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Abstract
The constraint nondegeneracy condition is one of the most relevant and useful con-
straint qualifications in nonlinear semidefinite programming. It can be characterized
in terms of any fixed orthonormal basis of the, let us say, �-dimensional kernel of the
constraint matrix, by the linear independence of a set of �(�+1)/2 derivative vectors.
We show that this linear independence requirement can be equivalently formulated
in a smaller set, of � derivative vectors, by considering all orthonormal bases of the
kernel instead. This allows us to identify that not all bases are relevant for a constraint
qualification to be defined, giving rise to a strictly weaker variant of nondegeneracy
related to the global convergence of an external penalty method. We use some of
these ideas to revisit an approach of Forsgren (Math Program 88, 105–128, 2000)
for exploiting the sparsity structure of a transformation of the constraints to define a
constraint qualification, which led us to develop another relaxed notion of nondegen-
eracy using a simpler transformation. If the zeros of the derivatives of the constraint
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function at a given point are considered, instead of the zeros of the function itself in
a neighborhood of that point, we obtain an even weaker constraint qualification that
connects Forsgren’s condition and ours.

Keywords Semidefinite programming · Constraint qualifications · Constraint
nondegeneracy

Mathematics Subject Classification 90C46 · 90C30 · 90C26 · 90C22

1 Introduction

The study of linear and nonlinear semidefinite programming (for short, SDP and
NSDP, respectively) problems has been consistently growing over the last decades.
There are several models for real world problems that can be reformulated as SDPs
or NSDPs (we refer to the handbooks [9, Part 4] and [30, Part 3] for a vast col-
lection of applications), which motivate and are motivated by the development of
theoretical results regarding optimality conditions and constraint qualifications (CQs)
for (N)SDPs. Loosely speaking, CQs are assumptions over the feasible set of an
optimization problem that ensure that it can be locally described in terms of its first-
order approximation. This leads to the possibility of characterizing all solutions of an
(N)SDP problem in terms of the derivatives of the functions that describe it, which
gives CQs a pivotal role in building convergence theories for practical algorithms.
The standard way to do this is to prove that every feasible limit point of the output
sequence of the algorithm satisfies the Karush-Kuhn-Tucker (KKT) conditions under
a given CQ. Thus, employing a weaker CQ leads to a more robust convergence theory.

One of the most relevant CQs in the literature of (N)SDP is the so-called nondegen-
eracy (or transversality) condition, introduced by Shapiro and Fan in [27, Sec. 2] in
the context of eigenvalue optimization, and later reformulated by Shapiro [25, Def. 4]
for general NSDPs. This condition has been widely used for characterizing sensitivity
results (see, for instance, [14, 17, 19–21, 28]), and also for proving global conver-
gence and the rate of convergence of numerical algorithms (we refer to Yamashita
and Yabe [31, Secs. 3, 4, and 5] for a survey on this topic). However, it is known that
even in the linear case, the solutions of large scale SDP problems tend to be degen-
erate, even though nondegeneracy is expected to hold in a generic sense. Besides,
when the constraint of an NSDP problem has some sparsity structure near one of its
solutions—for instance, a diagonal structure—then nondegeneracy is not satisfied at
that solution [25]. This means that the convergence theory of an algorithm supported
by nondegeneracy does not cover such points.

The explanation for such kind of issue, in our opinion, is the degree of generality of
the nondegeneracy condition. That is, although it was born in NSDP, nondegeneracy
does not capture any particularity of the constraints, being straigthforwardly extended
for any general conic optimization problem, as long as the cone is closed and convex.
However, embedding specific traits of matrix-valued functions into nondegeneracy
may be more or less direct, depending on how it is characterized. For example, it is
well known that (block-)diagonal problems can be remodelled as multiple potentially
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dense constraints, such that the nondegeneracy condition, when applied to this remod-
elled problem, may hold. But what about other types of sparsity? While this question
has once been addressed by Forsgren [13], his approach is somewhat intricate and it
was not the main topic of his paper, leaving room for a more dedicated analysis. In
this paper, instead of defining nondegeneracy as the transversality of two particular
subspaces—which is the most usual definition—we exploit an equivalent character-
ization by Shapiro [25, Prop. 6], which is phrased in terms of the gradients of the
entries of an isolated “active block” of the constraints. One particularly interesting
detail about this characterization is that it treats all representations of such an “active
block” equally, but we show that some of them are more meaningful than others.

The contributions of this paper revolve around the following results:

• We provide a new characterization of nondegeneracy that induces a weaker variant
of it, here calledweak-nondegeneracy, which uses information of the eigenvectors
of the constraints evaluated at nearby points;

• We incorporate a sparsity treatment in [25, Prop. 6], which leads to another weak
variant of nondegeneracy, called sparse-nondegeneracy.

• We connect sparse-nondegeneracy with Forsgren’s CQ by means of replacing, in
both conditions, the strucutural zeros of the constraint function in a neighborhood
of a point, with the zeros of the gradients of its entries at such point. This new
condition happens to be a constraint qualification also, which we call gradient
sparse-nondegeneracy.

These conditions are designed with the sole goal of assisting in proving global con-
vergence of algorithms by means of sequential optimality conditions [3, 8]; however,
we envision that they may be further employed in sensitivity analysis, second-order
analysis, among other applications. All variants of nondegeneracy we present are
proved to be constraint qualifications strictly weaker than nondegeneracy. We also
show that when our conditions are applied to diagonal matrices, they are reduced to
the linear independence constraint qualification (LICQ) from nonlinear programming
(NLP).More generally, the conditions are invariant to block representations of (N)SDP
problems as a single semidefinite block diagonal matrix or as multiple semidefinite
constraints. Then, we compare our definitions with other CQs from the literature.

This paper is structured as follows: In Sect. 2, we introduce our notation; in Sect. 3
we recall the nondegeneracy condition and we prove a new characterization of it,
which is where the definition of weak-nondegeneracy comes from. In Sect. 4, we
present our definition of sparse-nondegeneracy and a relaxation of it with distinct
properties. Finally, in Sect. 5, we discuss some possibilities of prospective work.

2 Preliminaries

Let f : Rn → R and G : Rn → S
m be continuously differentiable functions, where

S
m is the linear space of allm×m symmetric matrices, and let Sm+ be the closed convex

pointed cone of all m × m positive semidefinite matrices. The problem of interest in
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this paper is the following:
Minimize

x∈Rn
f (x),

subject to G(x) � 0,
(NSDP)

where � is the partial order induced by S
m+, characterized by the relation: M � N

⇔ M − N ∈ S
m+, for all M, N ∈ S

m . It is worth pointing out that all results in this
paper can be straightforwardly extended to NSDP problems with separate equality
constraints, butwe omit them for simplicity. The feasible set of (NSDP)will be denoted
byF .= G−1(Sm+). It is well-known that Sm is an Euclidean space when equipped with
the (Frobenius) inner product 〈M, N 〉 .= trace(MN )

.= ∑m
i, j=1 Mi j Ni j .

The derivative of G at a point x ∈ R
n is the linear mapping DG(x) : Rn → S

m

that can be described (in the canonical basis of Rn) by the action

d �→ DG(x)[d] .=
n∑

i=1

Dxi G(x)di

for all d = (d1, . . . , dn) ∈ R
n , where Dxi G(x) ∈ S

m is the partial derivative of G
with respect to the variable xi at x = (x1, . . . , xn) ∈ R

n . Also, for each fixed x , the
adjoint of DG(x) is the unique linear mapping DG(x)∗ : Sm → R

n that satisfies
〈DG(x)[d], M〉 = 〈d, DG(x)∗[M]〉, for all (d, M) ∈ R

n × S
m . Hence,

DG(x)∗[M] =
⎡

⎢
⎣

〈Dx1G(x), M〉
...

〈DxnG(x), M〉

⎤

⎥
⎦ =

m∑

i, j=1

Mi j∇Gi j (x)

for all M ∈ S
m , where ∇Gi j (x) denotes the gradient of the (i, j)-th entry of G as

a function of x . Similarly, we shall denote the gradient of any real-valued function
F : Rn → R at a point x ∈ R

n by ∇F(x).
For any given M ∈ S

m , we consider its spectral decomposition in the form

M =
m∑

i=1

λi (M)ui (M)ui (M)�,

where λi (M) ∈ R denotes the i-th eigenvalue of M arranged in non-increasing order
(that is, λ1(M) � λ2(M) � . . . � λm(M)), and ui (M) ∈ R

m corresponds to any
associated eigenvector such that {ui (M) : i ∈ {1, . . . ,m}} is an orthonormal basis
of Rm (that is, ui (M)T ui (M) = 1 and ui (M)T u j (M) = 0 when i �= j , for all
i, j ∈ {1, . . . ,m}).

