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Abstract
In Andreani et al. (Weak notions of nondegeneracy in nonlinear semidefinite program-
ming, 2020), the classical notion of nondegeneracy (or transversality) and Robinson’s
constraint qualification have been revisited in the context of nonlinear semidefinite
programming exploiting the structure of the problem, namely its eigendecomposition.
This allows formulating the conditions equivalently in terms of (positive) linear inde-
pendence of significantly smaller sets of vectors. In this paper, we extend these ideas
to the context of nonlinear second-order cone programming. For instance, for an m-
dimensional second-order cone, instead of stating nondegeneracy at the vertex as the
linear independence of m derivative vectors, we do it in terms of several statements
of linear independence of 2 derivative vectors. This allows embedding the structure
of the second-order cone into the formulation of nondegeneracy and, by extension,
Robinson’s constraint qualification as well. This point of view is shown to be crucial
in defining significantly weaker constraint qualifications such as the constant rank
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constraint qualification and the constant positive linear dependence condition. Also,
these conditions are shown to be sufficient for guaranteeing global convergence of
several algorithms, while still implying metric subregularity and without requiring
boundedness of the set of Lagrange multipliers.

Keywords Second-order cone programming · Constraint qualifications ·
Algorithms · Global convergence · Constant rank.

Mathematics Subject Classification 90C46 · 90C30

1 Introduction

The well-known constant rank constraint qualification (CRCQ) was introduced by
Janin [29], for nonlinear programming (NLP), with the purpose of obtaining a for-
mula for the Hadamard directional derivative of the value function. Prior to his work,
similar results were known under theMangasarian–Fromovitz constraint qualification
(MFCQ) and the linear independence constraint qualification (LICQ).

Janin also showed that CRCQ neither implies nor is implied by MFCQ and, more-
over, that CRCQ is strictly weaker than LICQ. After that, CRCQ has been widely
employed in the NLP literature for instance in the study of stability , strong second-
order necessary optimality conditions [5], global convergence of algorithms , among
other applications. We remark that CRCQ explains in a very simple way the existence
of Lagrange multipliers associated with affine constraints, such as in linear program-
ming.

More recently, Qi and Wei [42] presented a condition called constant positive lin-
ear dependence (CPLD), which is strictly weaker than both MFCQ and CRCQ, and
showed its application on the convergence of a general sequential quadratic program-
ming (SQP) method for NLP. However, they did not prove that CPLDwas a constraint
qualification at the time. This issue was settled in a later article by Andreani et al. [16],
where they proved that CPLD implies the quasinormality constraint qualification con-
dition. Later, in [4], the convergence of an augmented Lagrangian method was also
proved under CPLD. Other uses of constant rank-type constraint qualifications in NLP
are discussed, for instance, in [14, 15, 29, 34, 35] and their references. In particular,
the appropriate way of incorporating equality constraints in the definitions of CRCQ
and CPLD is discussed, respectively, in [34] and [14].

Although constraint qualifications with applications toward convergence of algo-
rithms are largely studied in NLP, the situation is quite different in nonlinear second-
order cone programming (NSOCP), despite its many relevant applications—for
example, in structural optimization and machine learning , hydroacoustic classifi-
cation of fishes , and others . In NSOCP, this role is almost always covered by the
so-called nondegeneracy condition (c.f. [18,Equation 25]) and Robinson’s constraint
qualification (Robinson’s CQ) (c.f. [18,Equation 29]), which can be seen as natural
generalizations of LICQ and MFCQ, respectively. The first work that attempted to
extend CRCQ and its variants to the context of NSOCP is due to Zhang and Zhang
[47], but their condition was invalidated by a counterexample given by Andreani et
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al. in [6]. Later, a “naive approach” to extend some constant rank-type constraint
qualifications for NSOCP was presented by Andreani et al. in [11]; the adjective
“naive” refers to the fact that some of the conic constraints were locally rewritten as
NLP constraints whenever possible, yielding a new reformulated problem with mixed
constraints, and then a hybrid condition between the NLP versions of CRCQ/CPLD
and nondegeneracy/Robinson’s CQ was presented. The major contribution of [11] is
to show an effective way of dealing with those two distinct types of constraints via
sequences of approximate stationary points.

Recently, we proposed in [12] a newgeometrical characterization ofCRCQ forNLP
using the faces of the nonnegative orthant, which was naturally extended to the context
of NSOCP as well as nonlinear semidefinite programming (NSDP). This has led us
to an alternative constant rank-type constraint qualification that allowed us to derive
strong second-order optimality conditions for NSDP and NSOCP without assuming
compactness of the Lagrange multiplier set, similarly to what is known in NLP .
However, no application toward algorithms was provided or suggested in [12]. Since
the sequential approach from [11] seemsmore suitable for algorithms, we developed it
even further for NSDP problems [9, 10] by directly exploiting the eigenvector structure
of the problem, overcoming the limitations of the naive approach.

This paper introduces new constraint qualifications for NSOCP problems follow-
ing similar ideas to those used in [9] and [10], but taking into account the structure
of the second-order cone. For such, we will first introduce weak variants of the
nondegeneracy condition and Robinson’s CQ—here called weak-nondegeneracy and
weak-Robinson’s CQ—which are weaker than their original versions but that still
reduce to LICQ and MFCQ, respectively, when an NLP problem is modeled as an
NSOCP problem with several one-dimensional constraints. Moreover, we show that
weak-nondegeneracy is strictly weaker than nondegeneracy, and we also clarify some
relations between weak-nondegeneracy (weak-Robinson’s CQ) and standard nonde-
generacy (Robinson’s CQ), which were only partially addressed in [9]. In particular,
we show a new characterization of nondegeneracy in terms of the validity of weak-
nondegeneracy plus the linear independence of a partial Jacobian of the constraints.
The relationship of weak-Robinson’s CQ and Robinson’s CQ is also partially settled
in our Theorem 3.1, which was left as an open problem for NSDP in [10]. With these
new constraint qualifications at hand, we introduce new extensions of CRCQ and
CPLD for NSOCP, which also recover their counterparts in NLP. We also discuss a
mild adaptation of these new conditions that can be adopted with the purpose of prov-
ing global convergence results for algorithms that keep track of Lagrange multiplier
estimates.

The structure of this paper is as follows: In Sect. 2, we present some notation and
technical results. Sections 3 and 4 present weak constraint qualifications for NSOCP:
weak-nondegeneracy condition, weak-Robinson’s CQ, and two weak constant rank
conditions. Also, we present some of their properties and a detailed comparison with
other constraint qualifications from the literature, and among themselves. In Sect. 5,we
introduce perturbed versions of the constant rank conditions of Sect. 4, and we present
some algorithms related to them. We state the relationship between these perturbed
variants and the so-called metric subregularity CQ. Finally, in Sect. 6, we summarize
our results and discuss some ideas for future research.
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2 Preliminaries

In this section, we will present our notation and some linear algebra and convex
analysis tools needed for deriving the results of this paper.

2.1 Basic Results and Some Notation

For a given differentiable function F : Rn → R
m , we denote the Jacobian matrix

of F at a point x ∈ R
n by DF(x); and the j th column of its transpose, DF(x)�,

will be denoted by ∇Fj (x). We also adopt the usual inner product in R
m , given by

〈y, z〉 := ∑m
j=1 y j z j , along with the Euclidean norm ‖y‖ := √〈y, y〉, for every

y, z ∈ R
m . The open ball (respective to the Euclidean norm) that has center at y and

radius δ ≥ 0 will be denoted by B(y, δ), and its closure, by cl(B(y, δ)).
The orthogonal projection of a given y ∈ R

m onto a nonempty closed convex set
C ⊆ R

m with respect to the Euclidean norm is defined as

PC (y) := argmin
z∈C

‖z − y‖.

It is valid to mention that PC (y) is well defined as a continuous function of y, since
C is closed and convex. Also, when C is given by the Cartesian product of other
nonempty closed convex sets C1, . . . ,Cq , where C j ⊆ R

m j for every j ∈ {1, . . . , q},
then for any y := (y1, . . . , yq) ∈ R

m1+···+mq , we have

PC (y) = (PC1(y1), . . . ,PCq (yq)
)
.

To relate our results to the classical ones from the literature, we will make use of a
notion of conic linear independence, defined as follows:

Definition 2.1 Let C ⊆ R
m be a nonempty closed convex cone. A matrix M ∈ R

n×m

is said to be C-linearly independent if there is no nonzero v ∈ C such that Mv = 0.

Roughly speaking, Definition 2.1 describes “injectivity over C .” In particular, if C
is the nonnegative orthant

R
m+ := {y ∈ R

m : ∀i ∈ {1, . . . ,m}, yi ≥ 0},

thenDefinition 2.1 reduces to a concept known inNLP as positive linear independence
of the columns of M . Now, let us show a simple characterization of conic linear
independence in terms of all finitely generated conical slices of the cone.

Lemma 2.1 Let C ⊆ R
m be a closed convex cone such that there exists a (possibly

infinite) index set S and, for each w ∈ S, a finite subset Ew ⊆ C whose elements are
linearly independent, such that

C =
⋃

w∈S
cone(Ew), (1)
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where cone(Ew) denotes the conic hull of Ew. Then, a matrix M ∈ R
n×m is C-linearly

independent if, and only if, the family {Mv}v∈Ew
is positively linearly independent,

for every fixed w ∈ S.

Proof Suppose that M is C-linearly independent, let w ∈ S be arbitrary, and let
av ∈ R+, v ∈ Ew, be scalars such that

∑

v∈Ew

avMv = M

⎡

⎣
∑

v∈Ew

avv

⎤

⎦ = 0. (2)

Since C is a convex cone, it follows that ṽ := ∑v∈Ew
avv belongs to C , so ṽ = 0 by

hypothesis; and from the linear independence of Ew we have that av = 0 for every
v ∈ Ew. Thus, {Mv}v∈Ew

is positively linearly independent.
Conversely, assume that {Mv}v∈Ew

is positively linearly independent, and let ṽ ∈ C
be such that M ṽ = 0. Then, there is somew ∈ S such that ṽ ∈ cone(Ew); that is, there
exist some scalars av ≥ 0, v ∈ Ew, such that ṽ = ∑

v∈Ew
avv and hence (2) holds,

implying that av = 0 for all v ∈ Ew; thus, ṽ = 0. 
�
Remark 2.1 Considering C = R

m in the statement of the Lemma and replacing the
conic hull by the linear span in (1), we arrive similarly at a characterization of the
linear independence of the columns of M in terms of the linear independence of the
family {Mv}v∈Ew

, for every fixed w ∈ S.

