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Abstract

We introduce a family of weighted conjugate-gradient-type methods, for strictly con-
vex quadratic functions, whose parameters are determined by a minimization model
based on a convex combination of the objective function and its gradient norm.
This family includes the classical linear conjugate gradient method and the recently
published delayed weighted gradient method as the extreme cases of the convex com-
bination. The inner cases produce a merit function that offers a compromise between
function-value reduction and stationarity which is convenient for real applications.
We show that each one of the infinitely many members of the family exhibits g-
linear convergence to the unique solution. Moreover, each one of them enjoys finite
termination and an optimality property related to the combined merit function. In par-
ticular, we prove that if the n x n Hessian of the quadratic function has p < n different
eigenvalues, then each member of the family obtains the unique global minimizer in
exactly p iterations. Numerical results are presented that demonstrate that the pro-
posed family is promising and exhibits a fast convergence behavior which motivates
the use of preconditioning strategies, as well as its extension to the numerical solution
of general unconstrained optimization problems.
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1 Introduction

We are interested in solving the following convex quadratic minimization problem

min f(x) = LeTax— x'b, 1)
xeR" 2
where A € R"*" is a symmetric and positive definite matrix and b € R" is a given
vector. Solving (1) is equivalent to finding the unique solution of the linear system
of equations Ax = b. Many real-life applications require to solve large-scale linear
systems of equations whose very large size makes iterative methods the best choice
due to their simplicity and low computational cost. In addition, problem (1) is a sim-
ple setting to design effective methods for more general unconstrained optimization
problems.

One of the fundamental iterative methods for solving (1) is the gradient method,
which generates a sequence of iterates using the following recursive formula

Xkl = xp — gV f(xg) for k>0, 2)

where o > 0 is the step-size. Different ways of choosing «x > 0 lead to different
gradient methods. The classical gradient method to solve (1), originally proposed by
Cauchy [6], computes the step-size in (2) as

v 2
ap? = arg min f (x; =V f(x0) = VfLLk)]iF(ZkV”]'CZ(xk)'

The method given by Egs. (2)—(3) is called the Cauchy method or the steepest descent
(SD) method. Another classical example of step-size selection, associated with the
gradient method (2), is the one that minimizes the gradient 2-norm at xi, given by

MG ._ - _ _ V) TAV f(x)
= arggggllvf(Xk aV fx)llz = 1AV GOl

3)

“)

which is called the minimal gradient (MG) step-size.

The SD and the MG gradient-type methods are very inexpensive and intuitive, but
they both suffer from a slow rate of convergence towards the unique solution of (1).
In the last few decades, a wide variety of step-size rules have emerged to improve
the efficiency of gradient-type methods, while preserving their simplicity and low
memory requirements; see, e.g., [2, 5, 7, 8, 10-17, 19, 21, 25, 33, 34]. However,
the-method-of-choice to solve problem (1) is the classical conjugate gradient (CG)
method proposed by Hestenes and Stiefel [18]. The main reason for it to remain as
one of the best low-cost options for solving (1) is its outstanding practical behavior
that relies on its A-orthogonality and optimality properties on an underlying Krylov
subspace. As a consequence, at every k, the CG method generates the iterate x; as the
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minimizer of the objective function f(-) on the k-dimensional already explored sub-
space. For a review on the CG method for strictly convex quadratics and its optimality
properties, we refer the reader to [22, 26, 32].

Recently, in [27], a combination of a smoothing technique with a one-step delayed
gradient scheme was developed as an enriched gradient-type method for solving (1).
The so-called delayed weighted gradient method (DWGM) shows in practice a quite
similar convergence behavior to the one observed in the CG method. Later, in [1], it
was established that indeed the DWGM method has also some key A-orthogonality
and some optimality properties, including the finite termination in at most p iter-
ations, where p is the number of distinct eigenvalues of the matrix A. The main
difference with the CG method is that, instead of minimizing the objective func-
tion f(-) on the entire explored subspace, the DWGM method minimizes the 2-norm
of the gradient vector on the same subspace. A first attempt to extend the DWGM
method was recently presented by Oviedo et al. in [28]. In [28], the authors com-
bine the ideas of the general hybrid methods, introduced in [3, 4], with the DWGM
method, to obtain the so-called hybrid gradient method (HGM). Unfortunately, the
convergence analysis in [28] requires a strong hypothesis on the smallest eigenvalue
of the Hessian matrix A.

As a generalization of the DWGM and HGM methods, in this work, we propose
a family of low-cost methods that, depending on a real parameter u € [0, 1], goes
from the CG method (© = 0) to the DWGM method (1© = 1), keeping for all the
infinitely many members of the family some key orthogonality and optimality prop-
erties on a convenient Krylov subspace. The internal cases, i.e., when u € (0, 1),
produce iterates that are optimal for a properly chosen merit function that offers a
compromise between function-value reduction and gradient-norm reduction (i.e., sta-
tionarity) which is convenient for real applications and also for possible extensions
to the general unconstrained minimization framework. Each member of the proposed
family computes the iterates by a two-step process. At the first step, a prediction of
the new iterate is obtained by performing a gradient-type method with a step-size
selected as the argument that minimizes the merit function. Then, the new iterate is
computed by minimizing the merit function but now over the line that connects the
prediction and the penultimate iterate. Under mild assumptions we prove some stan-
dard global convergence properties of our proposal. Moreover, for any member of the
family, similar orthogonality properties and some optimal properties that hold for the
CG and the DWGM methods are established. Finally, we benchmark our procedure
over a set of sparse problems involving real data and large dimension, and compare
it with the classical conjugate gradient method and the DWGM method.

The remainder of this paper is organized as follows. In Section 2, we introduce
the new first-order algorithm to deal with problem (1). Section 3 is devoted to the
global convergence analysis of our proposal. In Section 4, additional orthogonality
properties are obtained, including finite termination and the minimization property of
all members of the family on the already explored affine subspace. Then, in Section 5,
several numerical tests are performed to assess the behavior of our procedure for
solving real large-scale systems of equations. Finally, conclusions and perspectives
are drawn in Section 6.
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2 Derivation of the new family of methods

In this section, we derive a new family of first-order iterative methods for problem
(1). First, given a fixed parameter u € [0, 1], we introduce a new merit function

Fu(x) := (1 = ) E@) + plIV f @3, )

where E(x) = %(x —x)TAX — x*) = f(x) + %bTx*, and x* denotes the
unique solution of (1). Hence, F,(x) is essentially a convex combination of the
objective function and its gradient norm. Additionally, observe that x* = A~!b is
the unique minimizer of F),(-), which implies that minimizing f(-) is equivalent to
minimizing (5).

