
k dk, and ‖F(zk+1)‖ ≤ 1

2
‖F(zk)‖. (55)

Since limk∈K1
F(zk) = F(z∗) = 0, there exists k0 ∈ K1 such that

zk0 − z∗‖ ≤ ε2
4 and ‖F(zk0)‖ ≤ ε2

4(4M1+1)
. We will prove by induction

hat ‖zk − z∗‖ ≤ ε2 for all k ≥ k0, k ∈ N. This is trivial for k = k0.

Assume, by inductive hypothesis, that ‖zk − z∗‖ ≤ ε2 for all k =
0, k0 + 1, . . . , k0 + j − 1. Then, by (55), ‖F(zk+1)‖ ≤ 1

2 ‖F(zk)‖ for k =
0 + 1, . . . , k0 + j − 1.

By (55) and (i)–(v), we can write:

zk0+ j − zk0‖ = ‖
j−1∑
i=0

αmax
k0+id

k0+i‖ ≤ 2M1

j−1∑
i=0

(
1

2

)i

‖F(zk0)‖

≤ 4M1‖F(zk0)‖ ≤ ε2

4
.

Therefore, ‖zk0+ j − z∗‖ ≤ ‖zk0+ j − zk0‖ + ‖zk0 − z∗‖ ≤ ε2
2 . Thus,

zk0+ j − z∗‖ ≤ ε2. This completes the inductive proof.

Let us prove now that {zk} is a Cauchy sequence.

Let j ≥ k0 and � ≥ 1. Then,

z j+� − z j‖ ≤
�−1∑
i=0

αmax
j+i ‖d j+i‖

≤ 2M1

�−1∑
i=0

(
1

2

)i+1

‖F(z j)‖

≤ 2M1

�−1∑
i=0

(
1

2

)i+1

‖F(z j)‖ ≤ 2M1‖F(z j)‖. (56)

Since lim j→∞ ‖F(z j)‖ = 0, (56) implies that {zk} is a Cauchy se-

uence. Then, since z∗ is a limit point, we have that limk−→∞ zk =
∗. �

.3. Superlinear and quadratic convergence

In this section we will prove that, under the assumptions of

heorem 4.2 and adequate choices of the parameters σ k, the algo-

ithm exhibits superlinear or quadratic convergence.

We will consider the following assumption on the parameters

.
k
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Assumption S. Choose σ k such that

lim
→∞

σk = 0. (57)

heorem 4.3. Assume that {zk} is generated by Algorithm PGUN and

onverges to z∗ such that F(z∗) = 0, where F′(z∗) is full row-rank, and

or k large enough we choose

k+1 = zk + αkdk (58)

t Step 6 of the algorithm. Assume that the hypotheses of Theorem 4.2,

nd both assumptions L and S hold. Then, zk converges superlinearly to
∗.

Moreover, if there exists c1, c2 > 0 such that, for all k large enough,

k ≤ c1‖F(zk)‖ and 1 − τk ≤ c2‖F(zk)‖, (59)

k converges quadratically to z∗.

roof. Since τ k → 1 we have that limk→∞ αmax
k

= 1.

By Theorem 4.2, for all k large enough there exists M > 0 such that

dk‖ ≤ M‖F(zk)‖, ‖F′(zk)‖ ≤ M and

F(zk+1)‖ ≤ ‖F(zk+1) − F(zk) − αmax
k F ′(zk)dk‖ + ‖F(zk)

+αmax
k F ′(zk)dk‖

≤ L

2

(
αmax

k

)2‖dk‖2 + ‖F(zk) + F ′(zk)dk‖
+

(
1 − αmax

k

)‖F ′(zk)dk‖
≤ L

2
M2‖F(zk)‖2 + σk‖F(zk)‖ +

(
1 − αmax

k

)
M2‖F(zk)‖

≤
(

L

2
M2‖F(zk)‖ + σk +

(
1 − αmax

k

)
M2

)
‖F(zk)‖

= Rk‖F(zk)‖ (60)

here Rk = L

2
M2‖F(zk)‖ + σk + M2(1 − αmax

k
). Moreover,

zk+1 − z∗‖ ≤
∞∑

j=k+1

αmax
j ‖d j‖ ≤ 2M

∞∑
j=1

(
1

2

) j

‖F(zk+1)‖.

By (60) and (48) we have that

zk+1 − z∗‖ ≤ 2MRk‖F(zk)‖
= 2MRk‖F(zk) − F(z∗) − F ′(zk)(zk − z∗)

+ F ′(zk)(zk − z∗)‖
≤ 2MRk‖F(zk) − F(z∗) − F ′(zk)(zk − z∗)‖

+‖F ′(zk)(zk − z∗)‖
≤ 2MRk

(
L

2
‖zk − z∗‖ + M

)
‖zk − z∗‖

≤ 2MRkL

(
L

2
+ M

)
‖zk − z∗‖.

Since limk→∞ Rk = 0, zk converges superlinearly to z∗.

Now, taking c = max{c1, c2}, since max{σk, 1 − αmax
k

} ≤
ax{σk, 1 − τk} ≤ c‖F(zk)‖, we have that

zk+1 − z∗‖ ≤ 2M

(
L

2
M2‖F(zk)‖ + σk + (1 − αmax

k )M2
)
‖F(zk)‖

≤ 2M

(
L

2
M2 + (1 + M2)c

)
‖F(zk)‖2

≤ 2M(
L

2
+ M)2

(
L

2
M2 + (1 + M2)c

)
‖zk − z∗‖2.