A simple example to fix ideas on how to use Lemma 2.1 is to take the parametric
representation of R2:

R
2 = {(r cos(w), r sin(w)) : w ∈ [0, 2π ], r ≥ 0}

=
⋃

w∈[0,2π ]
cone((cos(w), sin(w))) (3)

so we have C = R
2, S = [0, 2π ], and Ew = {(cos(w), sin(w))}, w ∈ S. In this case,

Lemma 2.1 simply states the trivial fact that a matrix M ∈ R
n×2 is injective if, and

only if, M(cos(w), sin(w)) �= 0 for every w ∈ [0, 2π ]. Moreover, the main object of
our study, the second-order cone (or Lorentz cone):

Lm :=
{ {y := (y0, ŷ) ∈ R × R

m−1 : y0 ≥ ‖ŷ‖}, if m > 1,
R+, if m = 1,

may benefit from Lemma 2.1 as well, since it can be written as

Lm =
⋃

w∈Rm−1

‖w‖=1

cone({(1,−w), (1, w)}),

which corresponds to S = {w ∈ R
m−1 : ‖w‖ = 1} and Ew = {(1,−w), (1, w)}. In

this case Lemma 2.1 states that a matrix M ∈ R
n×m is Lm-linearly independent if,

and only if, the vectors
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M(1,−w) and M(1, w) (4)

are positively linearly independent for every w ∈ R
m−1 such that ‖w‖ = 1. Further-

more, the standard notion of linear independence in Rm can also be stated in terms of
the conical slices of Lm , since it is a full-dimensional cone; indeed, observe that

R
m =

⋃

w∈Rm−1

‖w‖=1

span({(1,−w), (1, w)}),

where span({(1,−w), (1, w)}) denotes the linear span of the vectors (1,−w) and
(1, w); then, the matrix M is Rm-linearly independent (i.e., injective) if, and only if,
the vectors (4) are linearly independent for everyw ∈ R

m−1 such that ‖w‖ = 1. Thus,
we have replaced the linear independence of the m columns of M by a series of linear
independence requirements of only two parameterized vectors in (4), independently
of the size of m. With this point of view, we will be able to exploit the structure of the
second-order cone, which will turn out to be essential in our analysis.

Furthermore, observe that Lemma 2.1 can be applied to products of closed convex
cones C = ∏ j∈J C j , where J is an index set, in order to describe C-linear indepen-
dence of a family of matrices {Mj } j∈J mounted into a conveniently indexed block
matrix

M :=

⎡

⎢
⎢
⎣

...

Mj
...

⎤

⎥
⎥
⎦

j∈J

(5)

therefore, we will abuse the terminology to define the C-linear independence of the
family {Mj } j∈J in terms of the above M throughout the paper.

To close this subsection, let us briefly recall the celebrated Carathéodory’s Lemma
[17,Exercise B.1.7] from convex analysis:

Lemma 2.2 (Carathéodory’s Lemma) Let y1, . . . , yp ∈ R
n, and let α1, . . . , αp ∈ R

be arbitrary. Then, there exist some J ⊆ {1, . . . , p} and some scalars α̃ j with j ∈ J ,
such that {y j } j∈J is linearly independent,

p∑

j=1

α j y j =
∑

j∈J

α̃ j y j ,

and α j α̃ j > 0, for all j ∈ J .

2.2 The Nonlinear Second-Order Cone Programming Problem

A (multifold) nonlinear second-order cone programming problem is usually stated in
the form:
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Minimize
x∈Rn

f (x), (NSOCP)

subject to g j (x) ∈ Lm j , ∀ j ∈ {1, . . . , q},

where f : Rn → R and g j : Rn → R
m j are continuously differentiable functions, for

all j ∈ {1, . . . , q}, andLm j is a second-order cone inR
m j . As usual, for a point x ∈ R

n

we denote g j (x) = (g j,0(x), ĝ j (x)) ∈ R×R
m j−1. The feasible set of (NSOCP) will

be denoted by F . Also, we denote the interior and the boundary excluding the origin
of Lm j by intLm j and bd+Lm j , respectively; and as usual in the study of NSOCP, for
any x ∈ F we partition {1, . . . , q} as follows:

I0(x) := { j ∈ {1, . . . , q} : g j (x) = 0},
IB(x) := { j ∈ {1, . . . , q} : g j (x) ∈ bd+Lm j },
Iint (x) := { j ∈ {1, . . . , q} : g j (x) ∈ intLm j }.

(6)

Following [2,Section 4], we recall that ifm j > 1, then every y ∈ R
m j has a spectral

decomposition with respect to Lm j , in the form

y = λ1(y)u1(y) + λ2(y)u2(y),

where

λi (y) := y0 + (−1)i‖ŷ‖ and ui (y) :=

⎧
⎪⎪⎨

⎪⎪⎩

1

2

(

1, (−1)i
ŷ

‖ŷ‖
)

, if ŷ �= 0,

1

2

(
1, (−1)iw

)
, otherwise,

(7)

and w ∈ R
m j−1 can be any unitary vector, with i ∈ {1, 2}. In this setting, λi (y) is

said to be an eigenvalue of y associated with the eigenvector ui (y), i ∈ {1, 2}. By
definition, we see that y ∈ Lm j if, and only if, λ1(y) ≥ 0, λ2(y) ≥ 0, whence follows
that the orthogonal projection of y onto Lm j can be characterized as

PLm j
(y) = [λ1(y)]+u1(y) + [λ2(y)]+u2(y), (8)

where [ · ]+ := max{ · , 0}.
Remark 2.2 From this point onwards, we will assume that m j > 1 for every j ∈
{1, . . . , q}. The reason to do this is that if m j = 1, then g j ∈ Lm j is a standard NLP
constraint, which should be treated separately in our approach, together with equality
constraints; we should remark that our approach is very friendly to this kind of mixed
constraints, since it is based on [11]. In particular, inclusion of equality constraints
can be done in the way suggested in [34] and [14]. Therefore, to avoid cumbersome
notation, we will omit both types of NLP constraints in this paper. Alternatively, the
spectral decomposition of y ∈ L1 could be interpreted as y = λ1(y)u1(y), with
u1(y) = 1 and λ1(y) = y. From this point of view, the definitions and theorems of
this paper can be adjusted to fit the casem j = 1 by simply disregarding all expressions
involving λ2(y) and u2(y).
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Let x ∈ F . The well-known Karush–Kuhn–Tucker (KKT) conditions for x consist
of the existence of Lagrange multipliers μ j ∈ Lm j , j ∈ {1, . . . , q}, such that

∇x L(x, μ1, . . . , μq) = 0,

〈μ j , g j (x)〉 = 0, ∀ j ∈ {1, . . . , q}, (9)

where

L(x, μ1, . . . , μq) := f (x) −
q∑

j=1

〈μ j , g j (x)〉.

It is known that not every local minimizer satisfies the KKT conditions, unless
a constraint qualification is present. The most prominent constraint qualifications in
the literature are the nondegeneracy CQ and Robinson’s CQ, which we recall next as
characterized1 in the work of Bonnans and Ramírez [18].

Definition 2.2 A point x ∈ F satisfies

– Nondegeneracy if the family

{
Dg j (x)

�Γ j g j (x)
}

j∈IB (x)

⋃{
Dg j (x)

�}

j∈I0(x)
(10)

is R|IB (x)| ×∏ j∈I0(x) R
m j -linearly independent;

– Robinson’s CQ if the family (10) isR|IB (x)|
+ ×∏ j∈I0(x) Lm j -linearly independent;

where

Γ j :=
[
1 0
0 −Im j−1

]

(11)

and Im j−1 is the identity matrix of dimension m j − 1.

As mentioned in the Introduction, the nondegeneracy condition reduces to LICQ
from NLP when it is seen as an instance of (NSOCP) withm1 = · · · = mq = 1, while
Robinson’s CQ reduces to MFCQ in the same process.

3 Weak Constraint Qualifications for NSOCP

From the practical point of view, one of the standard strategies for proving first-order
global convergence of iterative algorithms is proving that every feasible limit point x
of the sequence {xk}k∈N of its iterates fulfills the KKT conditions whenever a given

1 See [18,Proposition 19] for the characterization of nondegeneracy. The characterization of Robinson’s
CQ follows from [19,Proposition 2.97 and Corollary 2.98] using the fact 〈y j , g j (x)〉 = 0 with j ∈ IB (x)
if, and only if, y j = αΓ j g j (x) for some α ≥ 0; and similarly, 〈y j , g j (x)〉 = 0 with j ∈ Iint (x) if, and
only if, y j = 0 [2,Lemma 15].

123



Journal of Optimization Theory and Applications

CQ holds. Roughly speaking, this means that the algorithm surely avoids all non-
optimal points that satisfy the CQ but violate KKT; hence, building this reasoning
under a more general (weaker) CQmeans to narrow down the range of convergence of
the method without removing optimal candidates from it. Moreover, it is well known
that the existence of Lagrange multipliers is a relevant issue beyond algorithms—for
example, in situations where they have some practical interpretation, such as in the
electricity pricing context—meaning that there is also a theory-driven motivation for
pursuing weaker constraint qualifications.

In this section, we will present weaker variants of nondegeneracy and Robinson’s
CQ, discuss someof their properties, and exemplify their usagewith an external penalty
method. Besides, these conditions shall pave the way for a more radical relaxation in
terms of local constant rank, which will be discussed in the next section. A similar
approach has been conducted in [9, 10] for NSDP problems, but although NSOCP can
be seen as a particular case of NSDP via an arrowhead matrix transformation

(y0, ŷ) �→ Arw(y0, ŷ) :=

⎡

⎢
⎢
⎢
⎣

y0
. . . ŷ

y0
ŷ� y0

⎤

⎥
⎥
⎥
⎦

,

it should be noted that constraint qualifications are not necessarily carried over with the
transformation; that is,when dealingwithweak constraint qualifications, one generally
loses information when the problem is equivalently rewritten differently (a noticeable
exception is Robinson’s CQ, which turns out the be quite robust in this sense). For
instance, the nondegeneracy condition for NSDP is never satisfied by a constraint in
the form

Arw(g0(x), ĝ(x)) ∈ S
m+ := {M ∈ R

m×m : M = M�; ∀d ∈ R
m, d�Md ≥ 0}

when m > 2, regardless of the fulfillment of nondegeneracy for NSOCP applied to
the constraint (g0(x), ĝ(x)) ∈ Lm . As it can be easily verified, the same conclusion
holds for the constraint qualification called “weak-nondegeneracy” for NSDP that was
introduced in [10]. Thus, a specialized analysis is required to obtain results similar to
[9, 10], for NSOCP. In fact, the analysis we present in this section regarding thoseweak
conditions is, in a sense, more refined than the one presented in [10] since there are
some important questions that were left open in [10], whichwe are able to answer here.