Based on the development of the DWGM in [27], we propose to minimize the
merit function (5) on the linear variety Sy := xi+span{V f (xx), xx —xx—1} by a two-
step iteration; see also [22, pp. 254-256] for a similar approach that reproduces the
classical CG method for convex quadratics. For that, we compute first a prediction
7k of xx41 by performing a gradient method step (see (2))

2k = xp — oV f(xp),

with the following optimal step-size

o = arg fxnigFu(Xk —aV f(xk)) (6)
Vo) WLV f ()
= — (7
Vfxi) WAV f(x)
MG (1 - u)a,fD +2u
- % ((1—M)a,§”G+2M ’ ®

where we have conveniently introduced the symmetric and positive definite matrix
W, =0—-wlil+2uA.

Then, we correct this prediction using an over-relaxation scheme with an optimal
weight, that is

Xk+1 = Brzk + (1 — Br)xi—1, 9
where we select the weight By in (9), by minimizing the merit function Fy, (xg41), i.e.,
Pr = arg mﬁinFM(,BZk + (I = B)xk—1) (10)
_ _vf(xk—l)T((l — WSk + 2uyr) (11
Y (1= sk + 2peyi)
V)W,
_ _VSfGx-1 kS (12)

ykTWMSk

where s; 1= zx — xk—1 and y; := V f(zx) — Vf(xx—1) = Asi. Notice that the new
iterate can also be written as

X1 = Xk — Bro V f (xp) + (B — D (e — x5—1). (13)
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From (13), we note that this two-step approach can also be seen as an optimal gradient
method with momentum, and therefore the update formula used by our procedure
is very similar to the one used by the CG method. Now we describe the obtained
generalized DWGM (GDWGM) algorithm in detail.

Algorithm 1 Generalized delayed weighted gradient method (GDWGM).

Require: A € R™", € [0,1], W, = (1 — )1 4+ 2uA, b, xo € R*, x_1 = xo,
g0=Vf(x0),8-1=280,0<e<K1,k=0.

1: while ||gk|l> > ¢ do
2 wy = Agr,
T
W,
3 ap = g!(r 8k ,
8 Wuwk
4: Zk = Xk — Ok &k,
5: Tk = 8k — Qg Wk,
6 Sk = Zk — Xk—1>»
7 Yk =Tk —Tgk—l,
1 Wusk
8 pp= S
Yie WSk

: X1 = Xk—1 + BrSk,
10: 8k+1 = 8k—1 + Bk Yk,
11: k=k—+1.

12: end while

Let us observe that if we fix © = 1, then Algorithm 1 reduces to the DWGM
scheme developed in [27]. For the other extreme, it will be established, at the end of
Section 4, that if we fix u = 0 then Algorithm 1 is equivalent to the CG method for
solving (1). It is also worth mentioning that for the implementation of Algorithm 1 it
is neither necessary nor recommendable for numerical reasons to explicitly build the
matrix W,,. In fact, note that this matrix is only used to update the step-size oty and the
parameter fi. Thus, in practice, it is numerically convenient to use the formulas (8)
and (11) to compute oy and g, respectively. However, we present Algorithm 1 using
W, in order to simplify the theoretical analysis of the proposed family of methods.

In the rest of this paper, we will denote by {11, A3, ..., A,} the eigenvalues of A,
where we assume that

AM =A== >0

In our analysis, we will use the Kantorovich inequality (see, e.g., [22]) applied to the
symmetric and positive definite matrix A, i.e.,
(xTx)? o S
xTAX)(xTA x) = (A 4+ Ap)?’

for all nonzero vectors x € R”.

Remark I Note that Algorithm 1 is essentially an exact two-step line search method
applied to the minimization of F,(-) over R". In fact, since VF,(x) = W,V f(x)
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for all x € R”, then in the first phase of the method the search direction dy = —gi
satisfies

VFu(x) Tdi = —(1 — wllgkl3 — 2ugl Agk <0, VkeN,

and hence dy is a descent direction of F,(-) at xi. In the second phase, observe that
using Step 6 in Algorithm 1 and rearranging (9) we have

Xkr1 = 2k + (B — Dsk. (14)

Later on we will establish that g;—H Wysi = 0 for all k (see Lemma 2), and also that
Br > 1 for all k (see Lemma 4), which combined with Steps 5, 7, and 8 in Algorithm
1 yields

(1= WV f(z1) + 20 AV f(2)) sk

=1 Wusk = Ok + 8k—1) " Wysk

= i Wusk + 80 Wusk

= 3y Wask — Byl Wase = (1= Bi) s{ AW,
Now, since AW, = W, A is symmetric and positive definite (it is the sum of two
positive definite matrices), then VF, (ze) Tsk = (1 — Br) s;AWMsk < 0, which
implies that s; is a descent direction for the merit function F,(-) at zx. Therefore,

Algorithm 1 can be seen as an optimization procedure that performs two optimal line
searches per iteration to minimize the merit function (5).

VFM(Zk)TSk

Remark 2 There exists an interesting connection between the merit function (5) and
the Moreau envelope of the quadratic objective function (1). For a given function
f :R" — R and a given parameter r > 0, the Moreau envelope e, f : R” — R (also
known as the Moreau-Yosida regularization) is defined by

— inf 4 2 15
erf() = int {fO)+ 50— vI3]. (1s)

The function e, f (x) was originally introduced by J. J. Moreau in the mid-1960s [23,
24], and it has been extensively studied in the optimization literature, since it offers
a variety of smoothing and regularization properties for different scenarios; see, e.g.,
[20, 29, 31].

Since (1) can be written as f(x) = %(x —xHTAx — x*) — %bTx*, it suffices
to assume, without any loss of generality, that f(x) = %xTAx. In this case, x* = 0,
Vf(x) = Ax, and

1
fx) = EVf(X)TA’IVf(X)- (16)

Let us now consider the function L(x,y) = f(y) + 5llx — ylI3 which is jointly
convex in x and y. Notice that, if we substitute f(y) by its Taylor expansion, L(x, y)
can also be written as

T 1 T r 2
Lx,y)=fx)+V f(X)(y—X)JrE(y—X) A(y—X)Jrzllx—yllz, (17)
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and it follows that VyL(x,y) = Vf(x) + A(y — x) + r(y — x). If we force
VyL(x,y) = 0, to identify the solution of the optimization problem involved in (15),
we obtain that

Oy —x)=—(A+rD7'Vfx). (18)
Combining (15), (17), and (18), we have that

1
e f(x) = inf {f(x) VOO =0+ 0= A+rDG - x)}
= fO) =V A+rDTV @) + %Vf(xﬁ(A +rD)7'V ()

= f(x)— %Vf(X)T(A + D)7V ().