Therefore, quadratic convergence is proved. �

. Computational experience

In this section we will report some experiments with the PGUN

lgorithm for the solution of (3) and (5). In order to have a better idea
plementarity constraints, European Journal of Operational Research
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Table 1

Selected problems of the mathematical programs with equilibrium constraints collection.

Problem m n p nz Density (%) min Problem m n p nz Density (%) min

bard1 0 6 5 29 22 17.0000 liswet1 52 102 104 760 1 0.01399

bard2 0 22 18 98 6 −6598.00 nash1 2 7 7 35 16 7.8e−30

bard3 0 8 6 38 17 −12.6787 outrata31 0 7 6 37 20 3.20770

bilevel1 2 12 12 62 10 −60.0000 outrata32 0 7 6 38 21 3.44940

bilevel3 2 8 8 44 15 −12.6787 outrata33 0 7 6 38 21 4.60425

bilin 0 10 8 56 16 18.4000 outrata34 0 7 6 40 22 6.59268

dempe 2 2 3 12 40 28.2500 portfl1 1 75 14 1149 9 1.5e−05

design_cent1 9 7 13 60 13 1.86065 qpec1 10 21 21 113 5 80.0000

desilva 2 7 7 33 15 −1.00000 qpecgen1 5 103 103 11124 26 0.09900

df1 1 6 6 27 17 0.00000 ralph2 0 2 1 7 58 0.00000

ex911 2 7 8 42 18 −13.0000 ralphmod 0 109 105 10831 23 −683.033

ex921 0 7 6 34 19 17.0000 scale1 0 2 1 7 58 1.00000

ex922 0 9 7 38 13 100.000 scale2 0 2 1 7 58 1.00000

ex925 1 6 6 30 19 5.00000 scale3 0 2 1 7 58 1.00000

ex928 0 6 5 24 18 1.50000 scale4 0 2 1 7 58 1.00000

flp2 0 7 5 33 20 0.00000 scale5 0 2 1 7 58 100.000

gauvin 0 5 4 22 24 20.0000 scholtes1 1 3 2 14 40 2.00000

gnash1 1 11 11 57 11 −230.823 scholtes2 1 3 2 14 40 15.0000

hakonsen 0 9 7 46 16 24.3668 scholtes3 0 2 1 7 58 0.50000

jr1 1 2 2 10 50 0.50000 scholtes4 1 4 3 18 29 −3.0e−07

jr2 1 2 2 10 50 0.50000 scholtes5 0 3 2 12 40 1.00000

kth1 0 2 1 7 58 0.00000 sl1 2 11 10 49 10 0.00010

kth2 0 2 1 7 58 0.00000 stackelberg1 0 4 3 16 29 −3266.67

kth3 0 2 1 7 58 0.50000 traffic1 0 739 737 3679 0.17 45.1500

5
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M
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of the efficiency of PGUN in practice, we have compared the PGUN

method with the Projected-Gradient Levenberg–Marquardt (PLM) al-

gorithm Kanzow et al. (2005).

5.1. The projected Levenberg–Marquardt algorithm

The Projected Levenberg–Marquardt (PLM) is an algorithm for the

solution of constrained nonlinear systems F(z) = 0, z ∈ Z, where Z ∈
Rn is a nonempty, closed and convex set. For solving this problem the

method is applied to a nonlinear program of a form similar to (10)

where the merit function is also defined by (9).

The PLM algorithm generates a sequence {zk} by

zk+1 = PZ

(
zk + dk

U

)
k = 0, 1, . . . ,

where dk
U

is the unique solution of the system of linear equations(
J�k Jk + μkI

)
dU = −J�k F(zk) (61)

and Jk is an approximation to the Jacobian F′(zk).

We present below, in general terms, the method based on Algo-

rithm 3.12 of Kanzow et al. (2005) with the additional line search step

considered in the experimental section of Kanzow et al. (2005).

For more details about the method and its convergence properties

see Kanzow et al. (2005).

PLM Algorithm

Step 0: Initial setup: Choose z0 ∈ Z, μ > 0, β , σ , γ ∈ (0, 1), ρ > 0 and

p > 1.

Step 1: Declare finite convergence: If F(zk) = 0, stop.

Step 2: Unconstrained direction: Choose Jk, set μk = μ‖F(zk)‖2 and

compute dk
U

as the solution of (61).

Step 3: Levenberg–Marquardt step: If

‖F
(
PZ

(
zk + dk

U

))‖ � γ ‖F(zk)‖, (62)

then set zk+1 = PZ(zk + dk
U
) and go to Step 1.

Step 4: Line Search step: If the search direction sk = PZ(zk + dk
U
) − zk

is a descent direction of f in the sense that ∇ f (zk)�sk �
−ρ‖sk‖p, set α = 1 and
Please cite this article as: R. Andreani et al., Feasibility problems with com
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Step 4.1: If

‖F(zk + tsk)‖2 � ‖F(zk)‖2 + γα∇ f (zk)�sk

then set zk+1 = zk + αsk and go to Step 1.

Step 4.2: Choose αnew ∈ (0, α), set α = αnew and go to Step

4.1.

Step 5: Projected Gradient step: Compute a stepsize αk = max{β l | l =
0, 1, 2, . . .} such that

f (zk(αk)) � f (zk) + σ∇ f (zk)�(zk(αk) − zk),

where zk(α) = PZ(zk − α∇ f (zk)). Set zk+1 = zk(αk) and go to

Step 1.

.2. Implementation issues and test problems

The codes for the PGUN and PLM algorithms were written in For-

ran 77 with double precision and the experiments were performed

sing gfortarn-4.6 on an Intel CORE I3-2310M@2.10 GigaHertz with

00 Gigabyte of HD and 4Gigabyte of Ram. Furthermore we used the

a48 routine of the Harwell Subroutine Library HSL (2013) for the

olution of the linear systems required by the two algorithms.