A useful fact for our analyses is that the orthogonal projection of M onto S
m+ with

respect to the induced (Frobenius) norm, denoted by ΠS
m+(M), can be characterized

in terms of its spectral decomposition as follows:

ΠS
m+(M) =

m∑

i=1

[λi (M)]+ui (M)ui (M)�,
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where [λ]+ .= max{0, λ} for all λ ∈ R.
Given any x ∈ F and any orthogonal matrix U ∈ R

m×m whose columns are
eigenvectors of G(x), we partition U = [P, E] such that the columns of P ∈ R

m×r

correspond to the eigenvectors associated with the positive eigenvalues of G(x) and
the columns of E ∈ R

m×m−r correspond to the eigenvectors associated with the null
eigenvalues of G(x), where r = rank(G(x)). To abbreviate, as an abuse of notation
and language, we will say that E spans KerG(x) in this context. That is, E spans

KerG(x) if, and only if, E
�
E = Im−r and G(x)E = 0, where Im−r denotes an

(m − r)-dimensional identity matrix.
There are multiple ways of describing optimality in NSDP problems, but in this

paper we direct our attention to necessary optimality conditions that are based on the
classical Karush-Kuhn-Tucker (KKT) conditions:

Definition 1 (KKT ) We say that a point x ∈ F satisfies the KKT conditions when
there exists some Y � 0 such that

∇x L(x,Y )
.= ∇ f (x) − DG(x)∗[Y ] = 0,

〈G(x),Y 〉 = 0,
(KKT)

where L : Rn × S
m → R is the Lagrangian function of (NSDP), given by

L(x,Y )
.= f (x) − 〈G(x),Y 〉.

As usual, the matrix Y is called a Lagrange multiplier associated with x and we denote
the set of all Lagrange multipliers associated with x by Λ(x). When Λ(x) �= ∅, x is
called a KKT point of (NSDP). Let r be the rank of G(x) and let E ∈ R

m×m−r be a
matrix that spansKerG(x); then, for anyY ∈ Λ(x), since bothY andG(x) are positive
semidefinite, the complementarity relation 〈G(x),Y 〉 = 0 is equivalent toG(x)Y = 0,
which is in turn equivalent to saying that Im Y ⊆ (ImG(x))⊥ = KerG(x), where
(ImG(x))⊥ denotes the orthogonal complement of ImG(x). Therefore, Y is comple-
mentary to G(x) if, and only if, it has the form

Y = EỸ E
�
, (1)

where Ỹ ∈ S
m−r+ is not necessarily a diagonal matrix. Moreover, note that Ỹ is not

necessarily positive definite; that is, dim(Ker Y ) does not necessarily coincide with r .
When they do coincide, x and Y are said to be strictly complementary [25].

It is known that the KKT conditions are not necessary for local optimality unless
they are paired with a constraint qualification. For instance, one of the most studied
constraint qualifications for (NSDP) is Robinson’s CQ [24, Def. 3], which holds at a
point x ∈ F if there exists d ∈ R

n such that

G(x) + DG(x)[d] ∈ int Sm+,

where int Sm+ denotes the topological interior of Sm+, which in turn coincides with the
set of m × m symmetric positive definite matrices. Alternatively, following Bonnans
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and Shapiro [11, Prop. 2.97], it is possible to say that (the dual form of) Robinson’s
CQ holds at x ∈ F if, and only if,

DG(x)∗[Y ] = 0

〈G(x),Y 〉 = 0

Y � 0

⎫
⎪⎬

⎪⎭
⇒ Y = 0. (2)

Another well-known fact is that, for every local minimizer x ∈ F , the set Λ(x) is
nonempty and compact if, and only if, Robinson’s CQ holds at x (see [11, Props.
3.9 and 3.17] for details). This makes Robinson’s CQ the natural analogue of the
Mangasarian-Fromovitz CQ (MFCQ), from NLP, in NSDP.

3 The nondegeneracy condition for NSDP

In this section, we discuss the well-known nondegeneracy condition introduced by
Shapiro and Fan [27, Sec. 2]. We derive a different characterization for it that sug-
gests a way of obtaining a weaker constraint qualification with potentially interesting
properties. But firstly, we briefly recall some elements of convex analysis.

The (Bouligand) tangent cone to a set C at a point y ∈ C is defined as

TC (y)
.=
{

d : ∃{dk}k∈N → d, ∃{tk}k∈N → 0, tk > 0,
∀k ∈ N, y + tkdk ∈ C

}

.

In particular, when C = S
m+, at a given M ∈ S

m+, it can be characterized as follows

TSm+(M) =
{
N ∈ S

m : d�Nd � 0, ∀d ∈ KerM
}

.

Therefore, for every feasible x we have

TSm+(G(x)) =
{
N ∈ S

m : E�
NE � 0

}
, (3)

whenever E spans KerG(x).
It is clear from (3) that the largest subspace contained in TSm+(G(x)), that is, its

lineality space, can be characterized as follows:

lin(TSm+(G(x))) =
{
N ∈ S

m : E�
NE = 0

}
. (4)

The nondegeneracy condition of Shapiro and Fan is verified at x when the linear
subspaces Im DG(x) and lin(TSm+(G(x))) of Sm meet transversally, which is why it
was originally called transversality in [27]. In mathematical language:
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Definition 2 (Def. 4 from [25]) A point x ∈ F is said to satisfy the nondegeneracy
condition when the following relation is satisfied:

Im DG(x) + lin(TSm+(G(x))) = S
m . (5)

If x is a local solution of (NSDP), then nondegeneracy implies that Λ(x) is a
singleton; and the converse is also true in the presence of strict complementarity (see
[26, Thm. 2.2 and Sect. 3]). Hence, Definition 2 is generally seen as an analogue of
LICQ, from NLP, in NSDP. However, this analogy is tied to how the link between
NLP and NSDP is made [25]. For example, when an NLP problem with constraints
g1(x) � 0, . . . , gm(x) � 0 ismodelled as anNSDPwith a single structurally diagonal
conic constraint; that is, with G in the form

G(x)
.=
⎡

⎢
⎣

g1(x)
. . .

gm(x)

⎤

⎥
⎦ � 0; (6)

then Definition 2 fails whenever there is some Y ∈ Λ(x) and some nonzero H ∈ S
m

with only zeros in its diagonal, such that H � −Y , regardless of the linear indepen-
dence of the set {∇g1(x), . . . ,∇gm(x)}. In fact, structurally diagonal NSDP problems
are in general expected to lack uniqueness of the Lagrange multiplier.

On the other hand, it is well-known (cf. [11, Sect. 4.6.1]) that a feasible point x
satisfies the nondegeneracy condition if, and only if, either KerG(x) = {0} or the
linear mapping ψx : Rn → S

m−r , defined by

ψx (d)
.= E

�
DG(x)[d]E, (7)

is surjective for any E that spans KerG(x). As a direct consequence of the equivalence
above, it is possible to characterize Definition 2 as follows:

Proposition 1 (Prop. 6 from [25]) Let x ∈ F and let r denote the rank of G(x). Then,
x satisfies the nondegeneracy condition if, and only if, either KerG(x) = {0} or the
vectors

vi j (x, E)
.=
[
e�
i Dx1G(x)e j , . . . , e

�
i DxnG(x)e j

]�

= DG(x)∗
[
ei e�

j + e j e�
i

2

]

,

1 ≤ i ≤ j ≤ m − r (8)

are linearly independent, where E ∈ R
m×m−r is an arbitrary fixed matrix that spans

KerG(x), and ei denotes the i-th column of E, for all i ∈ {1, . . . ,m − r}.
Now, inspired byProposition 1,we present a similar characterization of nondegeneracy
that evaluates the linear independence of a narrower set of vectors at the cost of looking
at all possible choices of E instead of a fixed one. Since our reasoning can be extended
to Robinson’s CQ, we also characterize it in a similar manner.
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Proposition 2 Let x ∈ F and r = rank(G(x)). Then, x satisfies:

1. Nondegeneracy if, and only if, either r = m or the set

{
vi i (x, E) : i ∈ {1, . . . ,m − r}} (9)

is linearly independent for every matrix E ∈ R
m×m−r that spans KerG(x).

2. Robinson’s CQ if, and only if, either r = m or (9) is positive linearly independent
for every matrix E ∈ R

m×m−r that spans KerG(x).

Proof Let us assume that r < m since the result follows trivially otherwise. Then,

for any fixed E ∈ R
m×m−r such that G(x)E = 0 and E

�
E = Im−r , note that (9)

is (positive) linearly independent if, and only if, the following holds: if the scalars
α1, . . . , αm−r ∈ R (with α1 � 0, . . ., αm−r � 0, respectively) satisfy

m−r∑

i=1

αi DG(x)∗[ei e�
i ] =

m−r∑

i=1

αivi i (x, E) = 0, (10)

then one must have α1 = . . . = αm−r = 0. That is, (9) is (positive) linearly indepen-
dent if, and only if, for every matrix Y of the form

Y
.=

m−r∑

i=1

αi ei e
�
i = E

⎡

⎢
⎣

α1
. . .

αm−r

⎤

⎥
⎦ E

�
(11)

where α1, . . . , αm−r ∈ R (with α1 � 0, . . ., αm−r � 0, respectively), we have that

DG(x)∗[Y ] = 0 ⇒ Y = 0. (12)

With this in mind, we recall that:

• For anyfixed choice of E spanningKerG(x), nondegeneracy holds at x if, and only

if, (12) holds for every Y in the form Y = EZE
�
with Z ∈ S

m−r (Proposition 1);
• Robinson’s CQ holds at x if, and only if, (12) holds for every Y � 0 such that

〈G(x),Y 〉 = 0 (see (2));

and it becomes clear that nondegeneracy (respectively, Robinson’s CQ) implies that
(9) is (positive) linearly independent, for every E as described above, because every
Y as in (11) satisfies 〈G(x),Y 〉 = 0.