To explore the link between (5) and (15), we choose a parameter u € (0, 1) and
recalling (16) we get

1
e f(x) = (1—w)f(x)+ %Vf(X)TA‘lvf(x) - EVf(X)T(A +rD7'V F(x)
= (1= f@) +uVF ) RV,

where R = A7 — ﬁ(A + rI)~!. The matrix R is clearly symmetric, and it is
positive definite if and only if all its eigenvalues are positive. Since the matrices A
and (A +rI)~! are diagonalized by the same orthogonal matrix, then the eigenvalues
MR, 1 <1 5. n, of R are given by A(R); = ﬁ — m where A;, .1. <
i < n, are the eigenvalues of A. Therefore, all the eigenvalues of R are positive,

and as a consequence R has a symmetric and positive definite square root R%, if
w > A;/(A; +r)foralli. Forr = 0in (15), e, f(x) = f(x*) = 0, and so we focus
in the case r > 0. Moreover, for r > 0, the function ¥ (1) = A/(X + r) is increasing
W) =r/(x+ r)? > 0) and hence it is enough that

w>Ar/(A1+71) (19)

to guarantee that R? is well-defined. Notice that for each given r € (0, 400) we can
find u € (0, 1) that satisfies (19), and vice versa. In that case,

1
erf(x) = (=) fx)+plRIV @3,
and we conclude that the merit function (5) can be seen as a simplified version of the
Moreau envelope of the function (1), for which the weight matrix R? is the identity

matrix. Therefore, (5) involves a certain type of regularization.

3 Convergence analysis

We now analyze Algorithm 1 by studying the asymptotic behavior of F (xx) and
|1V f(xx)||2 when k goes to infinity. The proposition below and its proof provide

some key properties.

Proposition 1 Consider the iteration given by (2), then
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a. fOx—oxVfw) < fxx), Vo €[0,2a5P].

b IV Sk =V falla < IVFlla, Vo € [0,2079]

SD - =i\
c. Ifar=oap” in(2)then E(xp+1) < C1E(xy), where C1 = (Ai_m’;) .

d Ifax = oM in (2) then f(xx — oV f(x) < f(xx) and ||V f(xx —
aV f I3 < CLlIV fx)ll5

Proof (a) Using (1) and the fact that V f (xy) = Axy — b, we get

2
f Ok — axV £ ) = fOx) — eIV f o)1 + %ka(Xk)TAVf(Xk). (20)

Using the definition of a,fD in (3) and (20), we obtain that f(xx — axV f(xx)) <
f(xg) for all oy € [0, 2a2P].
(b) By simple algebraic manipulations, we have that

IV £k — oV DB = IV F oI5 — 200V f () TAV f () + @ [JAV £ (x5, (21)

Once again, recalling the definition of a}c” G given by (4), we obtain from (21) that
VS — eV f i)z IV )ll2 forall ey € [0, 2071,

(c¢) The proof of this part appears in detail in [22, Section 7.6].

SD

(d) The first inequality is a direct consequence of (a) and the fact that a,ﬁ” G < ap”,

which follows from
(V) TAV f(@))? < IV L@l3 1AV £(o)ll3  (Cauchy-Schwarz inequality) .

Therefore, it suffices to prove that ||V f(xx — axVf(xp))ll2 < CilIVf(xp)lla.
Indeed, from (21) and using that oty = a,i” G we have

IV f(xk — ax V)3 = (1= IV x5, (22)

(VL) TAV £ (x)?

h o
WRETE € = 197 oo IBIIAV £ (o) 1B

. By applying the Kantorovich inequality to ¢ in (22),
we arrive at

Al — Ap
A+ Ag

IV fxx —arV a2 < < > IV f(xoll2, (23)
which completes the proof. O

Lemma 1 Let u € [0, 1] and {x;} be a sequence generated by Algorithm 1. Then,
{F(xr)} is a convergent sequence.
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Proof It follows from the construction of Algorithm 1, Proposition 1, and the
minimization properties (6) and (10) that

Fu(xrv1) < Fu(zi)

Fu(xe—aSg)

< (A= wE(x—af%g) + puCillgll3
< (1= WE@) + nCillgl3

IA

< (1= WE) + wllgel3 = Fulxo). (24)
Thus, {F, (xx)} is a monotonically decreasing sequence. Moreover, F, (xx) > 0 for
all k € N; therefore, we conclude that { F}, (x¢)} is a convergent sequence. O]

From Lemma 1, we see that the sequence {x;} generated by Algorithm 1 converges
to the unique solution of (1) whenever F, (x;) goes to zero, since both sequences
{E(xr)} and ||gk||» are non-negative. The following theorem establishes the global
convergence of Algorithm 1.

Theorem 1 Let u € [0, 1] and {xi} be the sequence generated by Algorithm 1.
Then, the sequence {F, (xr)} converges to zero g-linearly with convergence factor

A=Ay 2
MAAn )

Proof First, observe that the step-size o in Step 3 of Algorithm 1 can be written as

T
w
o = Sk TSk (25)
8k Wi Agk
In addition, since Ax* = b, note that
1 1

Fu(x) = ExTAWMx —x"Wyb+ EbTW,LA’lb (26)

_ 1 * TA * 2
_E(X_X) Wu(x —x7). (27)

From the construction of Algorithm 1, Egs. (26) and (27), and the minimization
properties (6) and (10), we have
Fiu(xpr1) < Fu(zi),
= F, (xr — argr)
2
%k
2

Fu(x0) — akgy Wugk + —g¢ AW,k

g
= F,(x) — ?gzjwugk

-
_ O 8k W, 8k
= (1 > —Fﬂ(x]() )Fu(xk)
(1 = ) Fu(xk), (28)
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.
~ o 8k Wusk
where ¢ = 5 Fren)

On the other hand, in view of Egs. (25) and (27), we obtain
N (g7 Wygk)?
Ck = — - -
(8 WuAgr) (g, WA= gk)
Since W, is symmetric and positive definite then it has a symmetric and positive def-

/2, and so W, A = W;/ZAW;/Z and WMA_l = ;/ZA_I ,1/2,

(29)

inite square root W,l
and it follows that
N (pg Pr)*

& = :
(p{ Api) (] A~ pi)

where py = W,i/ 2y f(xx). Now, applying the Kantorovich inequality in (30), we
arrive at

(30)

LAk a1

> ———.