We considered the following stopping criteria:

SC1: Stop with zk if ||g(zk, η)|| < 10−5.

SC2: Stop with zk when SC1 is satisfied and ||F(zk)|| < 10−6.

SC3: Stop at iteration k if ||F(zk)|| > 10−3 and ||F(zk−1)|| −
||F(zk)|| < 10−4.

PGUN stops if SC1 occurs at a projected gradient iteration. How-

ver, if SC1 takes place at a interior point Newton-like (IP) iteration

e continue the execution with the hope of satisfying SC2. If, during

his process, a projected gradient iteration is required, we stop with

he diagnostic SC1.

In some cases the PGUN algorithm converges very slowly using

rojected-gradient (PG) iterations to a stationary point with a pos-

tive value of the merit function. In this case, PGUN is not converg-

ng to a solution of the HNCP and there is no reason to continue the

xecution of the algorithm. To avoid this occurrence, we decided to

top prematurely the algorithm by using the third stopping criterion.

oreover, when SC3 occurs the algorithm is restarted with a new ini-

ial point.
plementarity constraints, European Journal of Operational Research
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Table 2

Number of complementary pairs for Experiment 1.

Problem NCP NNG Problem NCP NNG Problem NCP NNG

bard1 3 2 gauvin 2 2 qpecgen 100 2

bard2 4 17 gnash1 8 2 ralph2 1 0

bard3 2 5 hakonsen 4 4 ralphmod 100 8

bilevel1 6 5 jr1 1 0 scale1 1 0

bilevel3 4 3 jr2 1 0 scale2 1 0

bilin 6 3 kth1 1 0 scale3 1 0

dempe 1 0 kth2 1 0 scale4 1 0

design-cent1 3 3 kth3 1 0 scale5 1 0

desilva 2 4 liswet1-inv50 50 51 scholtes1 1 1

df1 1 4 nash1 2 4 scholtes2 1 1

ex911 5 1 outrata31 4 2 scholtes3 1 0

ex921 4 2 outrata32 4 2 scholtes4 1 2

ex922 4 4 outrata33 4 2 scholtes5 2 0

ex925 3 2 outrata34 4 2 sl1 3 7

ex928 2 3 portfl1 12 62 stackelberg1 1 2

flp2 2 4 qpec1 10 10 traffic1 244 494

Table 3

Performance of the PGUN method for Experiment 1.