To prove the converse of item 1, assume that (9) is linearly independent for

all E that spans KerG(x). Let Y = EZE
�

be such that Z ∈ S
m−r and let

C ∈ R
m−r×m−r be an orthogonal matrix such that C�ZC = Diag(z1, . . . , zm−r ),

where Diag(z1, . . . , zm−r ) ∈ S
m−r is a diagonal matrix whose i-th diagonal entry is

zi , with i ∈ {1, . . . ,m − r}. Then, note that EC� also spans KerG(x), which puts

Y = EC�Diag(z1, . . . , zm−r )(EC
�)�
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in format (11); by our previous assumption (12) holds for Y and we conclude that
nondegeneracy holds at x .

Now, to prove the converse of item2, assume that (9) is positive linearly independent
for all E that spans KerG(x), and let Y be such that DG(x)∗[Y ] = 0, 〈G(x),Y 〉 = 0
and Y � 0. It is elementary to see that there exists somematrix E that spans KerG(x),
such that Y has the form (11). It follows from our hypothesis that Y = 0 and because
Y is arbitrary, Robinson’s CQ holds at x . ��

The characterizations of nondegeneracy and Robinson’s CQ from Proposition 2
may seem less practical than the one from Proposition 1, but it reveals a clear path for
defining weaker CQs by ruling out some particular choices of E , which is the main
result of the next subsection.

We recall that Wachsmuth [29] proved for NLPs that LICQ is equivalent to the
uniqueness of the Lagrange multiplier for any objective function f (the unique
multiplier may vary with f ). Thanks to Proposition 2 this characterization can be
straightforwardly extended to NSDP replacing LICQ by nondegeneracy, which we
omit.

3.1 Sequences of eigenvectors and weak-nondegeneracy

In [8], Andreani et al. introduce a constructive technique for proving the existence of
Lagrangemultipliers for (NSDP),which is based on the so-called sequential optimality
conditions from NLP [3]. The core idea of their proof is to apply an external penalty
algorithm to (NSDP) after regularizing it around a given local minimizer, to obtain a
sequence of approximate KKT points converging to it, as follows:

Theorem 1 (Thm. 3.2 from [8]) Let x be a local minimizer of (NSDP). Then, for any
sequence {ρk}k∈N → +∞, there exists some {xk}k∈N → x, such that for every k ∈ N,
xk is a local minimizer of the regularized penalty function

f (x) + 1

2
‖x − x‖22 + ρk

2
‖ΠS

m+(−G(x))‖2.

In particular, computing derivatives we obtain ∇x L(xk,Y k) → 0, where Y k .=
ρkΠS

m+(−G(xk)).

With this result at hand, the authors prove that the sequence {Y k}k∈N must be
bounded in the presence of Robinson’s CQ, and that all of its limit points are Lagrange
multipliers associated with x [8, Thm. 6.1]. Furthermore, the proof of this fact under
nondegeneracy follows easily by contradiction: suppose that {Y k}k∈N is unbounded,
and take any limit point Y of the sequence

{
Y k/‖Y k‖}k∈N; then:

1. It follows from ∇x L(xk,Y k) → 0 that DG(x)∗[Y ] = 0, which means Y ∈
Ker DG(x)∗ = Im DG(x)⊥;

2. By the definition of Y k , we have 0 �= Y � 0 and 〈G(x),Y 〉 = 0, so Y ∈
lin(TSm+(G(x)))⊥;
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Hence, Y ∈ Im DG(x)⊥ ∩ lin(TSm+(G(x)))⊥, which contradicts nondegeneracy.

With a single extra step, which is to take a spectral decomposition of Y k for each k,
the reasoning of the previous paragraph can be put in the same terms as Proposition 2.
Indeed, observe that λi (Y k) = [ρkλi (−G(xk))]+ = 0 for all i ∈ {m − r + 1, . . . ,m}
and all k large enough, because

λi (−G(xk)) = −λm−i+1(G(xk)).

So

∇x L(xk,Y k) = ∇ f (xk) −
m−r∑

i=1

[ρkλi (−G(xk))]+vi i (x
k, Ek) → 0,

where Ek ∈ R
m×m−r is amatrixwhose i-th column is um−i+1(G(xk)). Then, note that

if Ek can be chosen such that at least one of its limit points E ensures linear indepen-
dence of

{
vi i (x, E) : i ∈ {1, . . . ,m − r}}, then {Y k}k∈N must be bounded. Although

the first clause of the previous sentence resembles nondegeneracy (as in Proposition 2),
note that asking for the linear independence of the set

{
vi i (x, E) : i ∈ {1, . . . ,m − r}}

when E is not a limit point of some sequence {Ek}k∈N of eigenvectors ofG(xk) seems
unnecessary for defining a constraint qualification. This motivates us to propose a
weaker variant of nondegeneracy in a way that can also be extended to Robinson’s
CQ, which goes as follows:

Definition 3 (Weak-nondegeneracy and weak-Robinson’s CQ) Let x ∈ F and let r be
the rank of G(x). We say that weak-nondegeneracy (respectively, weak-Robinson’s
CQ) holds at x if either KerG(x) = {0} or: for every sequence {xk}k∈N → x , there
exists some sequence of matrices with orthonormal columns {Ek}k∈N ⊆ R

m×m−r

such that:

1. The columns of Ek are eigenvectors associated with them−r smallest eigenvalues
of G(xk), for each k ∈ N;

2. There exists a limit point E of {Ek}k∈N such that the set

{
vi i (x, E) : i ∈ {1, . . . ,m − r}} ,

as defined in (8), is (positive) linearly independent.

There are a couple of nuances about Definition 3 that should be properly addressed
(see also the discussion after Remark 2). First, we recall that the eigenvector functions
ui (G(x)), i ∈ {m−r +1, . . . ,m} are not necessarily continuous at a given point x ; so
weak-nondegeneracy (and weak-Robinson’s CQ) relies on the “sequential continuity
of eigenvectors” along a givenpath. Second, for anyfixed x ∈ F and any {xk}k∈N → x ,
the sequence {Ek}k∈N described in Definition 3 is well-defined for k sufficiently large,
since the r largest eigenvalues of G(xk) are necessarily bounded away from zero.

Remark 1 Based on the previous discussion, it is worth mentioning that weak-
nondegeneracy (and weak-Robinson’s CQ) can be equivalently stated in terms of
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a certain notion of continuity of the eigenvectors of G(x). To see why, consider a
feasible point x ∈ F and let r be the rank of G(x). Because r < m, it follows
that λr (G(x)) > λr+1(G(x)) for every x close enough to x , so the following set is
well-defined:

B(x)
.=
{

E ∈ R
m×(m−r) : G(x)ei = λm−i+1(G(x))ei , ∀i ∈ {1, . . . ,m − r}

E�E = Im−r

}

(13)
where E

.= [e1, . . . , em−r ]. The set above consists of all matrices whose columns are
orthonormal eigenvectors associated with the m − r smallest eigenvalues of G(x).
Moreover, for any sequence {xk}k∈N → x recall the Painlevé-Kuratowski upper limit
[11, Def. 2.52]) of the sequence of images {B(xk)}k∈N, defined as

lim sup
k→∞

B(xk)
.=
{
z : ∃I ⊆ N infinite, ∃{zk}k∈I → z, ∀k ∈ I , zk ∈ B(xk)

}
.

In these terms, it is easy to see that weak-nondegeneracy (respectively, weak-
Robinson’s CQ) holds at x if, and only if, either KerG(x) = {0} or, for every sequence
{xk}k∈N → x , there exists some E ∈ lim supk→∞ B(xk) such that

{
vi i (x, E) : i ∈ {1, . . . ,m − r}}

is (positive) linearly independent.

Although the characterization of Remark 1 may shorten notation, in order to
check whether weak-nondegenearcy holds or not at a given point x requires the
computation of the set B(x), which may be complicated in practice. Therefore, it
is important to emphasize that B(x) is not meant to be explicitly computed because
weak-nondegeneracy is not meant to bemanually checked at any point, except for very
specific cases with a convenient eigenvector structure (see Examples 1 and 2); instead,
the main purpose of weak-nondegeneracy (and weak-Robinson’s CQ) is to serve as a
theoretical tool for building the convergence theory of iterative algorithms, as it was
presented in the proof of Theorem 2 for the external penalty method. In this context,
knowledge of the problem solution is usually limited to an approximation obtained
by truncating the method’s output sequence, which ends up taking away some of the
meaning of checking constraint qualifications in practice.

The discussion that motivated Definition 3 already suggests that it indeed describes
a genuine constraint qualification, and it also provides an outline of how to prove it.
Nevertheless, we state and prove this fact with appropriate mathematical rigor below.
Althoughwe prove the next result forweak-Robinson’sCQ, observe that the analogous
statement for weak-nondegeneracy follows as a corollary.