£ a2

Merging Eqgs. (28) and (31), we obtain
Pt = (222) By (32)
uwXk+1) = A+ A uw Xk )-
It follows immediately that {F, (x;)} converges to zero g-linearly with convergence
2

factor (i:;iz) . O

Remark 3 From Theorem 1, we have that limy_, o F, (xx) = 0, which is the sum of
two positive sequences so they both converge to zero, i.e., limg_, o E(xx) = 0 and
limg— o |18k |]2 = 0. Therefore, from this fact and the positive definiteness of A, we
conclude that the sequence {x;} tends to the unique global minimizer of f(-) when k
goes to infinity.

4 Finite termination and optimality properties

In this section, we establish some key W, -orthogonality properties that add under-
standing to the fast practical behavior of the GDWGM family of methods, including
the finite termination. Most of these results can be viewed as generalizations of the
A-orthogonality results established for the DWGM method in [1], i.e., for the specific
case 4 = 1. In here, the structure and the ordering of the presentation of the theo-
retical results follow the same pattern used in [1]. However, moving from the fixed
case of u =1 to handling infinitely many cases (u € [0, 1]) at once, the required
mathematical arguments as well as the specific details differ from the ones used in [1].

Lemma 2 Let us consider Algorithm 1. Then, we have

a. Po =1, and hence x1 = z0, g1 = ro.
The following equalities hold for all k > 0,
b. rkT Wygr =0.
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Ty, — 2u T
c. 1y &= <(1*M)Uk+zl$> i The
d. g,j—_H Wysk = 0.

Proof (a) By Steps 4, 6, and 7 in Algorithm 1, we have that so = z0 — X0 = —0go
and yop = r9 — go = —apAgo. Hence,

_g(—)rW/LSO L —a08g W&o 1 gg Wugo _q
g9 AW,.g0

Bo =

Yo Waso  —ao(—cogg AW,g0) @0
Therefore, we obtain x; = x_1 + Boso = xo + So = X0 — ®pgo = 20, and
81 =8-1+ Poyo = 8o+ yo = go+ro— go = ro.
(b) Using (a) and the definition of a, we get
rd Wige = (8 — axAge) " Wiug = g Wk — ag{ AW, = 0.

(c) Let us define & = 2u/((1 — p)ag + 2u). Since (1 — pw)ayg + 2u # 0, for all
u € [0, 1], then it follows from (b) that

T ((1_H)ak+zl/v) T

~ T (I — wa T
rlgr = regk=Q1r (Vk+0tkwk)+< )
k (- wex +2u) " k

(1 — war +2u) "+ &
e (I—wa \ -
= W (Otkwk)-i-( )r 8k
k k (I —wa +2u) *
(674

~ T
nr, rk+<7
k (1 — oy +2p

~ T (675 T
O
k (I —wa+2u) FH

2/ )

-~ T T
wryrg=———"-—|r;, 1¢.
k (u—umk+mL ¢

)r,? QuA+ (1 — gk

(d) Again, by construction of Algorithm 1, we have

81 Wisk = (g1 + Breye) T Wyask
= g]j_lwusk + .Bkyl;r Wusk

-
—8—1 Wusk

= ng_IWHsk + ( ) y,CTWMsk =0,

Y Wsk

which proves the lemma. O

Lemma 3 Let {gi} be the sequence of gradient vectors generated by Algorithm 1.
Then for all k > 1

g Wyugk—1 = 0. (33)

Proof The proof is by induction. For the case k = 1, we have from Lemma 2 that
gr Wug0 = r(;r W80 = 0. Let us now assume the inductive hypothesis on k, namely,
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that g,;r Wygk—1 = O for all k = p > 2. Now, we consider the next iteration, k =
p + 1. By applying Lemma 2 and the inductive hypothesis, we find that

g;+1WMgP = (gp-1 +ﬁpyP)TWugp
= (gp—1t Bplrp — gp—l))TW;Lgp

= _ﬁp)gp—lwugp“l‘ﬂpr;—wugp =0. (34)
Therefore, we have shown that ng Wygk—1 = 0, for all k > 1, and the proof is
complete. O

Lemma 4 [In Algorithm I, the following statements hold for all k > 1

a. gl Wu(ze—1 — xk—1) = g Wyu(zx — xx) = 0.

b.  yr = Asy. . )
(g Wugr)

ey Wsk = (e — xk—1) | WA — xe—1) — %

d. glj+1 Wyxir1 = g1j+1 Wyxi = ng+1 WiuXi—1.

e gl Wulxk —xx—1) = —(8k — 8k—1) ' Wk — xg—1).

fo B> 1L

Proof (a) From Step 4 in Algorithm 1 and Lemma 3, we have
glj Wy (Zk—1 — Xk—1) = —atg—1 (g;;r Wigk-1) =0,

and also

T _ T _

81 Wu(zk — xx) = —oa (g1 Wypgr) =0.

(b) Using several steps in Algorithm 1 it follows that
Yk =Tk —8k—1 = 8k —8k—1—k Ak = A(xk —Xg—1 —k&k) = A(Zk —Xk—1) = Asg.
(c) From Steps 3, 4, 5, and 7 in Algorithm 1 and Lemmas 2 and 3, we obtain

Vi Wusk = (rk — gk—1) " Wy (zk — Xk—1)
= (g — 8k—1 — akwi) | Wy, (xk — Xk—1 — i ge)
= (gk — 8k—1) ' Wy Ok — xp—1) — awy W, (x — xg—1)

— gk — 8k—1) " Wugk + oqwy Wygk

= (8K — 8k—1) ' Wy (xx — xx—1) — owy Wy, (x — xk—1)
= (8k — 8k—1) | Wy (xx — xk—1) — ogy Wulg — 8k—1)
= (8K — 8k—1) Wy (xx — xi—1) — ok Wyugk

(g Wyugn)®

= (% — Xk—1) | WuAQo — xe1) — .
g WuAgk

(35)