Problem TERM IP PG CG NE TIME ||F(z)|| SPG_norm Feas Comp

bard1 IP-1 6 0 0 7 0.0000 1.17e−08 3.08e−08 1.16e−08 1.19e-09

bard2 IP-2 12 0 0 13 0.0040 5.86e−14 4.23e−13 1.20e−14 5.73e−14

bard3 IP-1 5 0 0 6 0.0000 4.72e−07 1.06e−06 2.88e−07 3.12e−07

bilevel1 IP-2 25 0 0 26 0.0040 9.90e−07 2.97e−06 9.90e−07 1.36e−20

bilevel3 IP-2 51 0 0 52 0.0040 9.64e−07 4.09e−06 9.64e−07 4.19e−23

bilin IP-1 7 0 0 8 0.0000 2.68e−08 8.96e−09 1.84e−09 2.48e−08

dempe IP-1 5 0 0 6 0.0000 1.25e−07 5.07e−07 1.25e−07 1.98e−12

design-cent1 IP-2∗ 8 0 0 9 0.0000 6.80e−08 1.05e−08 4.51e−09 6.79e−08

desilva IP-1 5 0 0 6 0.0000 2.21e−07 6.11e−07 2.17e−07 2.94e−08

df1 IP-2 10 0 0 11 0.0000 8.97e−08 1.26e−07 8.97e−08 2.72e−23

ex911 IP-1 8 0 0 9 0.0000 6.08e−08 3.80e−07 5.08e−08 3.34e−08

ex921 IP-2 31 0 0 32 0.0000 6.08e−07 1.74e−06 6.08e−07 1.97e−22

ex922 IP-2 14 0 0 15 0.0000 4.84e−07 4.77e−10 1.13e−15 4.84e−07

ex925 IP-1 8 0 0 9 0.0000 4.57e−07 7.93e−08 6.38e−16 4.57e−07

ex928 IP-1 5 0 0 6 0.0000 2.16e−08 6.12e−09 9.91e−17 1.86e−08

flp2 IP-1 7 0 0 8 0.0000 4.55e−13 1.06e−12 1.14e−15 4.54e−13

gauvin IP-1 8 0 0 9 0.0000 5.13e−07 2.43e−07 4.43e−15 5.13e−07

gnash1 IP-1∗ 14 0 0 15 0.0000 4.42e−11 4.60e−11 4.42e−011 1.86e−17

hakonsen IP-1 9 0 0 10 0.0000 3.54e−11 4.26e−09 3.54e−11 3.45e−15

jr1 IP-2 10 0 0 11 0.0000 9.53e−07 1.31e−09 0.0000 9.53e−07

jr2 IP-2 10 0 0 11 0.0000 9.53e−07 1.31e−09 0.0000 9.53e−07

kth1 IP-2 10 0 0 11 0.0000 9.53e−07 1.31e−09 - 9.53e−07

kth2 IP-2 10 0 0 11 0.0000 9.53e−07 1.31e−09 - 9.53e−07

kth3 IP-2 10 0 0 11 0.0000 9.53e−07 1.31e−09 - 9.53e−07

liswet1-inv50 IP-1 26 0 0 45 0.1400 3.21e−08 3.96e−08 2.82e−08 1.18e−08

nash1 IP-1 8 0 0 9 0.0000 6.52e−07 7.94e−08 2.25e−15 6.52e−07

outrata31 IP-1 8 0 0 9 0.0000 1.06e−08 2.03e−08 3.79e−09 9.93e−09

outrata32 IP-1 8 0 0 9 0.0000 1.06e−08 2.03e−08 3.79e−09 9.93e−09

outrata33 IP-1 8 0 0 9 0.0000 1.06e−08 2.03e−08 3.79e−09 9.93e−09

outrata34 IP-1 8 0 0 9 0.0000 1.06e−08 2.03e−08 3.79e−09 9.93e−09

portfl1 IP-2∗ 2098 0 0 2100 5.6403 2.21e−09 3.19e−09 2.21e−09 4.98e−17

qpec1 IP-2 12 0 0 13 0.0040 2.66e−07 9.20e−11 0.00000 5.96e-08

qpecgen ∗∗
ralph2 IP-2 10 0 0 11 0.0000 9.53e−07 1.31e−09 - 9.53e−07

ralphmod IP-1 16 0 0 17 0.8080 7.28e−09 1.64e−07 6.40e−11 6.95e−09

scale1 IP-2 10 0 0 11 0.0000 9.53e−07 1.31e−09 - 9.53e−07

scale2 IP-2 10 0 0 11 0.0000 9.53e−07 1.31e−09 - 9.53e−07

scale3 IP-2 10 0 0 11 0.0000 9.53e−07 1.31e−09 - 9.53e−07

scale4 IP-2 10 0 0 11 0.0000 9.53e−07 1.31e−09 - 9.53e−07

scale5 IP-2 10 0 0 11 0.0000 9.53e−07 1.31e−09 - 9.53e−07

scholtes1 PG-1 13 2 3 16 0.0000 6.40e−09 6.40e−09 6.40e−09 9.31e−15

scholtes2 PG-1 13 2 3 16 0.0000 6.40e-09 6.40e-09 6.40e-09 9.31e-15

scholtes3 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 - 9.53e-07

scholtes4 IP-2 10 0 0 11 0.0000 9.53e-07 1.31e-09 1.61e-17 9.53e-07

scholtes5 IP-2 11 0 0 12 0.0000 3.37e-07 2.32e-10 0.00000 2.38e-07

sl1 IP-2 13 0 0 14 0.0000 4.09e-07 4.14e-10 1.94e-14 4.09e-07

stackelberg1 IP-1 7 0 0 8 0.0000 3.49e-07 8.48e-06 3.40e-15 3.49e-07

traffic1 ∗∗
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Table 4

Performance of the PLM Method for Experiment 1.

Problem TERM LM PG CG NE TIME ||F(z)|| SPG_norm Feas Comp

bard1 LM-1 3 0 0 4 0.0000 3.35e−09 1.02e-08 8.84e-16 3.35e-09

bard2 LM-1∗ 11 1 2 23 0.0000 5.76e−08 2.09e-07 2.17e-11 4.44e-08

bard3 LM-2 7 0 0 8 0.0000 7.25e−09 2.44e-08 5.67e-09 4.45e-09

bilevel1 ∗∗
bilevel3 LM-2 8 0 0 9 0.0000 6.74e−09 5.46e−09 1.63e−09 6.54e−09

bilin LM-1 7 0 0 8 0.0000 8.81e−12 4.40e−12 1.51e−16 8.81e−12

dempe LM-2 42 0 0 43 0.0000 6.13e−07 1.71e−06 4.33e−07 4.33e−07

designcent1 LM-2∗ 9 0 0 10 0.0000 1.06e−10 3.25e−10 1.06e−10 7.45e−14

desilva LM-2 8 0 0 9 0.0000 1.91e−10 3.07e−10 1.83e−10 3.95e−11

df1 LM-1 9 0 0 10 0.0000 2.02e−08 6.36e−08 1.93e−08 5.52e−09

ex911 LM-2 6 0 0 126 0.0000 9.56e−10 7.93e−10 9.44e−16 7.91e−10

ex921 LM-2 5 0 0 113 0.0000 1.61e−10 3.20e−10 6.76e−16 1.57e−10

ex922 LM-2∗ 7 0 0 8 0.0000 2.81e−10 5.95e−07 4.39e−15 2.17e−10

ex925 LM-2 11 0 0 12 0.0000 5.16e−08 6.35e−09 1.05e−15 5.16e−08

ex928 LM-1 7 0 0 8 0.0000 1.78e−07 4.48e−08 1.00e−16 1.78e−07

flp2 LM-1 5 0 0 6 0.0000 6.75e−10 2.69e−10 5.93e−16 6.73e−10

gauvin LM-1∗ 6 0 0 7 0.00000 5.18e−09 7.95e−10 4.97e−13 5.18e−09

gnash1 ∗∗
hakonsen ∗∗
jr1 LM-2 18 0 0 19 0.0000 7.68e−08 1.37e−10 1.08e−19 7.68e−08