Theorem 2 Every local minimizer x ∈ F of (NSDP) that satisfies weak-Robinson’s
CQ also satisfies the KKT conditions. By extension, the same holds for weak-
nondegeneracy.

Proof Let x be a local minimizer of (NSDP) that satisfies weak-Robinson’s CQ and let
{xk}k∈N → x and {Y k}k∈N be the sequences described in Theorem 1, for an arbitrary
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sequence {ρk}k∈N → ∞. If r = m, set Y = 0 as a Lagrange multiplier associated
with x and we are done; so let us assume that r < m from now on. From the local
optimality of xk , for each k ∈ N, we obtain

∇ f (xk) + (xk − x) + DG(xk)∗[Y k] = 0. (14)

Recall that we assume, without loss of generality, that λ1(−G(xk)) � . . . �
λm(−G(xk)), for every k; and note that when k is large enough, say greater than
some k0 ∈ N, we necessarily have λi (−G(xk)) < 0 for all i ∈ {m − r + 1, . . . ,m}
since G(xk) → G(x) and eigenvalues λi (·) are continuous mappings. Then, for each
k > k0, we have

Y k =
m−r∑

i=1

αk
i e

k
i (e

k
i )

�,

where αk
i

.= [ρkλi (−G(xk))]+ � 0 and eki
.= um−i+1(G(xk)) is an arbitrary unitary

eigenvector associated with λm−i+1(G(xk)), for each i ∈ {1, . . . ,m − r}. Set Ek .=
[ek1, . . . , ekm−r ]. Since {Ek}k∈N is bounded, we may pick any of its limit points E =
[e1, . . . , em−r ] and assume, taking a subsequence if necessary, that it converges to E ,
which spans KerG(x). Then, observe that (14) implies

∇ f (xk) −
m−r∑

i=1

αk
i DG(xk)∗[eki (eki )�] → 0,

but since DG(xk)∗[eki (eki )�] = vi i (xk, Ek) (see (8)), we can rewrite it as

∇ f (xk) −
m−r∑

i=1

αk
i vi i (x

k, Ek) → 0. (15)

If
{
(αk

i , . . . , α
k
m−r )

}
k∈N has any convergent subsequence, denote its limit point by

α
.= (αi , . . . , αm−r ), and note that α generates a Lagrange multiplier for x , which is

Y
.=

m−r∑

i=1

αi ei e
�
i . (16)

Hence, it suffices to prove that {αk
i }k∈N, i ∈ {1, . . . ,m − r}, must be bounded under

weak-Robinson’s CQ. Let us assume for a moment that the sequences {αk
i }k∈N are

unbounded, which means

mk .= max
{
αk
i : i ∈ {1, . . . ,m − r}

}
→ ∞.

Note that
{
(αk

1, . . . , α
k
m−r )/m

k
}
k∈N must be bounded and it must also have a nonzero

limit point, which we will denote by (α̃1, . . . , α̃m−r ) � 0. We assume without loss of
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generality, that
{
(αk

1, . . . , α
k
m−r )/m

k
}
k∈N → (α̃1, . . . , α̃m−r ). After dividing (15) by

mk for each k and taking limit k → +∞, we obtain

m−r∑

i=1

α̃ivi i (x, E) = 0,

which means
{
vi i (x, E) : i ∈ {1, . . . ,m − r}} is positive linearly dependent. How-

ever, since our analyses hold for any arbitrary choice of {Ek}k∈N and any E , this
contradicts weak-Robinson’s CQ. ��

Let us briefly analyse a direct application of weak-Robinson’s CQ: As an inter-
mediary step of the proof of Theorem 2, we proved that every feasible limit point
of a sequence described in Theorem 1 must satisfy the KKT conditions under weak-
Robinson’s CQ. However, the sequences {xk}k∈N and {Y k}k∈N described in Theorem 2
are precisely the ones that are generated by a standard external penalty method (that
is, [8, Algorithm 1] with the parameter Ωmax fixed at zero). Thus, every feasible limit
point of the external penalty method that satisfies weak-Robinson’s CQ must also
satisfy the KKT conditions. By extension this also holds for weak-nondegeneracy.

Another interesting property of the weak variants of nondegeneracy and Robin-
son’s CQ is that they are equivalent to LICQ and MFCQ, respectively, when G is a
structurally diagonal matrix function (as in (6)) that models an NLP problem, which
in some sense resolves the inconsistency between nondegeneracy and LICQ noted by
Shapiro [25, Page 309].

Remark 2 When G is structurally diagonal, as in (6), then x ∈ F satisfies weak-
nondegeneracy if, and only if, the set {∇gi (x) : gi (x) = 0} is linearly independent.
Indeed, if r = m the result follows trivially, so let us assume that r < m. Also, suppose
that {i ∈ {1, . . . ,m} : gi (x) = 0} = {r + 1, . . . ,m}, where r is the rank of G(x).
Clearly, if {∇gr+1(x), . . . ,∇gm(x)} is linearly independent, then we may take

Ek .=
[

0
Im−r

]

∈ R
m×m−r

for all sequences {xk}k∈N → x to conclude that x satisfies weak-nondegeneracy. Con-
versely, suppose that weak-nondegeneracy holds at x , take any sequence {xk}k∈N → x
and any {Ek}k∈N → E

.= [ei , . . . , em−r ] such that
{
vi i (x, E) : i ∈ {1, . . . ,m − r}}

is linearly independent. Note that E must have the form

E =
[
0
Q

]

, where Q ∈ R
m−r×m−r is orthonormal,
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due to the diagonal structure of G and the fact that gi (x) �= 0 for all i ∈ {1, . . . , r}.
Hence,

vi i (x, E) =
m∑

j=r+1

∇g j (x)Q
2
i, j−r = Dg(x)�(Qi � Qi ), (17)

where Dg(x) is the Jacobianmatrix of g(x)
.= (gr+1(x), . . . , gm(x)) at x , the operator

� is the (Hadamard) entry-wise vector product, and Qi is the i-th column of Q, with
i ∈ {1, . . . ,m − r}. Then,

span
{
vi i (x, E) : i ∈ {1, . . . ,m − r}} ⊆ Im Dg(x)�

and, consequently,

m − r = dim(span
{
vi i (x, E) : i ∈ {1, . . . ,m − r}})

� dim(Im Dg(x)�)

= rank(Dg(x)�) � m − r

Hence, rank(Dg(x)�) = m−r , whichmeans that {∇gr+1(x), . . . ,∇gm(x)} is linearly
independent. Using similar arguments, thanks to (17) which states that the vectors
vi i (x, E) are nonnegative linear combinations of the columns of Dg(x)�, it is possible
to prove that x ∈ F satisfies weak-Robinson’s CQ if, and only if, {∇gi (x) : gi (x) = 0}
is positive linearly independent, which is in turn equivalent to Robinson’s CQ.

It is clear from Proposition 2 that weak-nondegeneracy is implied by nondegener-
acy; and we see in the example below that the converse is not true.

Example 1 Consider the following constraint:

G(x)
.=
[
x1 x2
x2 x1

]

at the point x
.= (0, 0), which clearly does not satisfy nondegeneracy. Weak-

nondegeneracy, on the other hand, holds at x as

B(x) =

⎧
⎪⎪⎨

⎪⎪⎩

{
±1√
2

[−1 1
1 1

]

, ±1√
2

[
1 1

−1 1

]}

, if x2 �= 0

{
E ∈ R

2×2 : E�E = I2
}
, if x2 = 0

for every x ∈ R
2, according to (13), so it suffices to take

Ek .= 1√
2

[−1 1
1 1

]

∈ B(xk) and E
.= 1√

2

[−1 1
1 1

]

∈ lim sup
k→∞

B(xk)

for all sequences {xk}k∈N → x to obtain that v11(x, E) = [1,−1] and v22(x, E) =
[1, 1] are linearly independent.
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This simple example is also important to show that weak-nondegeneracy does not
guarantee uniqueness of Lagrange multipliers. For instance, consider the constraint
above with the objective function f (x)

.= 2x1 which has x as its global minimizer;
then every Y in the form

Y
.=
[
1 − α 0
0 1 + α

]

for α ∈ [−1, 1] \ {0} is a Lagrange multiplier associated with x .

Another example that serves the same purpose, which can also be used to show
how the sparsity structure of the eigenvectors of G is grasped by weak-nondegeneracy
is the following:

Example 2 Consider the constraint:

G(x)
.=
⎡

⎣
x11 0 x13
0 x22 0
x13 0 x33

⎤

⎦ � 0

and let x
.= 0. Nondegeneracy fails at x , but weak-nondegeneracy holds. To see this,

take any sequence {xk}k∈N → x , if xk13 �= 0 for all k (the other case is trivial, so we
will omit it), and

Ek .=

⎡

⎢
⎢
⎢
⎣

−ηk1√
(ηk1)

2+1
0

−ηk2√
(ηk2)

2+1

0 1 0
1√

(ηk1)
2+1

0 1√
(ηk2)

2+1

⎤

⎥
⎥
⎥
⎦

,

where

ηk1
.=

−xk11 + xk22 +
√

(xk11)
2 − 2xk22x

k
33 + (xk33)

2 + 4(xk13)
2

2xk13

and

ηk2
.=

−xk11 + xk22 −
√

(xk11)
2 − 2xk22x

k
33 + (xk33)

2 + 4(xk13)
2

2xk13
.