(d) Using Steps 4 and 6 in Algorithm 1, Lemma 2, and Lemma 3, we get

ng_HWu(xk — Xk—1) = ng+1Wu(sk + argk)

= ng+1 Wsk + O‘kglj—ﬂ Wigk = 0.
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Hence, ngJrl Wuxi = ng+ 1 Wuxg—1. Now, it follows from Step 9 in Algorithm 1 and
Lemma 2 that

St Wi Gt — x1) = gy W (rkmt — xic + Biese)
= & W1 — x0) + Brg s Wask
= 8;+1WM(Xk—1 —x;) =0,
which yields
8t Wikt = 8yt Wik = 8 Wikt
(e) By using the previous item, it follows that
0 = g Wyulxx — xx—1)
= (8k — 8k—1 + 8k—1) ' Wy (xx — xk—1)
= (gk — &k—1) Wy (xx — xx—1) + gp— Wy (e — xk—1),
which implies that
g Wk = x—1) = —(8k — 8= | Wy (xi — 1), (36)

(f) First, let us note that we can rewrite the parameter Sj as follows

5 ng_qu(Xk—l — Zk)
k =
ykTWusk

B 8o Wy Grk—1 — X + ategr)
yl:rWltsk

g Wt = x)

(37)
ykTW/ASk
Now combining (35), (36), and (37), we have
(8k — 8k—1) " Wy (xk — k1)
Br = — — , (38)
(g — gk—1) ' Wy (xk — xp—1) — o (g Wpgk)
or equivalently,
(xk — Xk—1) T W A — xg—1)
Br 5 (39)

o — k) T WA — xe—1) — ok (g Wogk)

Using (b) and (c), and the fact that AW, is a symmetric positive definite matrix, we
conclude that the denominator in (39) satisfies

(k= xk—1) | WAk — x5—1) — ok (g Wiig) = v Wysk = s§ AW,s > 0,
which means that
ok — xk—1) | Wu Ak — xx—1) > o (8] Wygr) > 0.

Therefore, we conclude that the numerator of g in (39) is strictly bigger than the
denominator and they are both positive. Hence, ; > 1 for all k > 1, and the result
is established. O
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4.1 Finite termination

Our next result plays a fundamental role to establish the finite termination of the
GDWGM family of methods.

Theorem 2 Algorithm 1 generates the sequences {gi} and {r} such that
a. Fork>2, g;—Wugj =0, forall -1 <j<k-2.

b. Fork>2r]Wug; =0, forall -1 < j <k—2.

Proof The proof is by induction. Concerning (a), since g1 = go, Xx] = 20, and
ap > 0, using (d) in Lemma 4 and step 4 of Algorithm 1, we have

g Wig—1 = g Wugo

I+
= — gy Wulxo — 20) (40)
o0
I+
= — gy Wylxo—x1) =0, 41
ap
and the result is obtained for k = 2. Concerning (b), since a9 > 0, g_1 = go,

using (@) in Lemma 2, Lemma 3, steps 4 and 5 of GDWGM, (41) and the fact that
AW, = W, A, we obtain

1
r;WHgo = w r;Wu(xo — 20)

1 T l T
= —n WH(X() —Xx1) = —— Wp,(xl —x0)+0
ap @0

__ 17 _ 17 N
= ry Wyu(x1 —x0) + — g, Wyu(x1 — xo)
ag ag
_ 1 T
= — (g2 —12) Wy(x1 —xo0)
Qg
[0%) [2%)
= — gy AW, (x1 —x0) = — g3 Wu(g1 — g0)
(%) (o 40]
o
= % [g;—Wp.gl - g;—WugO] =0.

In addition, since r2T Weg—1 = r2T W . g0, then the result is established for k = 2.

Let us now assume, by induction on k, that (a) and (b) hold up to k = k > 3, and
consider the next iteration. Hence, we need to show that gg+1WM g;j = 0, and also

thatr}S—HWﬂgj =0, forall -1 < j 512— 1.

For —1 < j < k— 2, using Lemma 3, Steps 7 and 10 in Algorithm 1, and the
inductive hypothesis associated with (a) and (b), we have that

g]GT_;,_lWng = (312—1 ~|—ﬁ]2(l"]2 - g,;_l))TWng
T T
= - ,312) 8127]Wng + ,3,;?12 Wﬂgj =0.
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For j = k—1, using step 4, adding and subtracting x;_,, and then using the fact
thatz; | —xp_, = (x; — x;_,)/B;_, (obtained from Steps 6 and 9 in Algorithm 1),
we get

1
T T
8 Wiy = ——— 8 Wil —xiy)

T T ngW#(Zkl Xpa X — X y)
k-1

1 1
- _Jnger (E(X’g —Xp_p) X, _xlgl)
1 I+ T
T, Eg£+lwﬂ(xlz ~ %) T8 Wl =) |-

Now, adding and subtracting gT Wﬂxlé—l’ and using (d) in Lemma 4, we arrive at

-
T 1 [l Wb s D+el Wil =)
glE—HWl"glgfl = _%71 B +gk+1Wl‘~(xk 2= Xpp)
1 1 -
= _0‘12—1 B, ng Wilxp_y = xp0) + 8it1 Wi lxp_y = x¢_y)
=% g;L Wiy —xp,), 42)

where y; = (B;_; — 1)/(e;_, B;_,) is well-defined since B > 1 for all k and

1/2 1/2
L A D)
- T 1/2
& Wudge Wy e TAWL g0

is an inverse Rayleigh-quotient of A, i.e., oy > A_l > 0 for all k.

By using Steps 5, 7, and 10 in Algorithm 1, Lemma 3, Lemma 4, the inductive
hypothesis, and the fact that AW,, = W, A, we obtain

g,Lqug/G—l =% gg+1Wu(x1€—1 — o)
= 7 &y + B0 — gD Wulyp_y — o)
= 7= B g Wiy — xi_p) + ¥ r{ Wby — )
= VB Wy — o)
= yiBy (8 — g Agp) T Walg_y — xp_y)
= VB & Wuli_y — Xi_y) — viBig & AWu(xp_y = x;_)
= 1B 8] AW (i) = xp_)
= VBt & W8y — 8_)
= —ViBroi 18] Wasi_y — & Wasio] =0.
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Therefore, (a) is established for all k > 2 and for —1 < j < k — 2.