3.1 Parametric Bases andWeak-Nondegeneracy for NSOCP

We open our studies by characterizing nondegeneracy and Robinson’s CQ in terms
of the eigenvectors of the constraint functions (as in (7)). To motivate it, let g(x) :=
(g0(x), ĝ(x)) and x ∈ R

n be such that g(x) = 0. Using Bonnans and Ramírez’
characterization (Definition 2.2), we see that x is nondegenerate (that is, it satisfies
nondegeneracy CQ) when the matrix Dg(x) is surjective. This is clearly a represen-
tation of nondegeneracy in the canonical basis e1, . . . , em of Rm , where ei has 1 in
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its i th position and zeros elsewhere. Other representations of Rm may lead to differ-
ent characterizations of these constraint qualifications; and this simple fact leads us a
natural way of imbuing the structure of the cone into the conditions.

For instance, the discussion after Lemma 2.1 allows us to represent nondegeneracy
and Robinson’s CQ in terms of each slice of Lm , as long as we consider all of them.
More precisely:

Corollary 3.1 Let x be a feasible point of (NSOCP). Then:

1. Nondegeneracy holds at x if, and only if, the family of vectors

{
Dg j (x)

�u1(g j (x))
}

j∈IB (x)

⋃{
Dg j (x)

�(1,−w j ), Dg j (x)
�(1, w j )

}

j∈I0(x)
(12)

is linearly independent for every w j ∈ R
m j−1 such that ‖w j‖ = 1, j ∈ I0(x);

2. Robinson’s CQ holds at x if, and only if, the family (12) is positively linearly
independent for every w j such that ‖w j‖ = 1, j ∈ I0(x).

Proof For item 2, it suffices to apply Lemma 2.1 considering the product C =∏
j∈J C j , J := IB(x) ∪ I0(x), where

C j :=
{
R+, if j ∈ IB(x),
Lm j , if j ∈ I0(x),

to the matrix M = [Mj ] j∈J arranged as in (5), whose blocks are given by

Mj :=
{
Dg j (x)�u1(g j (x)), if j ∈ IB(x),
Dg j (x)�, if j ∈ I0(x).

To see why C fits the description of Lemma 2.1, define S j := {1} for every j ∈ IB(x),
S j := {w j ∈ R

m j−1 : ‖w j‖ = 1} for every j ∈ I0(x); then, let S :=∏ j∈J S j and for
each w := (w j ) j∈J ∈ S, with w j ∈ S j for j ∈ J , define Ew :=∏ j∈J Ew j , where

Ew j :=
{
1, if j ∈ IB(x),
{(1,−w j ), (1, w j )}, if j ∈ I0(x),

for every j ∈ J . Observe that C = ⋃
w∈S cone (Ew) and the proof of item 2 is over.

The proof for item 1 is similar, considering Remark 2.1. 
�
For a better understanding of the meaning of Corollary 3.1, let us resume the short
discussion after Lemma 2.1. Note that LICQ for a pair of constraints g1(x) ≥ 0 and
g2(x) ≥ 0 at a point x such that g1(x) = g2(x) = 0, when seen through Corollary 3.1,

becomes equivalent to Dg(x)�
(
cos(w)

sin(w)

)

being nonzero, for every w ∈ [0, 2π ],
where g := (g1, g2). On the one hand, this is obvious; but on the other hand, note that
the process of checking linear independence of a couple of n-dimensional vectors is
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reduced to checking whether one n-dimensional vector is zero or not, for each fixed
real parameter w. Of course, this reasoning can be extended to arbitrary dimensions
and arbitrary parameterizations, and Corollary 3.1 is simply one of these extensions
where the parametrization is given in terms of the second-order cone. This will turn
out to be relevant in our analysis as we will be able to identify that some of the linear
independence requirements will be superfluous for a constraint qualification to be
defined. This kind of reasoning can also be applied to the cone of symmetric positive
semidefinite matrices, leading to a different, in fact simpler, proof of [10,Proposition
3.2], which is the analog of Corollary 3.1 in the context of NSDP, hence providing
some intuition for a result that was originally presented as a mere technical tool in
[10].

With the characterization of Corollary 3.1 at hand, we can take a close look at a
simple example that shall motivate our next steps:

Example 3.1 Let g0, g1 : Rn → R be continuously differentiable functions, define
g := (g0, g1), and let x be a point such that:

– g(x) = 0;
– ∇g0(x) and ∇g1(x) are linearly independent.

Observe that nondegeneracy holds for the constraint g(x) ∈ L2 at x since Dg(x)� is
R
2-linearly independent. Now consider the equivalent NSOCP constraint

g̃(x) := (g0(x), g1(x), 0, . . . , 0) ∈ Lm

and observe that the KKT conditions for it are the same as for the constraint g(x) ∈ L2.
However, by Corollary 3.1, nondegeneracy for the reformulated problem is equivalent
to the linear independence of the vectors

Dg̃(x)�(1,−w) = ∇g0(x) − w1∇g1(x)

and

Dg̃(x)�(1, w) = ∇g0(x) + w1∇g1(x)

for every w = (w1, . . . , wm−1) such that ‖w‖ = 1, which is violated when w1 = 0.
On the other hand, note that for every x such that g1(x) �= 0 the eigenvectors of

g̃(x) are uniquely determined by

u1(g̃(x)) = 1

2

(

1,− g1(x)

|g1(x)| , 0, . . . , 0
)

and

u2(g̃(x)) = 1

2

(

1,
g1(x)

|g1(x)| , 0, . . . , 0
)

.
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This suggests that although g̃(x) admits multiple eigenvector decompositions
1
2 (1,−w) and 1

2 (1, w) with ‖w‖ = 1, the only relevant ones arew = (±1, 0, . . . , 0).
That is, in light of our previous work in NSDP , we can infer that the problematic
choices of 1

2 (1,−w) and 1
2 (1, w) such that w1 = 0 may be disregarded when defin-

ing a constraint qualification. In fact, we may consider all sequences {xk}k∈N → x
and we have that when g1(xk) �= 0 for every k ∈ N, the sequences {u1(g̃(xk))}k∈N
and {u2(g̃(xk))}k∈N of eigenvectors of g̃(xk) are uniquely defined and 1

2 (1,−w) and
1
2 (1, w) with w1 = 0 are not among their limit points. Similarly, when g1(xk) = 0
for some indexes k ∈ N one may also choose the eigendecompositions of g̃(xk) that
avoids having 1

2 (1,−w) and 1
2 (1, w) with w1 = 0 as limit points.

Conversely, note that for any sequence {xk}k∈N → x , the choice w =
(±1, 0, . . . , 0) does not present the same issue, and in this case we get that the vectors

Dg̃(x)�(1,−w) = ∇g0(x) ∓ ∇g1(x) and Dg̃(x)�(1, w) = ∇g0(x) ± ∇g1(x)

are linearly independent.

Example 3.1 suggests that demanding linear independence of (12) for allw j may be
unnecessarily strong for a constraint qualification. In fact, it also suggests that only the
limit points of sequences consisting of eigenvectors of g(xk), for each {xk}k∈N → x ,
are needed. This observation leads to two new constraint qualifications for NSOCP:

Definition 3.1 (Weak-nondegeneracy and weak-Robinson’s CQ) Let x ∈ F . We say
that x satisfies:

– Weak-nondegeneracy if, for each sequence {xk}k∈N → x , there exists some I ⊆∞
N and convergent eigenvectors sequences {u1(g j (xk))}k∈I → 1

2 (1,−w j ) and
{u2(g j (xk))}k∈I → 1

2 (1, w j ), with ‖w j‖ = 1, for every j ∈ I0(x), such that (12)
is linearly independent;

– Weak-Robinson’s CQ if, for each sequence {xk}k∈N → x , there exists some I ⊆∞
N and convergent eigenvectors sequences {u1(g j (xk))}k∈I → 1

2 (1,−w j ) and
{u2(g j (xk))}k∈I → 1

2 (1, w j ), for every j ∈ I0(x), such that (12) is positively
linearly independent;

where the notation I ⊆∞ N means that I is an infinite subset of N.

Both conditions presented in Definition 3.1 will be proved to be CQs later on; let
us first discuss their properties and relations with other CQs. From Definition 3.1, it
is clear that weak-nondegeneracy is implied by nondegeneracy, but the converse is
not necessarily true, as illustrated by Example 3.1. Notice also that both conditions
from Definition 3.1 are maintained under the addition of structural zeros as in Exam-
ple 3.1, which somehow shows the robustness of the conditions we define. Similarly,
for NSDPs, in [10], it is shown that the analogous conditions from Definition 3.1 are
maintained when stacking several semidefinite constraints into a single block diagonal
semidefinite constraint. The next example shows, however, that weak-nondegeneracy
may hold when nondegeneracy fails even when the problem does not have structural
zeros:
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Example 3.2 (Weak-nondegeneracy is weaker than nondegeneracy) Consider the con-
straint

g(x) := (x1, x2, x2) ∈ L3

at the point x := (0, 0), which does not satisfy nondegeneracy. Now, take any sequence
{xk}k∈N → x . There are three possible cases to consider:

1. There exists some infinite subset I ⊆∞ N such that xk2 > 0 for all k ∈ I ;
2. Case 1 fails to hold, but there exists some infinite subset I ⊆∞ N such that xk2 < 0

for all k ∈ I ;
3. Cases 1 and 2 both fail, implying x2 = 0 for all k large enough;

In Case 1, the eigenvectors u1(g(xk)) and u2(g(xk)) are uniquely determined by

u1(g(x
k)) = 1

2

(

1,− 1√
2
,− 1√

2

)

and u2(g(x
k)) = 1

2

(

1,
1√
2
,

1√
2

)

,

for all k ∈ I . Define w :=
(

1√
2
, 1√

2

)
and note that

lim
k∈I u1(g(x

k)) = 1

2
(1,−w) and lim

k∈I u2(g(x
k)) = 1

2
(1, w).

In addition,

Dg(x)�(1,−w) = 1

2

(
1

−√
2

)

and Dg(x)�(1, w) = 1

2

(
1√
2

)

are linearly independent. Case 2 is analogous. In Case 3, we have that the eigen-
vectors of g(xk) are not uniquely defined in (7); thus, in checking Definition 3.1
we may choose an appropriate eigendecomposition of each g(xk). In particular,
we may pick the same decomposition analyzed previously to conclude that weak-
nondegeneracy holds at x . Notice that since nondegeneracy fails, by Corollary 3.1
there must exist some w, ‖w‖ = 1, such that Dg(x)�(1,−w) and Dg(x)�(1, w) are

linearly dependent. This is the case of w :=
(

1√
2
, −1√

2

)
or w :=

(−1√
2
, 1√

2

)
; however,

since weak-nondegeneracy holds, these limit points can be avoided considering the
eigendecompositions of {g(xk)}k∈N for any sequence xk → x .