In this case, assuming that xk13 > 0 for all k (which can be done without loss of
generality since the other cases are analogous), we have

lim
k→∞ ηk1 = lim

k→∞
|xk13|
xk13

= 1 and lim
k→∞ ηk2 = lim

k→∞ −|xk13|
xk13

= −1,
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hence

Ek → E
.=
⎡

⎢
⎣

−1√
2

0 1√
2

0 1 0
1√
2

0 1√
2

⎤

⎥
⎦ ,

and computing the vectors of interest we arrive at

v11(x, E) = 1

2

⎡

⎢
⎢
⎣

1
0
1

−2

⎤

⎥
⎥
⎦ , v22(x, E) =

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦ . v33(x, E) = 1

2

⎡

⎢
⎢
⎣

1
0
1
2

⎤

⎥
⎥
⎦ ,

which are linearly independent, so weak-nondegeneracy holds at x . Observe that, in
this case, the matrix Ek has the same sparsity structure as G.

Moreover, note that weak-nondegeneracy imposes a less demanding dimensionality
constraint over (NSDP); in fact, in order to verify nondegeneracy, one must have
n � (m−r)(m−r+1)/2, while weak-nondegeneracy may hold as long as n � m−r
(Remark 2). It is also clear from their definitions that weak-nondegeneracy implies
weak-Robinson’s CQ; and it is possible to show that the converse is not necessarily
true. For instance, consider the constraint defined by:

G(x)
.=
[
x 0
0 x

]

,

and note that all orthogonal matrices E ∈ R
2×2 have in their columns eigenvectors of

G(x), for every x . Since v11(x, E) = v22(x, E) = 1 for every E , it follows that weak-
nondegeneracy and weak-Robinson’s CQ are equivalent to their strong counterparts in
this case. Thus, from Proposition 2 we see that (weak-)nondegeneracy does not hold,
while (weak-)Robinson’s CQ does.

It is also clear from Proposition 2 (item 2) that Robinson’s CQ implies weak-
Robinson’s CQ; however, we were not capable of finding a counterexample for the
converse. We conjecture that they are equivalent.

Remark 3 If we replace the sequences {xk}k∈N → x bymatrix sequences {Mk}k∈N →
G(x) in Definition 3, then we recover the nondegeneracy condition. Indeed, for any
E ∈ R

m×m−r that spans KerG(x), consider

Mk .= UΛkU
�
, with U

.= [E, um−r+1(G(x)), . . . , um(G(x))],

and Λk .= Diag(yk) such that yki
.= i/k for i ∈ {1, . . . ,m − r}, and yki

.= λi (G(x))
otherwise. So clearly Mk → G(x) and the only convergent sequence Ek to E
is E itself. Consequently, when we assume Definition 3 it necessarily follows that
{vi i (x, E) : i ∈ {1, . . . ,m − r}} is linearly independent. Then, since E was chosen
arbitrary, Proposition 2 implies that nondegeneracy holds true.
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Remark 4 Remark 2 can be straightforwardly extended to structurally block diagonal
matrix constraints, such as

G(x)
.=
⎡

⎢
⎣

G1(x)
. . .

Gq(x)

⎤

⎥
⎦ � 0, (Block-NSDP)

where each “block” is defined by a continuously differentiable function G� : Rn →
S
m� , with � ∈ {1, . . . , q}, and m1 + . . . + mq = m. In fact, let x ∈ F and r�

.=
rank(G�(x)) for each �; and, for simplicity, let us assume that r� < m� for all �. Since
KerG(x) = KerG1(x) × . . . × KerGq(x), then r = r1 + . . . + rq . Then, weak-
nondegeneracy (respectively, weak-Robinson’s CQ) holds at x if, and only if, for all
sequences {xk}k∈N → x , there are sequences of matrices {Ek

� }k∈N such that:

• The columns of Ek
� are unitary eigenvectors associated with the m� − r� smallest

eigenvalues of G�(xk), for each k ∈ N and each � ∈ {1, . . . , q};
• There are limit points E� of {Ek

� }k∈N, � ∈ {1, . . . , q}, such that the set

q⋃

�=1

{
v�
i i (x, E�) : i ∈ {1, . . . ,m� − r�}

}

is (positive) linearly independent, where

v�
i j (x, E�)

.=
[
e�
�,iDx1G�(x)e�, j , . . . , e�

�,iDxnG�(x)e�, j

]�
, (18)

and e�,1, . . . , e�,m�−r� denote the columns of E�, for each � ∈ {1, . . . , q}.
The proof of this fact is elementary with [15, Lem. 1.3.10] and (8) at hand. More-
over, note that this is precisely the way weak-nondegeneracy would be defined for an
equivalent multifold NSDPwith constraintsG1(x) � 0, . . . ,Gq(x) � 0. Thus, weak-
nondegeneracy andweak-Robinson’s CQ are invariant to block diagonal andmultifold
representations of (Block-NSDP). This is especially meaningful in problems that do
not present an explicit block-diagonal representation, in which case it is not necessary
to have prior knowledge of such a representation to talk about weak-nondegeneracy
(or weak-Robinson’s CQ), contrary to nondegeneracy.

Recall that the analysis we presented until this point showed, among other things,
that some choices of E may be more meaningful than others. With this in mind, we are
now led to revisit the work of Forsgren [13], who presented a very interesting way of
talking about nondegeneracy in the presence of any sparsity structure that appears after
applying a particular transformation to the problem. In the next section, we improve
some of Forsgren’s ideas by presenting a simplified and more general way of dealing
with sparsity.
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4 Dealing with structural sparsity

In this section, we take inspiration from a regularity condition introduced by Forsgren
[13, Sect. 2.3], whose primary goal was to prove second-order optimality conditions
for (NSDP). However, what makes Forsgren’s condition specially interesting for us
is the fact it can benefit from some sparsity structure of a certain Schur complement
related to the constraint function. The main objective of this section is to present a
more straightforward way of enjoying sparsity, based on Forsgren’s results and Sect. 3.
But before that, we present some of the notation used by Forsgren.

Given a point x and amatrix-valued function F : Rn → S
β , consider the setS(F, x)

defined as follows:

S(F, x)
.= {

M ∈ S
β : Mi j = 0 if Fi j (x) is structurally zero near x

}

= {
M ∈ S

β : Mi j = 0 if ∃ε > 0 such that Fi j (x) = 0,∀x ∈ B(x, ε)
}
.

For example, if β = 3 and for all x close to x , we are able to identify non trivial
mappings Fi j such that

F(x) =
⎡

⎣
F11(x) 0 F13(x)

0 F22(x) 0
F13(x) 0 F33(x)

⎤

⎦ , then

M ∈ S(F, x) ⇔ M =
⎡

⎣
M11 0 M13
0 M22 0

M13 0 M33

⎤

⎦ ,

where M11, M13, M22, and M33 may or may not be zero. Also, we define

I(F, x)
.= {

(i, j) : ∀ε > 0, ∃x ∈ B(x, ε) such that Fi j (x) �= 0, 1 � i � j � β
}

as the set of indices that define the elements of S(F, x).
Forsgren’s results are obtained in terms of the function

G̃(x)
.= G(x) − G(x)P(P

�
G(x)P)−1P

�
G(x),

whereU = [P, E] has columns that form an orthonormal eigenvector basis for G(x),

such that E spans the kernel of G(x) and P
�
G(x)P � 0. Note that E

�
G̃(x)E is the

Schur complement of P
�
G(x)P inside

U
�
G(x)U =

[
P

�
G(x)P P

�
G(x)E

E
�
G(x)P E

�
G(x)E

]

.

Moreover, following Forsgren [13, Lem. 1], we see that G̃(x) � 0 if, and only if
G(x) � 0, for all x sufficiently close to x , so the original NSDP problem can be
locally reformulated as a minimization problem over G̃(x) � 0, around x . In fact,
since
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P(P
�
G(x)P)−1P

� = Pλ+(G(x))−1P
�

= U

[
λ+(G(x))−1 0

0 0

]

U
�

= G(x)†,

where G(x)† is the Moore-Penrose pseudoinverse of G(x), it follows that G̃(x) = 0
[13, Lem. 2], so G̃ can be considered a reduction to the kernel of G(x) near x .

The regularity condition introduced by Forsgren is as follows:

Definition 4 (Forsgren’s CQ) Let x ∈ F and letU
.= [P, E] be an orthogonal matrix

that diagonalizes G(x), such that the columns of E span KerG(x). Then, Forsgren’s
CQ holds at x with respect to U when

span
{
E

�
Dxi G(x)E : i ∈ {1, . . . , n}

}
= E

�S(G̃, x)E (F1)

and
∃M ∈ E

�S(G̃, x)E, such that M � 0. (F2)

Forsgren’s CQ is indeed a constraint qualification, for when (F1) holds, then (F2) is
equivalent to Robinson’s CQ [13, Lem. 5]. However, although Forsgren states that any
choice ofU leads to a valid CQ, there is no discussion on the effects of this choice over
the condition proposed.Under a specific condition, Forsgren’sCQprovides uniqueness
of the Lagrange multiplier [13, Thm. 1], but this condition varies with U . Thus,
different choices of U are likely to define different variants of Forsgren’s CQ. This
is not necessarily a negative point, but a comparison among those variants would be
appropriate. For instance, from the practical point of view, one may be interested in
knowingwhich choice ofU defines theweakest CQ, or which one is easier to compute.