On the other hand, concerning (b), for —1 < j < k—1, using Steps 7 and 10 in
Algorithm 1, Lemma 3, item (a) which has now been established, and that 8z > 1
for all k, we obtain

1
T T
T Wi = 57— @i+ By = Do) Was;

k+1

1 Biypy — 1

= g Wugj + — g Wugj =0,
By Bis1
and (b) is also established, which completes the proof. [

In summary, combining Lemma 3 with item (a) from Theorem 2, it follows that
for all k, g is W -orthogonal to all previous gradient vectors, i.e., for all k > 1

g Wug;j =0, forall j<k—1. (43)

Theorem 3 For any initial guess xo € R", Algorithm 1 generates the iterates xi,
k > 1, such that x, = A~'b.

Proof Using (43), we have that the first n gradient vectors gy (0 < k < n — 1)
generated by Algorithm 1 form a W -orthogonal set, which implies that they form
a linearly independent set of n vectors in R”. As a consequence, to satisfy (43), the
next gradient vector g, € R"” must be zero. Thus, x, = A~ 1. O]

Concerning the finite termination of Algorithm 1, as it has been already estab-
lished for the extreme cases: u = 0 (CG, see, e.g., [26, 32]) and © = 1 (DWGM, see
[1]), all the infinitely many members of the GDWGM family actually terminate in at
most p < n iterations where p is the number of distinct eigenvalues of the matrix
A. To establish this fundamental result, we first need to show that for all £ > 1 the
vector g generated by GDWGM belongs to the Krylov subspace

Kit1(A. go) := span{go. Ago. A%go. ... A¥go).
Lemma 5 In Algorithm GDWGM, for all k > 1, g € Kr4+1(A, go).
Proof The proof is identical to the proof of Lemma 7 in [1]. [

Theorem 4 If A has only p < n distinct eigenvalue, then for any initial guess xo €
R™ Algorithm 1 generates the iterates xi, k > 1 such that x, = A~ Lp.

Proof The proof is identical to the proof of Theorem 9 in [1]. O
4.2 Minimization of F,(-) on the explored affine subspace
‘We now focus our attention on the minimization property of the map F,,(-), at each

iteration, on the already explored affine subspace. For that, we need to establish
for any p € [0, 1] the W, -orthogonality of the current gradient g, with all the
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previously explored search directions, which are given by the vectors (x; —x;_1) for
l<j=<k

Theorem 5 For any p € [0, 1], Algorithm 1 generates the sequences {gi} and {xi}
such that for k > 2
G Wuxj—xj—1)=0, for 1<j<k (44)

Proof The proof is by induction. For k = 2, using (d) in Lemma 4, we have that
g3 Wiu(x2 = x1) = g3 Wu(xi —x1) = 0.

Let us now assume that (44) holds up to k = p, and let us consider the next iteration.
When j = p, using again (d) in Lemma 4, we obtain

g1—7r+1WM(xP+1 —Xp) = g;+1 Wu(xp —xp—1) =0.

It remains to consider 1 < j < p — 1. Using the inductive hypothesis, Steps 7 and
10 in Algorithm 1, and Theorem 2, we have that

g;_lwu(xj —xj-1) = (gp—1+ Bpyp) Wulxj — xj_1)
= —((Bp = Dgp—1 = Bprp)  Wu(xj — xj-1)
= ﬁpr;WM(Xj —Xxj-1)
= Bp(gp — apAgy) Wu(xj — xj-1)
= —ﬂpap(Agp)TWH(xj —Xj-1)
—ﬂpapg;—WMA(xj —Xxj-1)

_ﬁpapg;—wu(gj _gj—l) =0. O

Let us notice that, at iteration k, the explored affine subspace Vj is given by

k
Vi={xeR" | X=X0+Zﬁj(xj‘—x]‘_1) and n =1, m...,m) € R

j=1
(45)

Corollary 1 For all k > 1, the iterate x; generated by Algorithm 1 is the argument
that minimizes the merit function F, (-) on V.

Proof Let us consider the following convex minimization problem
min Fj,(x) subjectto x e Vp CR". (46)

Clearly, the constrained problem (46) is equivalent to the following unconstrained
minimization problem

min G, (n) = F,(x(n)), (47)
neRk

where x : R¥ — R” is a linear function defined by x(1) := xo—i—Z];:l nj(xj—x;j_1),
and n; denotes the j-th entry of 1. Now, observe that the cost function G, (-) is clearly
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a strictly convex function in R¥. This fact implies that (47) has a unique solution, say
n* € R¥. Then, n* must satisfy the first-order necessary optimality conditions

G, (n)
377/'

which are also sufficient due to the convexity of problem (47).

Hence, it follows that V f(x(n*)) is W, -orthogonal to the subspace generated by
the set {xx — xx—1, ..., x1 — xo}. In view of Theorem 5, we have that g is also W,-
orthogonal to the subspace generated by the set {x; — xx_1, ..., x] — xo}. Moreover,
note that selecting n = (1, 1,...1) € R* we obtain that x; = x(n) € Vi and also
V f(x(n)) = gk. Therefore, by the uniqueness of the solution of (47), we find that
gk = V f(x(n™)). Then, applying the equivalence of the minimization problems (46)
and (47), we have that the iterate x;, generated by Algorithm 1, can be written as

=V &xm) Wyulxj —xj-1) =0, for 1<j<k, (48)

k
X =x(1) =x0+ > n(x; —xj1),
Jj=1
which completes the proof. O
Remark 4 The subspace generated by the vector set {x; — xx—1, ..., x| — X0}, which

appears in (45), coincides with the Krylov subspace K (A, go). Indeed, since both
subspaces have the same dimension, it suffices to show that

(xj —xj—1) € Kj(A, go) foreachj > 1. (49)
For j = 1, using Lemma 2 and Step 4 in Algorithm 1, we know that
x1 —xp = —apgo € Ki(A, go).

Let us now assume, by induction on j, that (49) holds up to j = k, and consider the
next iteration. From (13), we have that

X1 — Xk = (B — D — xk—1) — Bratg &

Using now the inductive hypothesis (49), we get that (x; — xx—1) € Kr(A, go), and
using Lemma 5, we obtain that g € Kr41(A, go). Hence, xx4+1 — xx € Kr+1(A, g0o).
From the fact that the two mentioned subspaces are identical, combined with Corol-
lary 1, we conclude that for all k > 1 the iterate x; generated by Algorithm 1
is the argument that minimizes the merit function F,(-) on the affine subspace
xo + Ki (A, g0).