At this point, we acknowledge that weak-nondegeneracy may be hard to check.
However, besides its robustness in terms of structural zeros as discussed in
Example 3.1, let us prove that there is a deeper connection between nondegeneracy
and weak-nondegeneracy, in the sense that we may characterize nondegeneracy by the
validity of weak-nondegeneracy plus a simple linear independence requirement of a
partial family of derivative vectors in I0(x), namely, by removing fromconsideration in
the family (10) that defines nondegeneracy all gradients of first component entries, that
is, ∇g j,0(x), j ∈ I0(x) together with the vectors indexed by IB(x). In fact, in Exam-
ple 3.2, this family of vectors reduces to the rows of Dĝ(x), where ĝ(x) := (x2, x2),
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which are linearly dependent. Loosely speaking, weak-nondegeneracymay be thought
as an appropriate form of nondegeneracy but without requiring linear independence
of this partial family of vectors.

(Difference between weak-nondegeneracy and Nondegeneracy) Let x be a feasible
point of (NSOCP). We have that nondegeneracy holds at x if, and only if, weak-
nondegeneracy holds at x and, in addition, the matrix

M :=

⎡

⎢
⎢
⎣

...

Dĝ j (x)
...

⎤

⎥
⎥
⎦

j∈I0(x)

is surjective.

Proof From Definition 3.1, it is clear that if nondegeneracy holds at x , then weak-
nondegeneracy also holds at x . Moreover, from (10) we obtain that M is surjective.
Conversely, suppose that nondegeneracy does not hold at x . By Corollary 3.1, there
are unitary vectors w j ∈ R

m j−1, j ∈ I0(x), such that (12) is linearly dependent.
Let us define w = (w j ) j∈I0(x). By the surjectivity of M , there exists a nonzero

vector d ∈ R
n such that w = Md. That is, we have that Dĝ j (x)d = w j for all

j ∈ I0(x). Now, take any positive sequence {tk}k∈N → 0+ and let

xk := x + tkd, ∀k ∈ N.

We have that {xk}k∈N → x and when we consider j ∈ I0(x) and the Taylor expansion
of ĝ j (xk) around x , we obtain that

ĝ j (x
k) = tkw j + o(tk) �= 0

for all k ∈ N large enough, since w j �= 0. Moreover, for the indices j ∈ IB(x) we
also have that ĝ j (xk) �= 0 for all k large enough, because ĝ j (x) �= 0. This means that
the eigenvectors of ĝ j (xk) are uniquely determined from (7) for all j ∈ I0(x)∪ IB(x)
and all k ∈ N. In particular, for j ∈ I0(x) we have that

ĝ j (xk)

‖ĝ j (xk)‖ = Dĝ j (x)d + o(tk)/tk
‖Dĝ j (x)d + o(tk)/tk‖ → w j .

As a consequence, since w j ∈ R
m j−1, j ∈ I0(x), is such that (12) is linearly depen-

dent, we conclude that weak-nondegeneracy does not hold at x . 
�
The following example shows that although weak-nondegeneracy implies weak-

Robinson’s CQ, the converse is not true:

Example 3.3 (Weak-Robinson is weaker thanweak-nondegeneracy) Consider the con-
straint

g(x) := (4x, 2x, x) ∈ L3
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and the point x := 0. Clearly, it satisfies Robinson’s CQ, hence it also satisfies weak-
Robinson’s CQ. However, observe that taking any sequence {xk}k∈N → x such that
xk > 0 for all k ∈ N, we have

u1(g(x
k)) = 1

2

(

1,− 2√
5
,− 1√

5

)

and u2(g(x
k)) = 1

2

(

1,
2√
5
,

1√
5

)

,

hence we have u1(g(xk)) → 1
2 (1,−w) and u2(g(xk)) → 1

2 (1, w) where w =
(

2√
5
, 1√

5

)
. Then,

Dg(x)�(1,−w) = 4
√
5 − 5

2
√
5

> 0 and Dg(x)�(1, w) = 4
√
5 + 5

2
√
5

> 0

are linearly dependent, although positively linearly independent, implying that weak-
nondegeneracy does not hold at x .

To discuss in detail the relation between weak-Robinson’s CQ and Robinson’s CQ
for (NSOCP), we rely on a simple lemma:

Lemma 3.1 Let x be a feasible point of (NSOCP). If (weak-Robinson’s CQ) weak-
nondegeneracy holds at x, then the family of vectors

{∇g j,0(x)
}
j∈I0(x)

⋃{
Dg j (x)

�u1(g j (x))
}

j∈IB (x)
(13)

is (positively) linearly independent.

Proof Assume that weak-Robinson’s CQ holds at x , so there exists some vectors
w j ∈ R

m j−1, ‖w j‖ = 1, j ∈ I0(x), such that (12) is positively linearly independent;
and, by contradiction, suppose that (13) is positively linearly dependent. Then, there
are some η j ≥ 0, j ∈ IB(x) ∪ I0(x), not all zero, such that

∑

j∈I0(x)
η j∇g j,0(x) +

∑

j∈IB (x)

η j Dg j (x)
�u1(g j (x)) = 0. (14)

Now set

α j = β j = η j

2

for every j ∈ I0(x) and (14) can be rewritten as

∑

j∈I0(x)
α j Dg j (x)

�(1,−w j ) +
∑

j∈I0(x)
β j Dg j (x)

�(1, w j )+
∑

j∈IB (x)

η j Dg j (x)
�u1(g j (x)) = 0,
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which implies (12) is positively linearly dependent, contradicting weak-Robinson’s
CQ. The statement regarding weak-nondegeneracy follows analogously. 
�

Recall that Robinson’s CQ can be evaluated separately for each of the constraints
g j (x) ∈ Lm j , j ∈ {1, . . . , q}, and that this is weaker than Robinson’s CQ when
such system is regarded as a whole (however, not being a CQ). In fact, for any given
x ∈ F , the former can be characterized by the existence of some vectors d j ∈ R

n ,
j ∈ {1, . . . , q}, such that g j (x) + Dg j (x)d j ∈ intLm j , whereas the latter requires
in addition d1 = d2 = · · · = dq to hold. With this in mind, we prove next that
weak-Robinson’s CQ is somewhat in-between these two forms of Robinson’s CQ.

Theorem 3.1 Consider Problem (NSOCP) and let x ∈ F . If weak-Robinson’s CQ
holds at x, then for each index j ∈ {1, . . . , q} the point x satisfies Robinson’s CQ for
the isolated constraint g j (x) ∈ Lm j .

Proof Let x ∈ F be a point such that weak-Robinson’s CQ holds and assume that
there exists an index 	 ∈ {1, . . . , q} such that Robinson’s CQ does not hold. Then,
it follows by Lemma 3.1 that g	(x) = 0. So there exists some w	 ∈ R

m	−1 such
that ‖w	‖ = 1 and the vectors Dg	(x)�(1,−w	) and Dg	(x)�(1, w	) are positively
linearly dependent, that is, there exist scalars α ≥ 0, β ≥ 0, at least one of them
nonzero, such that

αDg	(x)
�(1,−w	) + βDg	(x)

�(1, w	) = 0.

Defining w̃ :=
(

β−α
α+β

)
w	, it follows that

∇g	,0(x) = −Dĝ	(x)
�w̃. (15)

Note that ‖w̃‖ ≤ 1, and that w̃ /∈ KerDĝ	(x)�; otherwise, ∇g	,0(x) = 0 and accord-
ing to Lemma 3.1 weak-Robinson’s CQ fails.

Since KerDĝ	(x)�+ ImDĝ	(x) = R
m	−1, there exist some v ∈ KerDĝ	(x)� and

some d ∈ R
n such that w̃ = v + Dĝ	(x)d. Note that Dĝ	(x)d �= 0, otherwise we

would have that w̃ ∈ KerDĝ	(x)�. In addition, 0 �= w̃ − v = PImDĝ	(x)(w̃) and by
the non-expansiveness of the projection, we obtain 0 < ‖w̃ − v‖ ≤ ‖w̃‖ ≤ 1.

Now, proceeding similarly to the proof of Proposition 3.1, consider the sequence
{xk}k∈N given by xk := x + tkd, for any positive scalars sequence {tk}k∈N → 0+, and
consider the Taylor expansion of ĝ	(xk) around x :

ĝ	(x
k) = tk Dĝ	(x)d + o(tk).

Since Dĝ	(x)d �= 0, it follows that there exists some k0 ∈ N such that ĝ	(xk) �= 0
for every k > k0, which implies that its eigenvectors, and u2(g	(xk)) u1(g	(xk)) and
u2(g	(xk)), are uniquely determined from (7) for every k > k0. Then, we obtain that

ĝ	(xk)

‖ĝ	(xk)‖ = Dĝ	(x)d + o(tk)/tk
‖Dĝ	(x)d + o(tk)/tk‖ → w̃ − v

‖w̃ − v‖ .
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It follows that

lim
k→∞ u1(g	(x

k)) = 1

2

(

1,− w̃ − v

‖w̃ − v‖
)

and

lim
k→∞ u2(g	(x

k)) = 1

2

(

1,
w̃ − v

‖w̃ − v‖
)

and, by weak-Robinson’s CQ, the vectors and Dg	(x)�
(
1, w̃−v

‖w̃−v‖
)

Dg	(x)�
(
1,− w̃−v

‖w̃−v‖
)
and Dg	(x)�

(
1, w̃−v

‖w̃−v‖
)
are positively linearly independent. However,

the following system in the variables a and b:

0 = aDg	(x)
�
(

1,
w̃ − v

‖w̃ − v‖
)

+ bDg	(x)
�
(

1,− w̃ − v

‖w̃ − v‖
)

= a∇g	,0(x) + a

‖w̃ − v‖Dĝ	(x)
�w̃ + b∇g	,0(x) − b

‖w̃ − v‖Dĝ	(x)
�w̃

=
[

a

(
1

‖w̃ − v‖ − 1

)

− b

(
1

‖w̃ − v‖ + 1

)]

Dĝ	(x)
�w̃

has a nontrivial solution a = 1/‖w̃ − v‖+ 1 > 0 and b = 1/‖w̃ − v‖− 1 ≥ 0, which
is a contradiction. In the second equality of the above chain, we used Dĝ	(x)�v = 0;
and in the last equality, we used (15). 
�
Remark 3.1 The same strategy of the previous proof actually allows proving a slightly
stronger result: If a feasible point x satisfies weak-Robinson’s CQ, then for each index
j ∈ I0(x) the constraint

g	(x) ∈ Lm	
, ∀	 ∈ IB(x) ∪ { j}

satisfiesRobinson’sCQat x . In particular, if I0(x) is a singleton, thenweak-Robinson’s
CQ and Robinson’s CQ are equivalent, which is somewhat remarkable and highlights
the “robustness” of Robinson’s CQ. The situation where I0(x) is a singleton has been
previously considered, for instance, in [36, 40]. In the general case, we were not able
to prove nor provide a counterexample for the equivalence between Robinson’s CQ
and weak-Robinson’s CQ.