A result from Dorsch, Gómez, and Shikhman [12] shows that, ignoring the sparsity
treatment, (F1) becomes equivalent to nondegeneracy.

Lemma 1 (Lem. 5 from [12]) Let x ∈ F and assume that S(G̃, x) = S
m. Then,

condition (F1) of Forsgren’s CQ holds if, and only if, nondegeneracy holds at x.

However, similarly to weak-nondegeneracy, Forsgren’s CQ also reduces to LICQ
fromNLPwhenG is structurally diagonal (as in (6)), contrasting with nondegeneracy.
To put Forsgren’s CQ in the same terms as the previous sections, we present an
elementary characterization of it using the vectors vi j (x, E) defined in Proposition 1:

Proposition 3 Let x ∈ F and let E ∈ R
m×m−r span KerG(x). Then, condition (F1)

of Forsgren’s CQ holds at x if, and only if,

m−r∑

i=1

m−r∑

j=i

Mi jvi j (x, E) = 0, M ∈ E
�S(G̃, x)E ⇒ M = 0,

where r = rank(G(x)).
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Proof Let us assume that r < m, since otherwise the proof is trivial. We employ [13,
Lem. 2], which states that

E
�
Dxi G(x)E = E

�
Dxi G̃(x)E

for all i ∈ {1, . . . , n}, to ensure that the linear operator ψ : Rn → E
�S(G̃, x)E ,

defined by the action ψ(d)
.= E

�
DG(x)[d]E is well-defined.

With this in mind, note that

Im (ψ) = span
{
E

�
Dxi G(x)E : i ∈ {1, . . . , n}

}
= E

�S(G̃, x)E

if, and only if,

Ker (ψ∗) =
{
M ∈ E

�S(G̃, x)E : 〈E�
Dx�

G(x)E, M〉 = 0, ∀� ∈ {1, . . . , n}
}

= {0},
(19)

whence the result follows since

E
�
Dx�

G(x)E = [(vi j (x, E))�]i, j∈{1,...,m−r},

where (vi j (x, E))� is the �-th entry of the vector vi j (x, E). ��
As an abuse of language, (F1) consists of the “linear independence” of

{
vi j (x, E) : 1 � i � j � m − r

}

with respect to the set E
�S(G̃, x)E . In particular, when G(x) = 0 and (F2) holds,

take U = E = Im and note that Forsgren’s CQ holds for this particular choice of
U if, and only if, the set

{∇Gi j (x) : (i, j) ∈ I(G, x)
}
is linearly independent, with

(i, i) ∈ I(G, x) for all i ∈ {1, . . . ,m}.
Remark 5 As far as we understand, the relation between Forsgren’s CQ and nonde-
generacy was not formally established in [13]. To clarify this important detail, note
that it is clear from Propositions 3 and 1 that nondegeneracy implies Forsgren’s CQ.
Moreover this implication is clearly strict, as nondegeneracy does not recover LICQ
in a diagonal example.

The above discussion leads us to deal with sparsity in a more straightforward way,
namely without taking Schur complements, which induces another weak variant of
nondegeneracy.

4.1 A sparse variant of nondegeneracy

For any matrix E that spans KerG(x), consider the function

ĜE (x)
.= E

�
G(x)E
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and note that ∇ĜE
i j (x) = vi j (x, E) for all i, j ∈ {1, . . . ,m − r} with i � j . We

incorporate structural sparsity into nondegeneracy directly, but in a similar style of
Forsgren’s CQ (as characterized in Proposition 3), to introduce a new constraint qual-
ification.

Definition 5 (Sparse-nondegeneracy)We say that sparse-nondegeneracy holds at x ∈
F when either KerG(x) = {0} or there exists a matrix E ∈ R

m×m−r that spans
KerG(x) and such that:

1. The set
{
vi j (x, E) : (i, j) ∈ I(ĜE , x), 1 � i � j � m − r

}
is linearly indepen-

dent;
2. (i, i) ∈ I(ĜE , x) for all i ∈ {1, . . . ,m − r}.
There are two natural questions about sparse-nondegeneracy that we shall answer

in the following paragraphs. The first one consists of knowing whether the sparse-
nondegeneracy condition is a genuine constraint qualification; and the second one
concerns about the relation between Definition 5 and other constraint qualifications,
such as nondegeneracy, Forsgren’s CQ, and Robinson’s CQ. To address these ques-
tions, we first prove an elementary characterization of sparse-nondegeneracy:

Lemma 2 Let x ∈ F be such that KerG(x) �= {0}, and let E be a matrix that spans
KerG(x). Then, item 1 of Definition 5 holds at x if, and only if, there is no nonzero

Ỹ ∈ S(ĜE , x) such that DG(x)∗[EỸ E
�] = 0.

Proof The result follows directly by noticing that

∑

(i, j)∈I(ĜE ,x)

vi j (x, E)Ỹi j = DG(x)∗[EỸ E
�]

(20)

for every Ỹ ∈ S(ĜE , x). ��
Next, we prove that sparse-nondegeneracy implies Robinson’s CQ, which also

shows that it is indeed a constraint qualification.

Proposition 4 If x ∈ F satisfies sparse-nondegeneracy, then it also satisfies Robin-
son’s CQ.

Proof The result follows trivially when KerG(x) = {0}, so let us assume that r =
rank(G(x)) < m. Suppose that sparse-nondegeneracy holds at x ∈ F , and take any
Z � 0 such that 〈Z ,G(x)〉 = 0 and DG(x)∗[Z ] = 0, then there exists someY ∈ S

m−r+
such that Z = EY E

�
. Define the matrix Ỹ ∈ S(ĜE , x) whose (i, j)-th entry is given

by

Ỹi j
.=
{
Yi j , if (i, j) ∈ I(ĜE , x)

0, otherwise,
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and note that

DG(x)∗[Z ] = DG(x)∗[EY E
�] = DG(x)∗[EỸ E

�] = 0, (21)

so Ỹ = 0 due to Lemma 2. Moreover, from item 2 of Definition 5, (i, i) ∈ I(ĜE , x)
for all i ∈ {1, . . . ,m − r}, so the diagonal of Y must consist only of zeros, which
implies that Y = 0 and, consequently, Z = 0. Since Z is arbitrary, Robinson’s CQ
holds. ��

We highlight that item 2 of Definition 5 is not superfluous, for removing it may
cause us to lose the property of being a constraint qualification. Indeed, the following
example illustrates that:

Example 3 Consider the problem:

Minimize
x∈R2

x2,

subject to G(x)
.=
[
x1 x2
x2 0

]

� 0,

which has x
.= (0, 0) as one of its solutions. The point x satisfies Definition 5 after

removing item 2, with E
.= I2, because v11(x, E) = (1, 0) and v12(x, E) = (0, 1)

are linearly independent; but x does not satisfy the KKT conditions since there is no
Y � 0 such that Y 11 = 0 and Y 12 = Y 21 = 1/2. Thus, Definition 5 is not a constraint
qualification without item 2.

Remark 6 Let us show that when item 2 fails, the problem can be reformulated such
that it holds. Let x ∈ F and E be amatrix that spans KerG(x). If item 2 of Definition 5
is not satisfied, then let J

.= {i ∈ {1, . . . ,m − r} : (i, i) /∈ I(ĜE , x)} and note that
there exists some ε > 0 such that

G(x) ∈ S
m+ if, and only if, G(x) ∈ S

m+
⋂

i∈J

{ei e�
i }⊥,

for every x ∈ B(x, ε), where ei denotes the i-th column of E . That is, the feasible setF
coincides locallywith the preimage of the face F

.= S
m+
⋂

i∈J {ei e�
i }⊥ ofSm+.Moreover,

since F is a face of Sm+, then there is an orthogonal matrix V
.= [V1, V2] ∈ R

m×m

such that

V�FV =
{[

M 0
0 0

]

: M ∈ S
m−ω+

}

,

where ω is the cardinality of J [22, Eq. 2.3]. This means that it is possible to locally
replace the original constraint of (NSDP) by the equality constraint V�

2 G(x) = 0
and a smaller semidefinite constraint G(x)

.= V�
1 G(x)V1 ∈ S

m−ω+ . If F is minimal,
then the new constraint G(x) ∈ S

m−ω+ satisfies item 2 of Definition 5 at x . Otherwise,
this process can be repeated until the minimal face is reached. Thus, every problem
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can be equivalently reformulated (reducing dimension if necessary), such that item
2 always holds. In particular, when G is an affine function, then this procedure can
be computed via a popular preprocessing technique called facial reduction (we refer
to Pataki [22] and references therein for more details about it). When G(x) = 0 and
E = Im , this procedure can be done by simply removing the i-th row and the i-th
column of G, for every i such that (i, i) /∈ I(G, x), and including the correspondent
equality constraints into the problem. We recall that all of our results can be easily
extended to NSDP problems with separate equality constraints.