We are now ready to show that the iterate x; generated by the CG method for solv-
ing (1) coincides at each k with the k-th iterate generated by Algorithm 1 when p =
0, as long as both methods start at the same initial point xo. For that, let us first recall a
couple of key properties of the CG method for solving (1): at each iteration k, the sub-
space generated by all the already explored directions (say span{dp, di, ..., dr—1})
coincides with the Krylov subspace /Cx (A, go), and also that the iterate x is the min-
imizer of the strictly convex quadratic E(x) = f(x) + %bTx* on the entire explored
affine subspace, i.e., on the affine subspace given by xg + i (A, go); see, e.g., [22,
26, 32].
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On the other hand, when p = 0 in Algorithm 1, the merit function F,(-) reduces
to the strictly convex quadratic function E(-), and based on Remark 4, we conclude
that both methods generate iterates that minimize the same function E(-) on the same
affine subspace. Since E(-) is a strictly convex function then it has a unique global
minimizer on that affine subspace, which imply that if we start the CG method and
Algorithm 1 with ¢ = 0 from the same initial guess xg, then they produce the same
iterates for all k.

5 Numerical results

In order to give further insight into the GDWGM family of methods, we present the
results of some numerical experiments. We test our algorithm on some well-known
real large-scale strictly convex quadratic problems. All experiments have been per-
formed on an intel(R) CORE(TM) i7-4770, CPU 3.40 GHz with 500GB HD and
16GB RAM. The algorithm was coded in Matlab (version 2017b) with double pre-
cision. The running times are always given in CPU seconds. The implementation of
our algorithm is available in http://www.optimization-online.org/DB_HTML/2020/
09/8039.html.

We analyze the numerical behavior of the GDWGM algorithm to approximate the
solution of randomly generated dense linear systems of equations, and also of some
sparse linear systems of equations with real data. In our numerical tests, we run all
the algorithms up to K = 150000 iterations and stop them at iteration k < K if
HV f(x)ll2 < €IV f(x0)|]2. For comparison purposes, we compare the numerical
performance of our GDWGM family of methods with the classical conjugate gra-
dient method (CG) and the recently published delayed weighted gradient method
(DWGM). For the GDWGM family that depends on the parameter p, we present
the numerical results associated with the best value of u taken exhaustively in the
following set £2 = {0, 0.05, 0.1, 0.15, ..., 0.95, 1}.

The first set of test problems includes randomly generated dense positive definite
matrices assembled as A = QD QT , where

T T T
V1V V2V V3V

o= (r-2—"L|(1-222 ) (1222,
[lvill3 [lvall3 [lvsll3

where vy, vp, v3 € R™™" are random vectors, D = diag(dy, ..., d,) is a diagonal
matrix where dy = le-5, da, d3, .. .dy/s are distributed in [1, 100], and the rest of

the d;’s numbers follow a uniform distribution in the interval [£ 2A) ,k(A)], where
k(A) = A1/Apn. This random and dense experiment design was originally proposed
in [16], and has also been employed in [8, 19, 34]. In particular, we set k (A) = 10*
and use three values for the tolerance € € {le-8, 1e-10, 1le-12}. The vector b € R”
and the initial point xo € R” were generated with the following Matlab commands:

b=20%rand(n,1) —10; xo = zeros(n, 1).

For each pair (n, €), we randomly generate 100 independent simulations and, in
Table 1, we report the average number of iterations (IT), the average number of total
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Table 1 Numerical results for randomly generated dense problems

n € CG DWGM GDWGM

IT CT Res IT CT Res IT CT Res n

le-8 97 0.0014 5.86e-09 108 0.0021 7.55e-09 91  0.0018 4.68e-09 0.145
100 le-10 140 0.0018 5.6le-11 164 0.0030 6.45e-11 98  0.0018 6.56e-11 0.212
le-12 167 0.0022 5.08e-13 181 0.0032 7.07e-13 117 0.0020 8.19e-13 0.43

le-8 283 0.0080 7.12e-09 282 0.0096 8.22e-09 280 0.0089 8.22e-09 0.124
500 le-10 328 0.0099 7.4le-11 378 0.0127 8.4le-11 302 0.0097 8.20e-11 0.136
le-12 440 0.0136 7.07e-13 456 0.0163 8.17e-13 324 0.0111 8.82e-13 0.322

le-8 380 0.0397 7.79¢e-09 377 0.0434 8.72¢-09 374 0.0412 8.84e-09 0.137
1000 1le-10 415 0.0433 7.93e-11 451 0.0511 9.24e-11 403 0.0451 8.94e-11 0.163
le-12 569 0.0601 8.11e-13 588 0.0662 8.79e-13 438 0.0472 9.15e-13  0.224

computational time (CT), and the average number of the residual (Res) defined by
Res(x) = |[[VFf)||2/1IV f(x0)|l2, where x is the estimated solution achieved by
each method. In addition, for our GDWGM method, we report the average value of
. From Table 1, we notice that GDWGM outperforms the DWGM and CG methods
for intermediate values of the parameter w, that is for u € (0, 1). For these types of
experiments, the selection of an appropriate u € (0, 1) shows its potential as can be
seen in Fig. 1. In particular, we can observe in Fig. 1 that, for some specific values of
W, our approach requires less iterations than the CG and DWGM methods to achieve
convergence. We also note that the best possible n € (0, 1) is different for each pair
(n, €), and so it is problem dependent.

In our second experiment, we consider the application of Algorithm 1 to approx-
imate the solution of 40 sparse symmetric and positive definite linear system of
equations Ax = b, where the matrices A € R"*" are taken from the SuiteS-
parse Matrix Collection [9]!; meanwhile, the vector b € R” and the initial point
xo € R™ are generated by the following Matlab commands: b = A % ones(n, 1)
and xo = zeros(n, 1), respectively. This particular design of experiments was also
considered in [5]. In this experiment, we use € = le-6.