jr2 LM-2 18 0 0 19 0.0000 7.68e−08 1.37e−10 1.08e−19 7.68e−08

kth1 LM-2 17 0 0 18 0.0000 6.71e−07 1.16e−09 - 6.71e−07

kth2 LM-2 17 0 0 18 0.0000 6.71e−07 1.16e−09 - 6.71e−07

kth3 LM-2 17 0 0 18 0.0000 6.71e−07 1.16e−09 - 6.71e−07

liswet1-inv50 ∗∗
nash1 LM-2 7 0 0 8 0.0000 4.93e-08 2.21e−08 1.36e−15 4.93e−08

outrata31 LM-1 8 0 0 18 0.0000 2.54e−07 7.06e−07 1.13e−07 2.27e−07

outrata32 LM-1 8 0 0 18 0.0000 2.54e−07 7.06e−07 1.13e−07 2.27e−07

outrata33 LM-1 8 0 0 18 0.0000 2.54e−07 7.06e−07 1.13e−07 2.27e−07

outrata34 LM-1 8 0 0 18 0.0000 2.54e−07 7.06e−07 1.13e−07 2.27e−07

portfl1 ∗∗
qpec1 LM-2 19 0 0 20 0.0000 5.68e−07 4.49e−10 0.00000 1.32e−07

qpecgen ∗∗
ralph2 LM-2 17 0 0 18 0.0000 6.71e−07 1.16e−09 - 6.71e−07

ralphmod ∗∗
scale1 LM-2 17 0 0 18 0.0000 6.71e−07 1.15e−09 - 6.71e−07

scale2 LM-2 17 0 0 18 0.0000 6.71e−07 1.15e−09 - 6.71e−07

scale3 LM-2 17 0 0 18 0.0000 6.71e−07 1.15e−09 - 6.71e−07

scale4 LM-2 17 0 0 18 0.0000 6.71e−07 1.15e−09 - 6.71e−07

scale5 LM-2 17 0 0 18 0.0000 6.71e−07 1.15e−09 - 6.71e−07

scholtes1 LM-1 8 0 0 9 0.0000 3.60e−07 4.32e−08 2.49e−08 3.59e−07

scholtes2 LM-1 8 0 0 9 0.0000 3.60e−07 4.32e−08 2.49e−08 3.59e−07

scholtes3 LM-2 17 0 0 18 0.0000 6.71e-07 1.16e-09 - 6.71e-07

scholtes4 LM-1 16 0 0 11 0.0000 2.02e-04 8.90e-06 3.04e-14 1.96e-04

scholtes5 LM-1 3 0 0 98 0.0000 9.99e-19 9.99e-19 0.00000 9.99e-19

sl1 ∗∗
stackelberg1 LM-1∗ 25 0 0 1767 0.0000 2.29e-09 2.61e-09 3.12e-15 2.29e-09

traffic1 ∗∗
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PLM employs fast Levenberg–Marquardt (LM) and slow Projected-

Gradient (PG) iterations and use the same stopping criteria SCi, i = 1,

2, 3, employed by PGUN with the LM iterations replacing the IP ones.

We limited the number of iterations of both PGUN and PLM by

max{100, min{r + 1, 2n + m}3} and the CPU time by 600 seconds.

The initial iterate for both methods was given by:

x0 = e, y0 = 0, w0 = e (63)

where e is a vector of ones. The following values for the algorithmic

parameters of PGUN were used: αmin = 10−8, β = 0.25, cbig = 104,

csmall = 10−10, ηk = η = 1.0, γk = 1
k2 , ρ = 10−3, σk = σ = 1√

2n+m
,

τk = τ = 0.9995 and θ = 0.5. For the PLM Method we utilized the

default parameters of Kanzow et al. (2005): αmin = 10−12, β = 0.9,

μ = 10−5, σ = 10−4, γ = 0.99995, p = 2.1 and ρ = 10−8.

We have made the experiments with both the algorithms on the

solution of 48 MPCC test problems of the collection MacMPEC Leyffer

(2000). These problems are presented in Table 1. In this table, m is

the dimension of y, n is the dimension of x and w, p is the dimension

of (ϕ(x, y, w), H(x, y, w))�, nz is the number of possible non zero el-
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ments of the Jacobian matrix, density is the density of the Jacobian

atrix and min is the lower value known for the function.

.3. Experiment 1: computing a simple feasible solution of MPCC

In order to compute a simple feasible solution of the MPCC, we

onsidered the HNCP of the form (3). Table 2 shows the number of

omplementary pairs for each problem. In this table, NCP represents

he number of original complementary pairs and NNG is the number

f complementary pairs after each nonnegative non-complementary

ariable xi is transformed into a pair of complementary variables

xi, wi) with wi an auxiliary variable.

Table 3 reports the performance of the PGUN algorithm for finding

simple feasible solution of the Mathematical Program with Com-

lementarity Constraints (MPCC). In this table, we use the following

otations:

TERM: termination of the algorithm which can be one of the fol-

lowing:

IP-1: algorithm stopped with an interior-point Newton-like

(IP) iteration satisfying SC1.
plementarity constraints, European Journal of Operational Research
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Table 5

Number of complementary pairs for Experiment 2.

Problem NCP NNG Problem NCP NNG Problem NCP NNG

bard1 3 3 gauvin 2 3 qpecgen 100 3

bard2 4 18 gnash1 8 3 ralph2 1 1

bard3 2 6 hakonsen 4 5 ralphmod 100 9

bilevel1 6 6 jr1 1 1 scale1 1 1

bilevel3 4 4 jr2 1 1 scale2 1 1

bilin 6 4 kth1 1 1 scale3 1 1

dempe 1 1 kth2 1 1 scale4 1 1

design-cent1 3 4 kth3 1 1 scale5 1 1

desilva 2 5 liswet1-inv50 50 52 scholtes1 1 2

df1 1 5 nash1 2 5 scholtes2 1 2

ex911 5 2 outrata31 4 3 scholtes3 1 1

ex921 4 3 outrata32 4 3 scholtes4 1 3

ex922 4 5 outrata33 4 3 scholtes5 2 1

ex925 3 3 outrata34 4 3 sl1 3 8

ex928 2 4 portfl1 12 63 stackelberg1 1 3

flp2 2 5 qpec1 10 11 traffic1 244 495

Table 6

Performance of the PGUN method for Experiment 2.