4 Constant Rank Conditions for NSOCP

Let us consider an NLP problem for a moment; that is, (NSOCP) with m1 = · · · =
mq = 1, whose constraints take the form g1(x) ≥ 0, . . . , gq(x) ≥ 0, and let x ∈ F .
We recall that the nondegeneracy condition in this case is equivalent to LICQ, which
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holds when the family of vectors

{∇g j (x)
}
j∈I0(x) (16)

has full rank. The constant rank constraint qualification (CRCQ) condition can be
considered a relaxation of LICQ, since it allows the rank of (16) to be incomplete, as
long as the rank of the family

{∇g j (x)
}
j∈J0

(17)

remains constant in a neighborhood of x , for every subset J0 ⊆ I0(x). Qi andWei [42]
described CRCQ in a slightly different but equivalent way: CRCQ holds at x if, for
every J0 ⊆ I0(x), if (17) is linearly dependent at x , then it must also remain linearly
dependent for every x in a neighborhood of x . Similarly, Robinson’s CQ is equivalent
to the positive linear independence of (16), and the relaxation of it in the same style
as CRCQ characterizes the constraint qualification known as constant positive linear
dependence (CPLD) [16]. That is, CPLD holds at x if, for every subset J0 ⊆ I0(x), if
(17) is positively linearly dependent at x , then it must remain linearly dependent for
every x in a neighborhood of x .

Extending such constant rank-type constraint qualifications to the context of
NSOCP with an arbitrary dimension is not trivial. For instance, it is known that linear
second-order cone programming problems may present a positive or infinite duality
gap evenwhen the primal problem is bounded, feasible and its solution is attained. This
means that “constraint linearity” is not a constraint qualification in NSOCP, contrary
to NLP. However, note that any kind of constant rank condition that depends solely
on the derivatives of the constraint functions will always be satisfied for every linear
problem, implying it cannot be a constraint qualification—see, for instance, [6]. See
also [12,Section 2.1] for a detailed discussion on this issue regarding linear problems.

In a previous work, we noticed that weak-nondegeneracy imbues the cone structure
into the constraint functions, allowing us to properly define a constant rank-type con-
dition that is not retained by the linearity bottleneck. In this section, we shall follow a
similar approach, making the necessary adaptations to overcome the difficulties that
arise from the particularities of the second-order cone along the way.

4.1 Weak Constant Rank Conditions

With the definitions of weak-nondegeneracy and weak-Robinson’s CQ for NSOCP
at hand, we can present new extensions of CRCQ and CPLD for NSOCP by means of
a simple relaxation of Definition 3.1, in the same lines as in NLP. Basically, the idea
is to demand every subfamily of (12) to locally retain its (positive) linear dependence.
So let us define, for any sets JB, J−, J+ ⊆ {1, . . . , q} such that ĝ j (x) �= 0 for every
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j ∈ JB , the family of vectors

DJB ,J−,J+ (x, w) :=
{
Dg j (x)

�u1(g j (x))
}

j∈JB

⋃{
Dg j (x)

�(1,−w j )
}

j∈J−
⋃{

Dg j (x)
�(1, w j )

}

j∈J+
(18)

where w = [w j ] j∈J−∪J+ . Above, the index set JB refers to an arbitrary subset of
IB(x), and the indices J− and J+ both refer to I0(x), but with distinct eigenvectors;
see (12).

Definition 4.1 (weak-CRCQ and weak-CPLD) We say that a feasible point x
of (NSOCP) satisfies the:

– Weak constant rank constraint qualification (weak-CRCQ) if the following holds:
For every sequence {xk}k∈N → x , there exists some I ⊆∞ N, and convergent
eigenvector sequences

{u1(g j (x
k))}k∈I → 1

2
(1,−w j ) and {u2(g j (x

k))}k∈I → 1

2
(1, w j ),

with ‖w j‖ = 1, for all j ∈ I0(x), such that for all subsets JB ⊆ IB(x) and
J−, J+ ⊆ I0(x), we have that if the family of vectors DJB ,J−,J+(x, w) is linearly
dependent, then DJB ,J−,J+(xk, wk) remains linearly dependent for all k ∈ I large
enough, where w = [w j ] j∈J−∪J+ and wk = [wk

j ] j∈J−∪J+ satisfies

u1(g j (x
k)) = 1

2
(1,−wk

j ) and u2(g j (x
k)) = 1

2
(1, wk

j ) (19)

for each j ∈ J− ∪ J+.
– Weak constant positive linear dependence (weak-CPLD) condition if the following
holds: For every sequence {xk}k∈N → x , there is some I ⊆∞ N, and convergent
eigenvector sequences

{u1(g j (x
k))}k∈I → 1

2
(1,−w j ) and {u2(g j (x

k))}k∈I → 1

2
(1, w j ),

with ‖w j‖ = 1, for all j ∈ I0(x), such that for all subsets JB ⊆ IB(x) and
J−, J+ ⊆ I0(x), we have that, ifDJB ,J−,J+(x, w) is positively linearly dependent,
then DJB ,J−,J+(xk, wk) is linearly dependent for all k ∈ I large enough, where w

and wk are as in the previous item.

There are some features about Definition 4.1 that should be highlighted for a better
understanding of it. First, weak-CRCQ fully recovers CRCQ when we set m j = 1 for
every j ∈ {1, . . . , q}—see also Remark 2.2 for a clarification about the case m j = 1.
Similarly, note that weak-CPLD recovers CPLD in the same setting. Second, in view
of Corollary 3.1, we see that weak-CRCQ is implied by (weak-)nondegeneracy as in
Definition 3.1, and weak-CPLD is implied by both (weak-)Robinson’s CQ and weak-
CRCQ. However, due to such equivalence in NLP, those implications in the conic
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setting are strict (see Example 4.2 and [16,Counterexample 4.2], respectively). Third,
we point out that weak-CRCQ is not comparable with (weak-)Robinson’s CQ (see,
for instance, [29,Examples 2.1 and 2.2]).

Remark 4.1 To fix ideas, let us consider a single conic constraint g(x) ∈ Lm at the
point x ∈ F . First, suppose that g(x) = 0 and take any sequence {xk}k∈N → x . We
consider a partition of N as follows:

– N0 := {k ∈ N : ĝ(xk) = 0}. For k ∈ N0, we can choose

u1(g(x
k)) = 1

2

(
1,−wk

)
and u2(g(x

k)) = 1

2

(
1, wk

)
,

for anywk such that ‖wk‖ = 1.WhenN0 is infinite, weak-CRCQdemands, in par-
ticular, the existence of a choice of {wk}k∈N0 with some convergent subsequence
{wk}k∈I → w, I ⊆∞ N0, such that

Dg(x)�(1, (−1)iw) = 0

only if

Dg(xk)�
(
1, (−1)iwk

)
= 0

for all large k ∈ I , i ∈ {1, 2}; and, in addition, if Dg(x)�(1,−w) and
Dg(x)�(1, w) are linearly dependent, then Dg(xk)�

(
1,−wk

)
and Dg(xk)�

(
1, wk

)
must also be linearly dependent, for every sufficiently large k ∈ I .

– N1 := {k ∈ N : ĝ(xk) �= 0}. This case is similar to the previous one, except
that there is no freedom in the choice of wk , as it is uniquely determined by
wk = ĝ(xk)/‖ĝ(xk)‖, for every k ∈ N1.

The reason why both eigenvectors are taken into consideration is that both eigen-
values of g(x) are zero, in this case. Naturally, in case g(x) ∈ bd+Lm , we have only
one zero eigenvalue, which is λ1(g(x)), then weak-CRCQ simply demands the vector

Dg(x)�u1(g(x)) = 1

2
Dg(x)�

(

1,− ĝ(x)

‖ĝ(x)‖
)

to be either nonzero at x or equal to zero in a whole neighborhood of x . Note that this
coincides with the naive approach [11], obtained by reducing the problem to an NLP.
This observation remains true for more than one conic constraint as long as I0(x) = ∅.
See also Remark 4.2.

Now, let us check how Definition 4.1 behaves when it is applied to example
[6,Equation 2], which was used to refute the CRCQ proposal of [47].

Example 4.1 (Equation 2 from [6]) Consider the problem

Minimize
x∈R − x,

subject to g(x) := (x, x + x2) ∈ L2.
(20)
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and its unique feasible point x := 0, which does not satisfy the KKT conditions. Our
aim is to show that Definition 4.1 is not satisfied at x . To do so, it suffices to take any
sequence {xk}k∈N → 0 such that xk > 0 for all k ∈ N. In this case, for each k ∈ N,
the eigenvectors of g(xk) are uniquely determined by

u1(g(x
k)) = 1

2

(

1,− xk + (xk)2

|xk + (xk)2|
)

= 1

2
(1,−1)

and

u2(g(x
k)) = 1

2

(

1,
xk + (xk)2

|xk + (xk)2|
)

= 1

2
(1, 1),

so there is only one trivial limit point for each eigenvector sequence; also,wk = w = 1
for every k ∈ N. However, note that

Dg(x)�(1,−w) = 0 but Dg(xk)�(1,−wk) = −2xk,

so for JB := IB(x) = ∅, J− := {1}, and J+ := ∅, we have DJB ,J−,J+(xk, wk) =
{−2xk} is linearly independent for every k ∈ N whereas DJB ,J−,J+(x, w) = {0} is
(positively) linearly dependent. Thus, neitherweak-CRCQnorweak-CPLD is satisfied
at x .

As mentioned before, weak-nondegeneracy and weak-Robinson’s CQ are strictly
stronger than weak-CRCQ and weak-CPLD, respectively. It is clear that the former
implies the latter, so let us prove the “strict” statement:

Example 4.2 (Weak-CRCQ is weaker than weak-nondegeneracy and does not imply
weak-Robinson) Consider the constraint

g(x) := (−x, x, x) ∈ L3,

and its unique feasible point x := 0. To prove that weak-CPLD holds at x , let
{xk}k∈N → x be any sequence. Just as in Example 3.2, there are three cases to be
considered, but it suffices to analyze one of them, since the other cases follow analo-
gously. Then, for simplicity, we assume that there is some I ⊆∞ N such that xk > 0
for every k ∈ I , and in this case the eigenvectors of g(xk) are uniquely determined
by

u1(g(x
k)) = 1

2

(

1,− 1√
2
,− 1√

2

)

and u2(g(x
k)) = 1

2

(

1,
1√
2
,

1√
2

)

,

leading to wk = w =
(

1√
2
, 1√

2

)
. Then,

Dg(xk)�(1, (−1)iwk) = Dg(x)�(1,−w) =
(

−1 + (−1)i
2√
2

)
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for each i ∈ {1, 2}. Then, the family (12) will have opposite signs, making it positively
linearly dependent, so weak-Robinson’s CQ and weak-nondegeneracy both fail at x ,
without violating theweak-CRCQandweak-CPLDrequirements since in this example

DJB ,J−,J+(xk, wk) = DJB ,J−,J+(x, w)

for every k ∈ I regardless of JB, J−, and J+.
Example 4.2 can also be used to verify that weak-CRCQ does not imply Robin-

son’s CQ. In fact, Robinson’s CQ does not imply weak-CRCQ either, making them
independent. Let us show this with another example:

Example 4.3 (Weak-Robinson does not imply weak-CRCQ) Consider the constraint

g(x) := (2x1, x
2
2 ) ∈ L2

at x := 0. To see that x violates weak-CRCQ, it is enough to take any sequence
{xk}k∈N → x such that xk2 �= 0 for every k ∈ N. Then, the eigenvectors of g(xk) must
be

u1(g(x
k)) = 1

2
(1,−1) and u2(g(x

k)) = 1

2
(1, 1),

which are defined by wk = w = 1 for all k ∈ N. This implies that the vectors
Dg(xk)�(1,−wk) = (1,−2xk2 ) and Dg(xk)�(1, wk) = (1, 2xk2 ) are linearly inde-
pendent for all k, whereas the vectors Dg(x)�(1,−w) = (1, 0) and Dg(x)�(1, w) =
(1, 0) are linearly dependent, violating weak-CRCQ.