The numerical results concerning this experiment are summarized in Table 2. In
this table, “Fres” denotes the final residual objective value, i.e., Fres = |f(X) —
f(x®)|, where x denotes the approximated solution obtained by each method and
x* = A~b; “CT”and “IT” denote the total computing time in seconds and the num-
ber of iterations, respectively. We also report, in the last column of Table 2, the value
of u € 2, for which GDWGM reaches the required precision in the gradient norm in
the fewest possible number of iterations. As shown in Table 2, in most cases, both the
DWGM and GDWGM methods reach the desired gradient-norm accuracy, in fewer
iterations than the CG method. However, the CG method obtains a lower value of

The SuiteSparse Matrix Collection tool-box is available in https://sparse.tamu.edu/.
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Fig. 1 Convergence history of the three algorithms for the randomly generated dense matrices, when
n = 100, 500, 1000 and € = le-12. For GDWGM, we use a © = 0.2, b u = 0.3, and ¢ & = 0.1. The
y-axis represents the logarithm of the relative gradient norm, that is log(||V f (xi)|12/1IV f (x0)|]2)

the residual Fres than the other methods. This means that DWGM and its general-
ization reduce the gradient norm faster than CG, while CG approaches the optimal
value f(x*) faster than the other two methods. Furthermore, from Table 2, we see
that in most cases, it was possible to find a value of u € (0, 1), for which GDWGM
converges in fewer iterations than the DWGM and the CG methods.

In Fig. 2, we illustrate the behavior of Algorithm 1 by varying u, for the matri-
ces “1138_bus” and “cfdl.” These figures show that Algorithm 1 can converge to
the solution of the system of linear equations in a different number of iterations for
different values of p. Additionally, for these two special sparse matrices, we note
that values close to u = 1, in Algorithm 1, achieve convergence in less number of
iterations.

On the other hand, in Figs. 3 and 4, we plot the convergence history of CG,
DWGM, and GDWGM, from the same initial point, considering the following three
measures: | f(xx) — f(x*)], IV f(x)ll2, and | F (xx) — F (x*)|, for the instances
“apachel” with u = 0.15, and “1138bus” with u = 0.3, respectively. From these
figures, we can see that CG is superior to the other methods minimizing the objective
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Fig.2 Behavior of Algorithm 1 varying p for the matrices a “1138_bus” and b “cfd1”

function, DWGM is the best method optimizing the gradient norm, while GDWGM
is superior to the rest of the methods reducing the merit function F), (-), which agrees
with the theoretical result established in Corollary 1. In addition, we observe that

10 Iterations vs f(x)-residual Iterations vs ||grad(xk)||
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Fig.3 Convergence history of the three considered algorithms for the matrix “apachel.” For GDWGM, we
use 1 = 0.15. In all cases, the y-axis is in logarithmic scale. We report iterations versus: a | f (xx) — f (x*)],
b IV f(xi)ll2, and € | Fy (xi) — Fru(x™)]
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Fig.4 Convergence history of all the algorithms using ; = 0.3 for the matrix “1138_bus.” The y-axis is in
logarithmic scale. We report iterations versus: a | f (xx) — f (x™)[, b [|[V f (xx) |2, and ¢ | Fj, (x) — Fj (x™)|

the CG method shows an oscillatory pattern in terms of reducing ||V f (xx)||> and
|Fy (xx) — F, (x*)], and presents a smooth decrease in terms of reducing f(-), while
DWGM and GDWGM reduce in a smooth way the three considered measures. The
connection between GDWGM and the Moreau-Yosida regularization, described in
Remark 2, is one way of accounting for the observed smooth behavior.

6 Concluding remarks and perspectives

We have proposed and analyzed a family of optimal first-order methods for the min-
imization of strictly convex quadratic functions. Similar to the CG method, each
member of the family has certain orthogonality properties. Specifically, we proved
that the gradient vector at the current iteration is W,-orthogonal to all the previ-
ous gradient vectors, which implies directly the finite termination of the method for
all u € [0, 1]. Moreover, we demonstrated that if the matrix A € R"*" has only
p < n distinct eigenvalues, then the proposed algorithm obtains the desired solution
in exactly p iterations. In addition, we show that any member of the family constructs
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a sequence of points {xx}, such that x; verifies an optimality condition related to the
problem of minimizing the merit function F),(-) over the linear manifold generated
by all the explored previous search directions. We also establish that the sequence
{F.(xx)} converges to zero g-linearly when k tends to infinity for all u € [0, 1],
which implies that the sequence {x;} converges to the unique global minimizer of
f (). Finally, we have tested our procedure on a variety of dense and sparse large-
scale symmetric positive definite linear systems of equations, in order to illustrate its
performance.

The attractiveness of the proposed family is based mainly on its strong global
convergence properties similar to the mathematical magic that the conjugate gradi-
ent method has for the minimization of quadratic cost functions, and its simplicity
characterized by low storage requirements and a very low computational cost per
iteration. These good features make each member of this family a very nice candi-
date to tackle the solution of large-scale positive definite linear systems of equations.
Another fundamental feature of this novel approach is that it provides a collection of
optimal methods that allows the user to choose a suitable weight u € (0, 1), in order
to favor the reduction of f(-), or to promote the decrease of gradient norm towards
stationarity, according to his practical requirements. This special characteristic is very
important since generally, in several practical problems, it is only necessary to obtain
an approximation of the solution x* = A~'5 with low precision.

The theoretical result stated in Corollary 1 roughly suggests that each member of
the proposed family is as good as any other method of the family, since all the meth-
ods satisfy an analogous optimality condition. However, observe that Algorithm 1
with © = 1 (DWGM) has the advantage that it minimizes the gradient norm, which
is precisely the usual stopping rule for iterative algorithms in the general nonlin-
ear optimization field. This peculiarity can lead the DWGM method to achieve the
solution in fewer iterations than the rest of the choices. On the other hand, the best
method in terms of computational complexity is obtained when u = 0 (CG method),
since CG is the method that requires to compute the fewest number of inner products
per iteration. In this scenario, the selections p € (0, 1) in Algorithm 1 generate the
worst methods, in terms of the amount of floating-point operations needed per iter-
ation. Nevertheless, as shown in our preliminary numerical experiments, for some
specific intermediate values of the parameter © € (0, 1), the corresponding general-
ized method is able to converge to stationary points faster than the CG and DWGM
methods for the minimization of large-scale strictly convex quadratic problems with
a dense or sparse Hessian matrix.

Finally, it remains to investigate topics concerning extensions of the pro-
posed algorithm for general unconstrained optimization problems as well as box-
constrained optimization problems. A possible extension can be derived by incor-
porating the new scheme within the framework of the trust-region methods (by
following the ideas of Steihaug’s method [30]), while another possible generalization
is suggested by Remark 1, whose extension can be obtained by performing a couple
of inexact line searches per iteration. For all these possible extensions, the connec-
tion with the Moreau envelope described in Remark 2 could be helpful. These ideas
will be investigated and analyzed in future researches.
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