Problem TERM IP PG CG NE TIME ||F(z)|| SPG_norm Feas Comp SLACK

bard1 IP-1 9 0 0 10 0.0000 7.93e−10 6.21e−09 7.72e−10 1.81e−10 −6.68e−18

bard2 IP-1 18 0 0 19 0.0080 1.06e−12 9.27e−07 1.06e−12 8.36e−14 −1.72e−23

bard3 IP-1 13 0 0 14 0.0000 1.54e−08 8.22e−08 1.48e−08 3.98e−09 −1.55e-17

bilevel1 ∗∗
bilvel3 IP-1 13 0 0 14 0.0000 2.74e−08 1.49e−07 2.70e−08 4.91e−09 3.12e−17

bilin ∗∗
dempe ∗∗
design-cent1 ∗∗
desilva IP-2 13 0 0 14 0.0000 5.01e−07 8.52e−07 5.01e−07 1.41e−11 −1.03e−16

df1 IP-2 13 0 0 14 0.0000 7.90e−07 2.02e−06 7.89e−07 4.69e−08 −1.53e−16

ex911 IP-1 10 0 0 11 0.0000 6.26e−13 7.65e−13 2.11e−15 4.52e−13 1.29e−17

ex921 IP-1 9 0 0 10 0.0000 7.74e−09 5.92e−08 7.37e−09 1.68e−09 −2.22e−18

ex922 IP-2 17 0 0 18 0.0040 6.18e−07 3.93e−07 1.96e-08 6.12e−07 −3.15e−22

ex925 IP-2 16 0 0 17 0.0000 4.48e−07 2.00e−06 4.48e-07 1.12e−15 1.04e−16

ex928 IP-2 8 0 0 9 0.0000 2.13e−09 6.00e−09 7.22e-10 2.01e−09 1.15e−13

flp2 IP-2 19 0 0 20 0.0000 3.59e−07 6.72e−10 3.59e-07 2.16e−17 −1.11e−16

gauvin IP-1 20 0 0 21 0.0000 3.24e−07 2.90e−06 3.24e-07 3.54e−16 −1.06e−16

gnash1 IP-1∗ 43 0 0 57 0.0040 2.36e−07 8.88e−07 2.36e-07 3.09e−14 −5.87e−17

hakonsen IP-1∗ 10 0 0 11 0.0000 8.37e−15 9.94e−13 8.37e-15 5.07e−22 1.44e−05

jr1 IP-2 11 0 0 12 0.0000 3.45e−07 4.88e−07 3.45e-07 3.00e−17 −1.52e−18

jr2 IP-2 12 0 0 13 0.0000 3.65e−07 5.17e−07 3.65e-07 1.86e−17 2.60e−18

kth1 IP-1∗ 5 0 0 6 0.0000 6.87e−07 4.88e−07 6.87e-07 2.84e−10 1.56e−10

kth2 IP-1 2 0 0 3 0.0000 6.12e−07 3.53e−07 4.99e-07 2.49e−07 2.49e−07

kth3 IP-2 12 0 0 13 0.0000 6.38e−07 6.38e−07 6.38e-07 7.83e−17 −1.93e−17

liswet1-inv50 ∗∗
nash1 IP-2∗ 14 0 0 15 0.0000 6.86e−07 1.13e−09 6.86e−07 5.00e−19 −1.43e−17

outrata31 IP-1 11 0 0 12 0.0000 5.05e−08 1.23e−07 5.05e−08 1.29ev09 1.24e−14

outrata32 II-IP∗ 2197 0 0 5607 0.2280 3.70e−06 1.07e−05 3.70e−06 9.13e−15 1.16e−14

outrata33 IP-1 15 0 0 16 0.0000 2.54e−06 7.39e−06 2.54e−06 5.88e−16 −5.96e−15

outrata34 IP-1 14 0 0 15 0.0000 2.61e−06 7.29e−06 2.61e−06 1.63e−16 8.24e−16

portfl1 ∗∗
qpec1 IP-2∗ 20 0 0 22 0.0080 5.61e−07 8.49e−09 5.61e−07 2.92e−16 1.40e−17

qpecgen ∗∗
ralph2 IP-2 13 0 0 14 0.0000 4.01e−07 3.58e−07 3.58e−07 1.79e−07 −6.20e−25

ralphmod ∗∗
scale1 IP-2 11 0 0 12 0.0000 7.88e−07 1.57e−06 7.88e−07 8.23e−17 −4.34e−19