Let us illustrate this procedure using Example 3. In this casewe have e�
2G(x)e2 = 0

for every x ; then x ∈ F if, and only if, G(x) ∈ F , where

F
.= S

2+
⋂{[

0 0
0 1

]}⊥
=
{[

α 0
0 0

]

: α � 0,

}

which means that the constraint of the problem can be equivalently written as x2 = 0
and x1 � 0; for which x satisfies Definition 5 and the KKT conditions.

Remark 7 If G is structurally diagonal as in (6), then x satisfies sparse-nondegeneracy
if, and only if, the set {∇gi (x) : gi (x) = 0} is linearly independent. Moreover, this can
be extended to block-diagonal constraints. In this case, assuming the same notation as
Remark 4, sparse nondegeneracy holds at a feasible point x of (Block-NSDP) if, and
only if, for each � ∈ {1, . . . , q} there is some matrix E� that spans KerG�(x), such
that:

• For all i ∈ {1, . . . ,m� − r�}, we have (i, i) ∈ I(GE�

� , x);
• The set

q⋃

�=1

{
v�
i j (x, E�) : (i, j) ∈ I(GE�

� , x)
}

is linearly independent, where v�
i j (x, E�) is defined as in (18).

Note that this is how sparse-nondegeneracywould be defined for amultifold equivalent
representation of (Block-NSDP), with constraints G1(x) � 0, . . . ,Gq(x) � 0.

In view of Remark 7, it is easy to build a diagonal counterexample for the converse
of Proposition 4. For instance, take m = 2 and set x = 0; then, define the constraint

G(x)
.=
[
x 0
0 x

]

, (22)

and note that v11(x, E) = v22(x, E) = 1 for every matrix E that spans KerG(x).
Hence, sparse-nondegeneracy does not hold, although Robinson’s CQ does.

Furthermore, Remark 7 reveals a similarity among sparse-nondegeneracy, Fors-
gren’s CQ, and weak-nondegeneracy, which is the fact they all reduce to LICQ when
considering a diagonal matrix constraint. Moreover, it follows directly from Proposi-
tions 1 and 2 that nondegeneracy also strictly implies sparse-nondegeneracy. To make
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a rough comparison between Forsgren’s CQ and sparse-nondegeneracy, note that both
evaluate linear independence of the set

{
vi j (x, E) : 1 � i � j � m − r

}
, but while

item 1 of Definition 5 takes coefficients structured as in S(ĜE , x), condition (F1)
takes coefficients structured as in E

�S(G̃, x)E . This suggests that they are differ-
ent conditions. In fact, Example 1 can also be used to show that neither weak- nor
sparse-nondegeneracy imply Forsgren’s CQ.

Example 4 (same as Example 1) Consider the constraint:

G(x)
.=
[
x1 x2
x2 x1

]

and the point x
.= (0, 0), which satisfies weak-nondegeneracy and violates nondegen-

eracy (Example 1). Also:

• Sparse-nondegeneracy holds at x : take the same E as above and we have

ĜE (x)
.=
[
x1 − x2 0

0 x1 + x2

]

and I(ĜE , x) = {(1, 1), (2, 2)};
• Forsgren’s CQ does not hold at x : in this case Forsgren’s CQ is equivalent to non-
degeneracy,whichdoes not hold because if E

.= Im , thenv11(x, E) = v22(x, E) =
[1, 0].

Thus, neither weak- nor sparse-nondegeneracy imply Forsgren’s CQ.

Moreover, if G(x) = 0 then G̃ = G and in this case Forsgren’s CQ implies sparse-
nondegeneracy (see Proposition 3 and the discussion afterwards). Whether this still
holds or not when G(x) �= 0 is an open problem that we are currently unable to
address, due to the intricate form of G̃ in the general case.

An elementary consequence of Lemma 2 is that sparse-nondegeneracy guarantees
uniqueness of the Lagrange multiplier with respect to a fixed sparsity pattern, which
is similar to a result proven for Forsgren’s CQ [13].

Proposition 5 Let x be a KKT point of (NSDP) that satisfies item 1 of Defini-
tion 5 and let E be the matrix that certifies it, which spans KerG(x). Then,

Λ(x)
⋂(

ES(ĜE , x)E
�)

is a singleton.

Proof Firstly, to see why Λ(x)
⋂(

ES(ĜE , x)E
�) �= ∅ we resort to a result of [8,

Thm. 7] which states that under Robinson’s CQ any accumulation point Y of the
sequence

Y k .= ρkΠS
m+(−G(xk))

must belong to Λ(x). But clearly, for all k ∈ N large enough, we see that Y k ∈
ES(ĜE , x)E

�
and so does Y .
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Now let Y1,Y2 ∈ Λ(x)
⋂(

ES(ĜE , x)E
�)

be Lagrange multipliers associated

with x , define Y
.= Y1 − Y2, and by definition there exists some Z ∈ S(ĜE , x) such

that Y = EZE
�
and DG(x)∗[EZE

�] = 0. By Lemma 2 we must have Z = 0 and,
consequently, Y1 = Y2. ��

Another important property of sparse-nondegeneracy is that the number of structural
zeros of ĜE , at points that satisfy it, remains the same regardless of E .

Proposition 6 Let x ∈ F be such that KerG(x) �= {0}, and let E and W be matri-
ces that span KerG(x), such that item 1 of Definition 5 holds. Then, #I(ĜE , x) =
#I(ĜW , x).

Proof Let Z
.= [z�s]�,s∈{1,...,m−r} be an invertible matrix such that EZ = W and note

that ĜW (x) = Z�ĜE (x)Z , so

ĜW
i j (x) = 〈ĜE (x), zi z

�
j 〉 =

r∑

�,s=1

z�i zs j Ĝ
E
�s(x),

where zi denotes the i-th column of Z , and

∇ĜW
i j (x) =

r∑

�,s=1

z�i zs j∇ĜE
�s(x).

Rephrasing,

∇ĜW
i j (x) = unfold(DĜE (x))vec(zi z

�
j )

where unfold : Rm−r×m−r×n → R
n×(m−r)2 is an unfolding operator for the tensor

DĜE (x)when it is seen as anm−r ×m−r matrix with n-dimensional entries. Also,
vec : Rm−r×m−r → R

(m−r)2 is the usual vectorization operator, which transforms a
matrix into a vector by stacking up its columns, from left to right. That is,

unfold(DĜE (x))
.=
⎡

⎣
| | | |

∇ĜE
11(x) . . . ∇ĜE

m−r ,1(x) ∇ĜE
12(x) . . . ∇ĜE

m−r ,m−r (x)
| | | |

⎤

⎦

and

vec(zi z
�
j )

.=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z1i z1 j
...

zm−r ,i z1 j
z1i z2 j

...

zm−r ,i zm−r , j .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Consequently,

unfold(DĜW (x)) = unfold(DĜE (x))(Z ⊗ Z),

where

Z ⊗ Z
.=
⎡

⎣
| | | |

vec(z1z�1 ) . . . vec(z1z�r ) vec(z2z�1 ) . . . vec(zr z�r )

| | | |

⎤

⎦ ,

is the Kronecker product of Z with itself.
But since Z is invertible, Z ⊗ Z is also invertible, which means that

span
({

∇ĜW
i j (x) : i � j

})
= span

({
∇ĜE

i j (x) : i � j
})

.

Then, since ∇ĜE
i j (x) = 0 for all (i, j) ∈ I(ĜE , x) (and the same holds for W ), it

follows that

span
({

∇ĜW
i j (x) : (i, j) ∈ I(ĜW , x)

})
= span

({
∇ĜE

i j (x) : (i, j) ∈ I(ĜE , x)
})

.

Finally, since item 1 of Definition 5 holds for both E and W , we conclude that
#I(ĜE , x) = #I(ĜW , x). ��

Proposition 6 tells us that the strength of sparse-nondegeneracy is invariant with
respect to E . That is, if there are multiple matrices E certifying sparse-nondegeneracy
at a point x , then they all induce similar conditions. In our opinion, this is an advantage
with respect to Forsgreen’s CQ. As for weak-nondegeneracy, we were not able to find
any counterexample nor prove any relation between them. In fact, finding this relation
seems a challenging task since there is no clear relation between the eigenvectors of
G(x) and its sparsity structure, in general.

Remark 8 It is noteworthy that it is also possible to define another variant ofRobinson’s
CQ that enjoys sparsity, by replacing Ỹ ∈ S(ĜE , x) by Ỹ ∈ S(ĜE , x) ∩ S

m−r+ in
Lemma 2. This definition is strictly implied by sparse-nondegeneracy (see the example
given in (22)). Moreover, it is clear that this variant of Robinson’s CQ is implied by
Robinson’s CQ, but the converse is also an open question. The proof that this is a CQ
follows similarly to the proof of Theorem 2.