On the other hand, in view of Corollary 3.1, it is easy to check that Robinson’s CQ
holds at x , since Dg(x)�(1,−w) = (1, 0) and Dg(x)�(1, w) = (1, 0) are positively
linearly independent for every w ∈ R with |w| = 1.

Finally, we shall prove that weak-CPLD (and by consequence weak-CRCQ, weak-
nondegeneracy, and weak-Robinson’s CQ) is a constraint qualification for (NSOCP)
employing a result from [7], regarding the output sequences of an external penalty
method:

Theorem 4.1 Let x be a local minimizer of (NSOCP), and let {ρk}k∈N → +∞. Then,
there exists some sequence {xk}k∈N → x, such that for each k ∈ N, xk is a local
minimizer of the regularized penalized function

f (x) + 1

2
‖x − x‖22 + ρk

2

⎛

⎝
q∑

j=1

‖PLm j
(−g j (x))‖2

⎞

⎠ . (21)

Proof The proof of this theorem is contained in the proof of [7,Theorem 3.1]. 
�
Observe that the gradient of (21) can be computed as

∇x L
(
x, ρkPLm1

(−g1(x)), . . . , ρkPLmq
(−gq(x))

)
+ (x − x),
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for each k ∈ N, which vanish at x := xk . So definingμk
j := ρkPLm j

(−g j (xk)), for all
j ∈ {1, . . . , q}, induces approximate Lagrange multiplier sequences associated with
{xk}k∈N—see also [7]. Then, to prove that weak-CPLD is a CQ, it suffices to construct
bounded approximate multiplier sequences out of {μk

j }k∈N. For convenience, we will
prove a slightly more general result that also encompasses the convergence theory of
an external penalty method under weak-CPLD; see [7] for details.

Theorem 4.2 (Weak-Robinson, weak-CRCQ and weak-CPLD are constraint qualifi-
cations) Let {ρk}k∈N → ∞ and {xk}k∈N → x ∈ F be such that

∇x L
(
xk, ρkPLm1

(−g1(x
k)), . . . , ρkPLmq

(−gq(x
k))
)

→ 0,

and suppose that weak-CPLD holds at x. Then, x satisfies the KKT conditions. More-
over, any local minimizer of (NSOCP) that satisfies weak-CPLD is a KKT point.

Proof For each k ∈ N and j ∈ {1, . . . , q}, define μk
j := ρkPLm j

(−g j (xk)). Then, we
have

∇ f (xk) −
q∑

j=1

Dg j (x
k)�μk

j → 0. (22)

Let us consider an arbitrary spectral decomposition of μk
j :

μk
j = αk

j u1(g j (x
k)) + βk

j u2(g j (x
k)),

where αk
j = [−ρkλ1(g j (xk))]+ ≥ 0 and βk

j = [−ρkλ2(g j (xk))]+ ≥ 0. See (8).
Define

Ψ k :=
∑

j∈IB (x)∪I0(x)

αk
j Dg j (x

k)�u1(g j (x
k))+

+
∑

j∈I0(x)
βk
j Dg j (x

k)�u2(g j (x
k))

(23)

and note that (22) can be equivalently stated as ∇ f (xk) − Ψ k → 0.
By Carathéodory’s Lemma 2.2, for each k ∈ N, there exists some J kB ⊆ IB(x) and

J k−, J k+ ⊆ I0(x) such that

{
Dg j (x

k)�u1(g j (x
k))
}

j∈J kB∪J k−

⋃{
Dg j (x

k)�u2(g j (x
k))
}

j∈J k+
(24)

is linearly independent and

Ψ k =
∑

j∈J kB∪J k−

α̃k
j Dg j (x

k)�u1(g j (x
k)) +

∑

j∈J k+

β̃k
j Dg j (x

k)�u2(g j (x
k)),
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for some new scalars α̃k
j ≥ 0, j ∈ J kB ∪ J k−, and β̃k

j ≥ 0, j ∈ J k+. By the infinite

pigeonhole principle, we can take a subsequence if necessary such that J kB , J
k−, and J k+

do not depend on k; that is, we can assume, without loss of generality, that J kB = JB ,
J k− = J−, and J k+ = J+, for every k ∈ N.

We claim that the sequences {α̃k
j }k∈N are bounded for every j ∈ JB ∪ J−, as well

as {β̃k
j }k∈N for every j ∈ J+. Indeed, by contradiction, suppose that the sequence

{mk}k∈N, given by

mk := max{max{α̃k
j : j ∈ JB ∪ J−}, max{β̃k

j : j ∈ J+}},

diverges. Dividing (22) by mk , we obtain

∑

j∈JB∪J−

α̃k
j

mk
Dg j (x

k)�u1(g j (x
k)) +

∑

j∈J+

β̃k
j

mk
Dg j (x

k)�u2(g j (x
k)) → 0

and since the sequences {α̃k
j/m

k}k∈N are bounded, we can assume, without loss of
generality, that they converge to, say, α j ≥ 0, for all j ∈ JB ∪ J−; and, similarly,
we can also assume that the sequences {β̃k

j /m
k}k∈N converge to some β j ≥ 0, for all

j ∈ J+. Note that at least one element of {α j } j∈JB∪J− ∪ {β j } j∈J+ is nonzero, which
makes the correspondent set DJB ,J−,J+(x, w) as in Definition 4.1 linearly dependent
for any limit pointw of any subsequence of {wk}k∈N, contradicting weak-CPLD since
DJB ,J−,J+(xk, wk), which coincides with (24) with wk defined as in (19), is linearly
independent for every k ∈ N.

Since {α̃k
j }k∈N and {β̃k

j }k∈N are bounded, the sequence {(μ̃k
1, . . . , μ̃

k
q)}k∈N ⊆ Lm1×

· · · × Lmq defined by

μ̃k
j :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α̃k
j u1(g j (xk)) + β̃k

j u2(g j (xk)), if j ∈ J− ∩ J+,

α̃k
j u1(g j (xk)), if j ∈ JB ∪ (J− \ J+),

α̃k
j u2(g j (xk)), if j ∈ J+ \ J−,

0, if j ∈ Iint (x) or j /∈ (JB ∪ J− ∪ J+)

is also bounded. Finally, note that all limit points of {(μ̃k
1, . . . , μ̃

k
q)}k∈N are Lagrange

multipliers associated with x , which completes the first part of the proof. The second
part follows directly from Theorem 4.1. 
�
Remark 4.2 In [11,Section 5], we proposed the so-called naive extensions of CRCQ
(and CPLD) to NSOCP, which were obtained by replacing the conic constraints
of (NSOCP) that satisfy g j (x) ∈ bd+Lm j with standard NLP constraints, via a reduc-
tion function

Φ j (x) := g j,0(x)
2 − ‖ĝ j (x)‖2,
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and then applying the NLP definition of CRCQ (respectively, CPLD) to those reduced
constraints. However, in order to compare it with the conditions we presented, we use
another reduction function,

Φ̃ j (x) := g j,0(x) − ‖ĝ j (x)‖,

instead of Φ j (x), since ∇Φ̃ j (x) = 2Dg j (x)�u1(g j (x)) for all x close enough
to x and j ∈ IB(x). As mentioned in [11,Remark 5.1-c], using Φ j or Φ̃ j char-
acterizes different approaches. Assuming the second type of naive approach, we
recall that naive-CRCQ (respectively, naive-CPLD) is satisfied at x ∈ F when
there exists a neighborhood V of x such that, for every JB ⊆ IB(x), the following
holds: If the family (10) is R|IB (x)| ×∏ j∈I0(x) R

m j -linearly dependent (respectively,

R
|IB (x)|
+ ×∏ j∈I0(x) Lm j -linearly dependent), then the family {Dg j (x)�u1(g j (x))} j∈JB

remains linearly dependent for all x in V . Note that this definition coincides with non-
degeneracy (respectively, Robinson’s CQ) when no constraints are reducible—that is,
when IB(x) = ∅—because ∅ is linearly independent. On the other hand, when all
constraints are reducible, Definition 4.1 coincides with naive-CRCQ/CPLD. Thus, in
the general case, both CQs of Definition 4.1 are strictly weaker than their “naive”
counterparts.

5 Stronger Constant Rank ConditionsWith Applications

Aswe alreadymentioned, our study of constraint qualifications is driven toward global
convergence of algorithms for solving (NSOCP). In particular, we presented in the
previous section a global convergence proof for the external penalty method under
weak-CPLD; to extend this result for a broader class of iterative methods, we now
introduce more robust adaptations of weak-CPLD and weak-CRCQ. This is similar
to what we did in [9] for NSDP problems. We start this section with an analog of
[9,Definition 4.2] in NSOCP, which characterizes a perturbed version of weak-CRCQ
and weak-CPLD.