scale2 IP-2 39 0 0 85 0.0000 3.31e−07 6.62e−07 3.31e−07 2.75e−19 3.00e−19

scale3 IP-2 15 0 0 16 0.0000 3.16e−07 6.33e−07 3.16e−07 4.58e−19 1.30e−19

scale4 IP-1∗ 86 0 0 275 0.0000 4.86e−06 9.35e−06 4.60e−05 8.36e−07 1.04e−06

scale5 IP-1∗ 14 0 0 15 0.0000 2.01e−08 4.03e−06 2.01e−08 2.35e−17 2.96e−19

scholtes1 IP-2 15 0 0 16 0.0000 7.98e−07 1.42e−09 7.98e−07 4.42e−16 −1.75e−17

scholtes2 IP-2∗ 6 0 0 7 0.0000 4.52e−08 1.80e−07 4.52e−08 1.49e−10 2.65e−10

scholtes3 IP-2∗ 8 0 0 9 0.0000 4.13e-07 4.13e-07 4.13e-07 1.04e-16 -1.68e-17

scholtes4 IP-2 11 0 0 12 0.0000 3.52e-07 3.05e-10 1.84e-18 2.39e-07 -2.84e-20

scholtes5 PG-1 19 1 1 32 0.0000 2.22e-05 2.10e-07 2.22e-05 1.09e-19 -2.21e-20

sl1 IP-2 15 0 0 16 0.0000 6.44e-07 5.81e-09 2.88e-07 5.76e-07 -1.10e-16

stackelberg1 IP-1 27 0 0 28 0.0000 7.76e-08 3.73e-06 7.76e-08 2.99e-14 -7.33e-18

traffic1 ∗∗
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Table 7

Performance of the PLM method for Experiment 2.

Problem TERM LM PG CG NE TIME ||F(z)|| SPG_norm Feas Comp SLACK

bard1 ∗∗
bard2 ∗∗
bard3 LM-2 83104 0 0 7171315 8.0325 6.59e−08 3.64e−07 6.59e−08 1.00e−17 4.22e−18

bilevel1 ∗∗
bilvel3 LM∗ 4097 0 0 4120 0.5920 2.31e−03 6.48e−03 2.31e−03 8.71e−14 0.00000

bilin ∗∗
dempe ∗∗
design-cent1 LM-1∗ 9 0 0 39 0.0000 3.40e−07 5.08e−07 2.35e−07 1.34e−07 −1.16e−07

desilva LM-2∗ 18 1 2 145 0.0040 2.09e−08 1.27e−06 2.66e−09 2.07e−08 −1.94e−07

df1 ∗∗
ex911 ∗∗
ex921 ∗∗
ex922 ∗∗
ex925 ∗∗
ex928 LM-2∗ 10 1 2 125 0.0000 9.35e−13 5.79e-10 1.16e-15 9.35e-13 1.40e-18

flp2 LM-2∗ 22 0 0 52 0.0000 9.76e−07 4.58e-09 9.76e-07 2.49e-17 9.42e-18

gauvin ∗∗
gnash1 ∗∗
hakonsen LM-1∗ 13 0 0 26 0.0000 4.52e−08 1.21e−07 5.16e−10 4.52e−08 1.44e−05

jr1 LM-2∗ 14 0 0 15 0.0000 5.68e−07 8.04e−07 5.68e−07 1.06e−17 4.50e−18

jr2 LM-2∗ 15 0 0 16 0.0000 7.56e−07 1.06e−06 7.56e−07 1.97e−19 5.24e−19

kth1 LM-1 7 1 2 119 0.0000 7.31e−19 4.08e−10 6.69e−19 2.44e−19 −8.88e−20

kth2 LM-1 1 0 0 2 0.0000 9.00e−10 0.00000 9.00e−10 0.00000 0.00000

kth3 LM-2∗ 4 0 0 5 0.0000 7.23e−07 7.22e−07 7.23e−07 9.65e−10 6.81e−16

liswet1-inv50 ∗∗
nash1 ∗∗
outrata31 LM-1∗ 10 0 2 29 0.0000 4.48e−09 1.84e−07 4.48e-09 9.18e−13 1.92e−13

outrata32 LM∗ 2197 0 0 298916 0.2360 3.72e−06 1.08e−05 3.72e−06 1.13e−15 1.24e−16

outrata33 ∗∗
outrata34 ∗∗
portfl1 ∗∗
qpec1 LM-1∗ 1 0 0 2 0.0000 2.11e−07 8.68e−08 2.07e−07 1.20e−08 −1.05e−08

qpecgen ∗∗
ralph2 LM-2 18 0 0 19 0.0000 6.66e−07 5.96e−07 5.96e−07 2.98e−07 5.92e−18

ralphmod ∗∗
scale1 LM-2 10 0 0 11 0.0000 9.58e−07 1.91e−06 9.58e-07 9.87e−18 7.46e−18

scale2 LM-2∗ 23 0 0 24 0.0000 5.65e−07 1.13e−06 5.65e-07 3.60e−20 1.80e−20

scale3 LM-1∗ 1 1 1 14 0.0000 1.64e−08 1.62e−08 1.64e−08 1.39e−10 1.39e−10

scale4 ∗∗
scale5 LM-1∗ 19 1 2 123 0.0040 3.68e−08 7.37e−06 3.68e-08 7.09e-20 7.01e−17

scholtes1 LM-2∗ 22 0 0 23 0.0040 5.35e−07 1.17e−09 5.35e-07 2.97e-17 1.29e−16

scholtes2 LM-1∗ 10 1 2 222 0.0040 5.50e−11 3.23e−09 5.50e-11 4.53e-16 −5.92e−16

scholtes3 LM-1∗ 1 0 0 2 0.0000 6.38e-09 8.20e-09 5.31e-09 2.50e-09 2.50e-09

scholtes4 PG-1 16 1 1 37 0.0040 2.17e-06 1.93e-08 4.48e-09 1.46e-06 3.40e-18

scholtes5 LM-2 19 0 0 20 0.0000 5.79e-07 1.32e-09 5.79e-07 2.82e-18 4.21e-18

sl1 ∗∗
stackelberg1 ∗∗
traffic1 ∗∗
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IP-2: algorithm stopped with an IP iteration satisfying SC2.

PG-1: algorithm stopped with a projected-gradient (PG) itera-

tion satisfying SC1.

IP: number of interior-point Newton-like (IP) iterations.