Remark 9 Regarding second-order optimality conditions, we call the reader’s atten-
tion to the fact that for each x ∈ F and each E that spans KerG(x), there exists a
neighborhood V of x such that

G(V) = G(V) ∩ ES(ĜE , x)E
�

︸ ︷︷ ︸
.=H
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This means that near x we can consider a new space S
H .= S

m ∩ H , define a new
cone S

H+
.= S

m+ ∩ H which is still closed and convex, and in this setting sparse-
nondegeneracy induces a second-order optimality condition, which is inherited from
[11, Thm. 3.45]. Namely, for every d ∈ DG(x)−1(TSm+∩H (G(x))∩{∇ f (x)}⊥ it holds
that

sup
Y∈Λ(x)∩H

(
d�∇2L(x,Y )d − σ(Y , T 2

S
m+∩H (G(x), DG(x)[d]))

)
� 0, (23)

because sparse-nondegeneracy implies Robinson’s CQ, which in turn is carried over
to the reduced problem, but since Λ(x)∩ H is a singleton, we have for Y ∈ Λ(x)∩ H
that

d�∇2L(x,Y )d − σ(Y , T 2
S
m+∩H (G(x), DG(x)[d])) � 0.

Although this condition concerns the reduced problem, mostly, it can also bring
some information about the original problem, for an inequality analogous to (23) in
terms of supY∈Λ(x) is also true. Above, T

2
S
m+∩H (G(x), DG(x)[d]) denotes the second-

order tangent set to S
m+ ∩ H at G(x) along DG(x)[d] (see [11, Def. 3.28]), and

σ(Y , T 2
S
m+∩H (G(x), DG(x)[d])) denotes its support function.

4.2 Zeros of the gradients and sparse-nondegeneracy

In this short ending section, we discuss how to improve sparse-nondegeneracy even
further. This is mainly motivated by the realization that the idea of disregarding “struc-
tural zeros” in the study of regularity is actually too conservative. Since nondegeneracy
is mainly concerned with the derivative of G at x instead of the value of G in a neigh-
borhood of x , we can in fact ignore all entries of G whose gradients are zero at x ,
which is done by considering the following sets:

S∇(F, x)
.= {

M ∈ S
β : Mi j = 0 if ∇Fi j (x) = 0

}

and

I∇(F, x)
.= {

(i, j) : ∇Fi j (x) �= 0, 1 � i � j � β
}
.

For example, if n = 1 and β = 3, for all x close to x
.= 0 we have, as an example,

if F(x)
.=
⎡

⎣
x 0 x2

0 x 1
x2 1 x

⎤

⎦ then M ∈ S(F, x) ⇔ M =
⎡

⎣
M11 0 0
0 M22 0
0 0 M33

⎤

⎦ ,

(24)
where M11, M22, and M33 may or may not be zero. Then, we can define a condition
similarly to Definition 5 but in terms of I∇ :
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Definition 6 (GS-nondegeneracy) We say that the condition gradient-sparse
-nondegeneracy (GS-nondegeneracy) holds at x ∈ F if either KerG(x) = {0} or
there exists a matrix E ∈ R

m×m−r that spans KerG(x) such that:

1. The set
{
vi j (x, E) : (i, j) ∈ I∇(ĜE , x), 1 � i � j � m − r

}
is linearly indepen-

dent;
2. (i, i) ∈ I∇(ĜE , x) for all i ∈ {1, . . . ,m − r}.
The interesting properties of GS-nondegeneracy that make it worth an extended

comment are twofold. The first one is that sparse-nondegeneracy is strictly stronger
than GS-nondegeneracy. Noticing that I∇(ĜE , x) ⊆ I(ĜE , x) is enough to see the
implication and the next example shows that the converse is not necessarily true.

Example 5 Let

G(x)
.=
[
x1 x22
x22 x2

]

and consider the constraint G(x) � 0 at the point x
.= (0, 0). In this case, Forsgren’s

CQ fails at x with E
.= I2 because

span

{[
1 0
0 0

]

,

[
0 0
0 1

]}

�= S(G̃, x) = S
2.

In fact, (F1) fails for every orthogonal matrix E . Furthermore, regardless of E
the vectors v11(x, E), v22(x, E), and v12(x, E) ∈ R

2, are linearly dependent and
I(ĜE , x) = {(1, 1), (1, 2), (2, 2)}, hence sparse-nondegeneracy also fails to hold at
x . On the other hand, note that for E = I2, we obtain I∇(ĜE , x) = {(1, 1), (2, 2)}
and

v11(x, E) =
[
1
0

]

and v22(x, E) =
[
0
1

]

are linearly independent, so GS-nondegeneracy holds at x .

We remark that Lemma 2 and Propositions 4, 5, and 6, can be also stated and proved
in terms of GS-nondegeneracy. Moreover, if Forsgren’s CQ was defined in terms of
I∇(G̃, x) instead of I(G̃, x), we would obtain precisely Definition 6 (due to [13, Lem.
2]), which is quite unexpected. The second interesting aspect of GS-nondegeneracy
is that it presents a notion of stability, in the sense of ignoring small perturbations.
Formally:

Theorem 3 Let x ∈ F and δ : Rn → S
m be any continuously differentiable function

such that δ(x) = 0 and Dδ(x) = 0. Then, GS-nondegeneracy holds at x for the
constraintG(x) � 0 if, andonly if, it holds for the constraintGδ(x)

.= G(x)+δ(x) � 0
at the same point.
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Proof Direct from the fact DG(x) = DGδ(x) and I∇(ĜE , x) = I∇(ĜE
δ , x). ��

Despite the apparent triviality of Theorem 3, observe that it is essentially telling us
that any noise of order two can be disregarded, as we could observe in Example 5.

5 Conclusions

In this paper, we studied the nondegeneracy condition of Shapiro and Fan [27] with
the purpose of incorporating some matrix structure into it, such as spectral decompo-
sitions and structural sparsity. Our work was motivated by a well-known limitation of
nondegeneracy, which is the fact it generally fails in the presence of structural sparsity
in the constraint function. For example, we recall that a NSDP problem with multiple
constraints may be equivalently reformulated as a single block diagonal constraint,
but nondegeneracy is not expected to be preserved in the process. This limitation may
have important consequences in practice, since many algorithms are theoretically sup-
ported by nondegeneracy and, on the other hand, structural sparsity is a very common
trait of optimization models of real world problems.

To address this issue, we proposed three variants of nondegeneracy, here called
weak-nondegeneracy, sparse-nondegeneracy, and GS-nondegeneracy. They were
proven to be strictly weaker than the classical nondegeneracy. In particular, all new
constraint qualifications only require the dimension constraint n � m − r , which is
considerably less demanding than the constraint n � (m − r)(m − r + 1)/2 imposed
by nondegeneracy. Also, they are invariant to multifold or block diagonal formulations
of (NSDP) and, consequently, they recover the LICQ condition from NLP when the
constraint function is structurally diagonal.

All our conditions are inspired by sequential optimality conditions [3, 8] which
provide simple proofs for the facts that the conditions we define are CQs (the proof
for sparse-nondegeneracy and GS-nondegeneracy were not presented but they are left
for the reader). Besides the simplicity of the approach, the convergence of an external
penalty method to KKT points under these CQs is obtained automatically (see the
discussion after Theorem 2), which is a direct application of the new CQs. Also,
several other CQs for NLP have been recently (re)invented with sequential optimality
conditions in mind. In particular, the so-called constant rank constraint qualification
(CRCQ) by Janin [16], and the constant positive linear dependence (CPLD) of Qi and
Wei [23], together with their weaker counterparts [6, 7, 18]. Previous attempts have
been made to extend these CQs to the conic context, but they have turned out to be
flawed [2] or incomplete [4], since the results in [4] are only relevant for multifold
conic problems where at least one block of constraints is such that the zero eigenvalue
is simple. The approachwe present in this paper gives the proper tools for providing the
extension of all mentioned CQs to the context of general NSDPs and, more generally,
to optimization over symmetric cones, also extending the global convergence results
to more practical algorithms. For instance, in NLP, it is known that the convergence
theory of a safeguarded augmented Lagrangian method can be built around CPLD [1],
which will also be the case for its NSDP variant [8]. A continuation of this paper will
appear shortly with these results.
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Nondegeneracy

Robinson’s CQ

GS-nondegeneracy

Forsgren’s CQ Weak-nondegeneracySparse-nondegeneracy

Weak-Robinson’s CQ

Fig. 1 Relationship among some CQs for NSDP. Classical CQs are in blue boxes, while new CQs are in
green boxes. Arrows indicate strict implications, except for the dashed arrow where the reverse implication
is unknown

With this in mind, we believe that the concepts introduced in this paper are inter-
esting enough to shed a new light to the classical theme of constraint nondegeneracy
for conic programming, showing, in particular, how to redefine it in such a way that
linear independence can be replaced by weaker notions. In this process, new and
interesting challenging open questions have appeared which we believe should be
addressed. In particular, new studies should be conducted to clarify the relationship
between weak-nondegeneracy and sparse-nondegeneracy, together with the relation-
ship between weak-Robinson’s CQ and Robinson’s CQ (see Fig. 1).
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