Definition 5.1 (seq-CRCQ and seq-CPLD) We say that x ∈ F satisfies the:

– Sequential CRCQ condition for NSOCP (seq-CRCQ) if for all sequences
{xk}k∈N → x and {Δk

j }k∈N ⊆ R
m j , j ∈ I0(x) ∪ IB(x), such that Δk

j → 0
for every j , there exists some I ⊆∞ N, and convergent eigenvector sequences
{u1(g j (xk) + Δk

j )}k∈I → 1
2 (1,−w j ) and {u2(g j (xk) + Δk

j )}k∈I → 1
2 (1, w j ),

with ‖w j‖ = 1, for all j ∈ I0(x), such that for all subsets JB ⊆ IB(x) and
J−, J+ ⊆ I0(x), we have that, if the family of vectors DJB ,J−,J+(x, w) is linearly
dependent, then DJB ,J−,J+(xk, wk) remains linearly dependent for all k ∈ I large
enough, where w = [w j ] j∈J−∪J+ and wk = [wk

j ] j∈J−∪J+ with

u1(g j (x
k) + Δk

j ) = 1

2
(1,−wk

j ) and u2(g j (x
k) + Δk

j ) = 1

2
(1, wk

j ) (25)

for each j ∈ J− ∪ J+. Recall that DJB ,J−,J+(x, w) was defined in (18).
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– Sequential CPLD condition for NSOCP (seq-CPLD) if for all sequences
{xk}k∈N → x and {Δk

j }k∈N ⊆ R
m j , j ∈ I0(x) ∪ IB(x), such that Δk

j → 0
for every j , there exists some I ⊆∞ N, and convergent eigenvector sequences
{u1(g j (xk) + Δk

j )}k∈I → 1
2 (1,−w j ) and {u2(g j (xk) + Δk

j )}k∈I → 1
2 (1, w j ),

with ‖w j‖ = 1, for all j ∈ I0(x), such that for all subsets JB ⊆ IB(x) and
J−, J+ ⊆ I0(x), we have that, ifDJB ,J−,J+(x, w) is positively linearly dependent,
then DJB ,J−,J+(xk, wk) remains linearly dependent for all k ∈ I large enough,
where w and wk are as the previous item.

Note that the nondegeneracy condition (as in Proposition 2.1) implies seq-CRCQ,
whereas Robinson’s CQ implies seq-CPLD. Moreover, these implications are strict,
as it is shown in the next counterexample:

Example 5.1 (Nondegeneracy andRobinson’s CQ are strictly stronger than seq-CRCQ
and seq-CPLD, respectively) Consider the constraint

g(x) := (−x, x) ∈ L2

at the point x := 0,which is the only feasible point of the problem. In order to verify that
x satisfies seq-CPLD and seq-CRCQ, let {xk}k∈N → x and {Δk}k∈N → 0 be arbitrary
sequences. We will assume that there is some I ⊆∞ N such that ĝ(xk) + Δ̂k > 0 for
all k ∈ I , where Δk := (Δk

0, Δ̂
k) ∈ R

2, since the other cases (as in Example 3.2)
follow analogously. Then, we have

u1(g(x
k) + Δk) = 1

2
(1,−1) and u2(g(x

k) + Δk) = 1

2
(1, 1),

which implies that wk = w = 1 for all k ∈ I . Hence, the vectors Dg(x)�(1,−w) =
−2 and Dg(xk)�(1, wk) = 0 are (positively) linearly dependent, but since
Dg(xk)�(1,−wk) = −2 and Dg(xk)�(1, wk) = 0 are also linearly dependent for
every k ∈ I , we see that seq-CPLD and seq-CRCQ both hold, while Robinson’s CQ
and nondegeneracy do not.

Example 5.1 shows that seq-CRCQ does not imply Robinson’s CQ, and the con-
verse is also false; otherwise, Robinson’s CQwould imply weak-CRCQ, contradicting
Example 4.3. Further, note that Definition 5.1 is basically Definition 4.1 with the
addition of some perturbation sequences {Δk

j }k∈N. Then, seq-CPLD implies weak-
CPLD and seq-CRCQ implies weak-CRCQ, implying a fortiori that seq-CPLD and
seq-CRCQ are constraint qualifications. However, the next example shows that these
implications are both strict.

Example 5.2 (Seq-CRCQ and seq-CPLD are stronger than weak-CRCQ and weak-
CPLD, respectively) Consider the constraint

g(x) := (x2, x, 0) ∈ L3

at x := 0. Let us begin by showing that x satisfies both weak-CRCQ and weak-CPLD,
so let {xk}k∈N → x be an arbitrary sequence. Again, as in Example 3.2, we will
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assume, without loss of generality, that there exists some I ⊆∞ N such that xk > 0
for every k ∈ I . In this case, we must have

u1(g(x
k)) = 1

2
(1,−1, 0) and u2(g(x)) = 1

2
(1, 1, 0) ,

which yields wk = w = (1, 0) for every k ∈ I . Then, Dg(x)�(1,−w) = −1 and
Dg(x)�(1, w) = 1 are (positively) linearly dependent, but since Dg(xk)�(1,−wk) =
2xk − 1 and Dg(x)�u2(g(x)) = 2xk + 1 are also linearly dependent for all k ∈ I
large enough so that xk ∈ (− 1

2 ,
1
2 ), it means that weak-CRCQ and weak-CPLD both

hold at x .
However, taking any sequence {xk}k∈N → x such that xk > 0 for every k ∈ N, and

the perturbation vector

Δk := (−(xk)2,−xk, xk) → 0,

we have that g(xk) + Δk := (0, 0, xk), so its eigenvectors are uniquely determined
by

u1(g(x
k) + Δk) = 1

2
(1, 0,−1) and u2(g(x

k) + Δk) = 1

2
(1, 0, 1) ,

implying Dg(xk)�u1(g(xk)+Δk) = 2xk > 0 and Dg(xk)�u2(g(xk)+Δk) = 2xk >

0 are positively linearly independent for every k ∈ N. But since Dg(x)�(1, 0,−1) =
Dg(x)�(1, 0, 1) = 0 we conclude that seq-CPLD and, by extension, seq-CRCQ, both
fail at x .

Furthermore, conditions seq-CRCQ and seq-CPLD can also be characterized in
terms of a neighborhood, without sequences, just as the original CRCQ and CPLD
conditions from NLP. Let us prove this:

Proposition 5.1 Let x ∈ F . Condition seq-CRCQ (respectively, seq-CPLD) holds at
x if, and only if, for every w := [w j ] j∈I0(x) with ‖w j‖ = 1, j ∈ I0(x), there exists
a neighborhood V of (x, w) such that for every JB ⊆ IB(x) and J−, J+ ⊆ I0(x),
if DJB ,J−,J+(x, w) is (positively) linearly dependent, then DJB ,J−,J+(x, w) remains
linearly dependent for every (x, w) ∈ V with w := [w j ] j∈I0(x) and ‖w j‖ = 1 for
every j ∈ J− ∪ J+. Here, DJB ,J−,J+(x, w) is as defined in (18).

Proof Suppose that there exist some subsets JB ⊆ IB(x) and J−, J+ ⊆ I0(x), and
some w = [w j ] j∈J−∪J+ such that DJB ,J−,J+(x, w) is (positively) linearly dependent,
but there is a sequence {(xk, wk)}k∈N → (x, w)withwk := [wk

j ] j∈J−∪J+ and ‖wk
j‖ =

1, such that DJB ,J−,J+(xk, wk) is linearly independent for all k ∈ N. Define, for each
k ∈ N and j ∈ JB ∪ I− ∪ I+, the perturbation vector

Δk
j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

k

(
1, wk

j

)
− g j (x

k), if j ∈ J− ∪ J+

g j,0(x)

(

1,
ĝ j (xk)

‖ĝ j (xk)‖

)

− g j (x
k), if j ∈ JB,

(26)
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which implies that g j (xk) + Δk
j ∈ bd+Lm j and hence its eigenvectors are uniquely

determined for every such j and k. This contradicts Definition 5.1.
Conversely, pick any sequences {xk}k∈N → x and {Δk

j }k∈N → 0, j ∈ I0(x) ∪
IB(x), and any subsets JB ⊆ IB(x) and J−, J+ ⊆ I0(x). Then, define {wk}k∈N as in
Definition 5.1 and letw = [w j ] j∈J−∪J+ be such that ‖w j‖ = 1 for every j ∈ J− ∪ J+
and limk∈I u1(g j (xk) + Δk

j ) = 1
2 (1,−w j ) and limk∈I u2(g j (xk) + Δk

j ) = 1
2 (1, w j ),

for some I ⊆∞ N. Note that limk∈I wk = w, so if DJB ,J−,J+(x, w) is (positively)
linearly dependent, then DJB ,J−,J+(xk, wk) remains linearly dependent for every k
large enough. 
�

Remark 5.1 Note that Proposition 5.1 reveals that Definition 5.1 characterizes a “con-
stant rank condition, or constant (positive) linear dependence, by conical slices.” For
example, consider a single constraint g(x) ∈ Lm at a point x such that g(x) ∈ Lm ;
then, seq-CRCQ holds at x if, and only if, for each conical slice of Lm , which can be
of two types:

1. C1
w = cone({(1, w)}), for some w ∈ R

m−1 such that ‖w‖ = 1;

2. C2
w = cone({(1,−w), (1, w)}), for some w ∈ R

m−1 such that ‖w‖ = 1;

the dimension of

Dg(x)�span(Ci
w) =

{
span({Dg(x)�(1, w)}), if i = 1,
span({Dg(x)�(1,−w), Dg(x)�(1, w)}), if i = 2,

remains constant for every (x, w) close enough to (x, w). The seq-CPLD condition
admits a similar phrasing. That is, the local constant rank property must hold for every
perturbation of x and every perturbation of the slice as well, roughly speaking, and the
existence of two types of conical slices describes, intuitively, why should one consider
every subset of {Dg(x)�(1,−w), Dg(x)�(1, w)}.

5.1 Global Convergence of AlgorithmsWith Some Examples

Here, we show that the condition seq-CPLD can be used to prove global convergence
of an abstract class of iterative algorithms, namely the ones that generate sequences
of approximate solutions {xk}k∈N, which we will assume to be convergent to some x ,
and approximate Lagrange multipliers {μk

j }k∈N ⊆ Lm j , j ∈ {1, . . . , q}, in the sense
that
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∇x L(xk, μk
1, . . . , μ

k
q) → 0 (27)

and for every k ∈ N,

g j (x
k) + Δk

j ∈ Lm j and 〈g j (x
k) + Δk

j , μ
k
j 〉 = 0 (28)

for some sequences Δk
j → 0, j ∈ {1, . . . , q}. Later in this section, we will discuss

some details about some popular algorithms that generate this kind of sequence. But
first, let us prove our unified global convergence result:

Theorem 5.1 (Global convergence under seq-CPLD) Let {xk}k∈N and {μk
j }k∈N ⊆

Lm j , j ∈ {1, . . . , q} satisfy (27) and (28), and let x be a feasible limit point of {xk}k∈N
that satisfies seq-CPLD. Then, x satisfies the KKT conditions.

Proof For simplicity, let us assume that {xk}k∈N → x . From (27), we obtain that

∇ f (xk) −
q∑

j=1

Dg j (x
k)�μk

j → 0. (29)

Now, by (28) we obtain

μk
j =

⎧
⎨

⎩

0, if g j (xk) + Δk
j ∈ intLm j ,

μk
j,0

g j,0(xk )+Δk
j,0

Γ j (g j (xk) + Δk
j ), if g j (xk) + Δk

j ∈ bd+
Lm j ,

where Γ j is defined in (11), and μk
j can be any point of Lm j if g j (xk) + Δk

j = 0.
Thus, there exists a spectral decomposition of

μk
j := αk

j u1(μ
k
j ) + βk

j u2(μ
k
j ),

such that u1(μk
j ) and u2(μk

j ) are also eigenvectors of g j (xk) + Δk
j for every k ∈ N.