PG: number of projected-gradient (PG) iterations.

CG: number of times that the algorithm changed from an IP to a

PG iteration or conversely.

NE: number of function evaluations.

TIME: CPU time (in seconds), measured with the function etime.

A time smaller than 1e-4 is considered as zero.

||F(z)||: value of ||F(z)||, where z is the solution computed by the

algorithm.

SPG_norm: norm of the projected-gradient at the solution com-

puted by the algorithm.

Feas: feasibility measure, that is, Feas = ||h(z)||.
Comp: complementarity measure, that is, Comp = maxi=1,n{xiwi}.
∗ The algorithm computed a feasible solution of MPCC with an ini-

tial point different from (63).

∗∗ failure: The algorithm was not able to compute a feasible solu-

tion of MPCC after 10 trials with different starting points.
Please cite this article as: R. Andreani et al., Feasibility problems with com

(2015), http://dx.doi.org/10.1016/j.ejor.2015.09.030
he performance of the PGUN algorithm for finding a simple fea-

ible solution of the 48 MPCCs is illustrated in Table 3. These re-

ults indicate that in general the algorithm converged fast to a so-

ution of HNCP, as it performed a small number of IP iterations. In

act, there was only one case in which PGUN required too many

P iterations and only two instances where the algorithm required

wo slow PG iterations. For three instances the stopping criterion

C3 was applied to avoid the slow convergence of PGUN to a sta-

ionary point of the merit function that would not be a solu-

ion of HNCP. In these three cases PGUN converged to a solution

f HNCP by using an alternative starting point. Finally, the algo-

ithm was unable to find a feasible solution of the MPCC in two

nstances.

We also note from the values of Feas and Comp that PGUN is usu-

lly able to compute accurate feasible solutions of the MPCC. Fur-

hermore, the use of the stopping criterion SC2 was shown appro-

riate for such a goal. This is an interesting point as these accurate

olutions can be used as initial points for projected and active-set al-

orithms (Fang et al., 2012; Fukushima & Tseng, 2002; Júdice et al.,

007; Ralph, 2007) that have been designed for the computation of

tationary points of MPCC.
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In order to have a better idea of the performance of PGUN in prac-

ice, we also solved the test problems by the PLM algorithm. The

esults of the performance of this method are displayed in Table 4,

here the notations mentioned before were used together with the

ollowing additional ones:

TERM: algorithm termination, which can be one of the following:

LM-1: algorithm stopped with a Levenberg–Marquardt (LM) it-

eration satisfying SC1.

LM-2: algorithm stopped with a LM iteration satisfying SC2.

PG-1: algorithm stopped with a projected gradient (PG) itera-

tion satisfying SC1.

LM: number of LM iterations (steps 2, 3 and 4).

PG: number of PG iterations (step 5).

he numerical results indicate that the PLM algorithm used a small

umber of fast LM iterations to converge and rarely employs slow

G iterations. As before, the stopping criterion SC3 was used in order

o stop prematurely the convergence to points that are not feasible

olutions of MPCC. As for the PGUN algorithm the use of the stop-

ing criterion SC2 usually leads to accurate feasible solutions of MPCC

see values in the columns Comp and Feas). Finally, the PLM method

eems to have more failures for finding a feasible solution than the

GUN algorithm. This leads to our recommendation of using PGUN

or computing a feasible solution of an MPCC.

.4. Experiment 2: computing a target feasible solution of MPCC

Next, we report the experiments with PGUN and PLM for comput-

ng a target feasible solution (i.e., a solution of HNCP (5)) of the MPCC

est problems mentioned before when the target value ct is the best

alue given by the collection. The definition of the test problems used

n this experiment and the numerical results on the performance of

he algorithms for these instances are displayed in Tables 5, 6 and 7,

espectively. In these tables we used the notations mentioned before

nd the additional one:

SLACK: represents the value of the slack variable associated to the

arget constraint. If SLACK is greater than a tolerance 10−6, then the

lgorithm was able to compute a better feasible solution than the one

iven by the collection.

The numerical results indicate the same type of performance

hown before. However, there is an increase of failures of the al-

orithms when the objective function constraint is included in the

NCP associated to a target feasible solution. Furthermore PGUN and

LM always computed the feasible solution given by the collection

see values in the column SLACK). These conclusions confirm the

onclusions in Fernandes et al. (2001) that computing a target fea-

ible solution is usually more difficult than finding a simple feasible

olution.

. Conclusions

In this paper, we introduced a Projected-Gradient Underdeter-

ined Newton-like (PGUN) algorithm for computing a feasible so-

ution of a Mathematical Programming Problem with Complemen-

arity Constraints (MPCC). The algorithm can also be applied for the

omputation of a feasible solution of MPCC that satisfies a certain ob-

ective function target. In both cases the algorithm searches a solu-

ion of an associated Horizontal Complementarity Problem (HNCP).

t was shown that PGUN is globally convergent to a solution of HNCP

r to a stationary point of an associated natural merit function. Fast

ocal convergence was established under reasonable hypotheses. The

GUN algorithm seems to perform well for the computation of fea-

ible solutions of an MPCC and seems to be more efficient than a

rojected Levenberg–Marquardt (PLM) algorithm designed before for
Please cite this article as: R. Andreani et al., Feasibility problems with com

(2015), http://dx.doi.org/10.1016/j.ejor.2015.09.030
he same goal. The choice of the initial point for the PGUN and PLM

lgorithms seems to have an important impact on the efficiency of

hese algorithms. Future research will address the combination of

GUN with algorithms that require feasible initial points for solving

PCC in order to solve practical problems.
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