Moreover, note that (28) implies that αk
jλ1(g j (xkj ) + Δk

j ) = 0 and βk
j λ2(g j (xkj ) +

Δk
j ) = 0 for every k ∈ N and every j ∈ {1, . . . , q}. Then, βk

j = 0 for all k large

enough and for every j ∈ IB(x) ∪ Iint (x), because λ2(g j (xkj ) + Δk
j ) > 0 for all large

k in these cases. Therefore, we can rewrite (29) as

∇ f (xk) −
∑

j∈I0(x)

(
αk
j Dg j (x

k)�u1(μk
j ) + βk

j Dg j (x
k)�u2(μk

j )
)

−
∑

j∈IB (x)

αk
j Dg j (x

k)�u1(μk
j ) → 0.

The rest of the proof is similar to the proof of Theorem 4.2, which consists of
using Carathéodory’s lemma in the above relation, assuming that the new scalars
are unbounded, and then directly applying Definition 5.1 to reach a contradiction,
hence it shall be omitted. 
�
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The sequences satisfying (27) and (28) are known as Approximate-KKT (AKKT)
sequences, which define a sequential optimality condition introduced by Andreani et
al. in [7] for NSOCP problems. Also, we must mention that several algorithms gener-
ate AKKT sequences; one recurrent example (see [7,Algorithm 5.1]) is the classical
Hestenes–Powell–Rockafellar augmented Lagrangian method, which is based on the
perturbed penalty function

Lρ,μ̃1,...,μ̃q (x) := f (x) + ρ

2

⎡

⎣
q∑

j=1

∥
∥
∥
∥PLm j

(

−g j (x) − μ̃ j

ρ

)∥
∥
∥
∥

2

−
∥
∥
∥
∥
μ̃ j

ρ

∥
∥
∥
∥

2
⎤

⎦ ,

where ρ ∈ R+ and μ̃ j ∈ Lm j , j ∈ {1, . . . , q}, are given parameters. The sequence
{xk}k∈N is computed as approximate stationary points of Lρk ,μ̃

k
1,...,μ̃

k
q
(x) and their

associate approximate Lagrange multipliers are given by

μk
j := PLm j

(
−ρkg j (x

k) − μ̃k
j

)
,

where {ρk}k∈N is the penalty parameter and {μ̃k
j }k∈N ⊆ Lm j are given sequences and

Δk
j := μk

j−μ̃k
j

ρk
for every j ∈ {1, . . . , q}. In particular, note that ∇Lρk ,μ̃

k
1,...,μ̃

k
q
(xk) =

∇x L(xk, μk
1, . . . , μ

k
q) for every k ∈ N. See also [8] for a more detailed discussion on

this topic.
Besides the augmented Lagrangian and its variants, the sequential quadratic pro-

gramming (SQP) algorithm of Kato and Fukushima [30,Algorithm 1] can also be
proved to generate output sequences that satisfy (27) and (28). For completeness, we
state their algorithm below:

In [30], Kato and Fukushima proved the global convergence of Algorithm 1 under
the following assumptions:

A1. Step 1 is well defined for every k ∈ N;
A2. The output sequence {xk}k∈N of Algorithm 1 is bounded;
A3. The multiplier sequences {μk

j }k∈N, j ∈ {1, . . . , q} computed by the method are
all bounded.

Observe that these assumptions, although somewhat standard, are demands over the
behavior of the algorithm itself instead of the problem, and a convergence theory that
makes strong assumptions over the behavior of the method is, to say the best, fragile.
Even so, A1 and A2 can be considered a “necessary evil” since their violation means
that the execution of the method has terminated in failure. Assumption A3, on the
other hand, is not plausible since it basically guides the method toward convergence.
Instead of A3, an assumption over the problem (and not the method), for instance the
fulfillment of a constraint qualification at every limit point of {xk}k∈N, would be more
reasonable for illustrating its strength. Of course, Robinson’s CQ is well suited for this
role since it implies A3, but an improvement can be made with the weaker constraint
qualification seq-CPLD; that is, under the following assumption:

A4. All limit points of {xk}k∈N satisfy seq-CPLD.
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Algorithm 1 Sequential quadratic programming algorithm of [30].

Input: An initial point x0 ∈ R
n and some parameters α0 > 0, σ ∈ (0, 1), γ1 > 0, γ2 > 0, and τ > 0.

Set k := 0. Then:

Step 1: Choose a symmetric positive definite matrix Mk ∈ R
n×n such that γ1‖z‖2 ≤ z�Mkz ≤ γ2‖z‖2

for every z ∈ R
n , and find a solution dk if possible of the problem:

Minimize
d∈Rn

∇ f (xk )�d + 1

2
d�Mkd, (QP)

subject to g j (x
k ) + Dg j (x

k )d ∈ Lm j , ∀ j ∈ {1, . . . , q}

together with its Lagrange multipliers μk
j ∈ Lm j , j ∈ {1, . . . , q}; if dk = 0, then stop;

Step 2: Set the penalty parameter as follows: If αk ≥ max{|μk
j,0| : j ∈ {1, . . . , q}}, then αk+1 := αk ;

otherwise, αk+1 := max{αk , |μk
j ,0| : j ∈ {1, . . . , q}} + τ ;

Step 3: Compute some scalar tk ∈ (0, 1] satisfying

Φ
αk+1 (xk ) − Φ

αk+1 (xk + tkdk ) ≤ σ tk (dk )�Mkdk ; (30)

where

Φα(x) := f (x) + α

q∑

j=1

max{0, −g j ,0(x) − ‖ĝ j (x)‖}

is a penalty function;

Step 4: Set xk+1 := xk + tkdk and k := k + 1, and go to Step 1.

Then, we can easily rephrase an excerpt from the proof of [30,Theorem 1] and
apply Theorem 5.1 to obtain the same convergence result of [30] under A1, A2, and
A4, instead of A3 or Robinson’s CQ. However, it should be noticed that A4 may hold
even when the approximate Lagrange multiplier sequences are unbounded.

Proposition 5.2 UnderA1, the output sequences {xk}k∈N and {μk
j }k∈N, j ∈ {1, . . . , q},

of Algorithm 1 satisfy (27) and (28).

Proof For each k ∈ N, assumption A1 tells us that xk and μk
j ∈ Lm j , j ∈ {1, . . . , q}

satisfy the following:

∇ f (xk) + Mkdk −∑q
j=1 Dg j (xk)�μk

j = 0,

〈μk
j , g j (xk) + Dg j (xk)dk〉 = 0,∀ j ∈ {1, . . . , q},
g j (xk) + Dg j (xk)dk ∈ Lm j ,∀ j ∈ {1, . . . , q}.

Since by construction {Mk}k∈N is bounded and by [30,Theorem1]we have {dk}k∈N →
0, the conclusion follows by taking Δk

j := Dg j (xk)dk for every k ∈ N and every
j ∈ {1, . . . , q}. 
�
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For the sake of completeness, we present a formal statement of the convergence
result of Algorithm 1 under seq-CPLD, which follows immediately from the previous
proposition.

Corollary 5.1 Assume A1, A2 and A4. Every limit point of the sequence {xk}k∈N gen-
erated by Algorithm 1 satisfies the KKT conditions.

5.2 On Error Bounds and Robustness

Another interesting implication of CRCQ and CPLD from the literature concerns error
bounds. To address it to NSOCP, let us recall the definition of the so-called metric
subregularity CQ for (NSOCP) problems.

Definition 5.2 (MSCQ) Let x be a feasible point of (NSOCP) and let g(x) :=
(g1(x), . . . , gq(x)). We say that x satisfies the metric subregularity CQ (MSCQ)when
there exists some γ > 0 and a neighborhood V of x such that

dist(x,F) ≤ γ dist(g(x),Πq
j=1Lm j )

for every x ∈ V , where F is the feasible set of (NSOCP).

The following result shows a sufficient condition in order to obtain MSCQ. This
result is an adaptation from Minchenko and Stakhovski [34,Theorem 2] for nonlinear
programming problems. Also, an extension for semidefinite programming was made
in [9,Proposition 5.1] and hence its proof will be omitted.

Proposition 5.3 Let x ∈ F and assume that g j are twice differentiable around x,
with j ∈ {1, . . . , q}. Given x ∈ R

n, let Λx (y) denote the set of Lagrange multipliers
associated with any given solution y of the problem of minimizing ‖z − x‖ subject to
g j (z) ∈ Lm j , j ∈ {1, . . . , q}, z ∈ R

n. If there exist numbers τ > 0 and δ > 0 such
that Λx (y) ∩ cl(B(0, τ )) �= ∅ for every x ∈ B(x, δ), then x satisfies MSCQ.

Then, we shall prove that seq-CPLD and seq-CRCQ are robust, and this, together with
Proposition 5.3, is enough to show that they imply MSCQ.

Theorem 5.2 (Robustness of seq-CPLD (and seq-CRCQ)) If x ∈ F satisfies seq-
CPLD (or seq-CRCQ), then:

1. There is a neighborhoodV of x, such that every x ∈ V∩F also satisfies seq-CPLD
(respectively, seq-CRCQ);

2. MSCQ holds at x.

Proof We will only exhibit the proof for seq-CPLD, since the proof for seq-CRCQ
is analogous. Suppose that item 1 is false, then there is a sequence {xk}k∈N → x
such that seq-CPLD fails at xk , for all k ∈ N. That is, for each k ∈ N there is
some wk := [wk

j ] j∈I0(xk ) with ‖wk
k‖ = 1 for every j ∈ I0(xk), some sequences

{xk	 }	∈N → xk and {wk
	}	∈N → wk , and subsets J kB ⊆ IB(xk) and J k−, J k+ ⊆ I0(xk)

such that DJ kB ,J k−,J k+(xk, wk) is positively linearly dependent, but DJ kB ,J k−,J k+(xk	 , wk
	)
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is linearly independent for every 	 ∈ N. By the infinite pigeonhole principle, we
can assume that I0 = I0(xk) and IB = IB(xk) are the same for every k ∈ N,
and also that JB = J kB , J− = J k−, and J+ = J k+ for every k ∈ N, passing to a
subsequence if necessary. Moreover, note that we can also assume that I0 ⊆ I0(x) and
IB ⊆ I0(x) ∪ IB(x). Now consider the following sets:

J̃B := JB ∩ IB(x), J̃− := J− ∪ (JB ∩ I0(x)), and J̃+ := J+.

By construction, note that D J̃B , J̃−, J̃+(xk	 , wk
	) is linearly independent for every k, 	 ∈

N. For each k, let 	(k) be such that ‖wk − wk
	(k)‖ < 1

k , and let w be any limit point of

{wk}k∈N. Without loss of generality, we will assume thatwk → w, which also implies
that wk

	(k) → w.

Analogously to (26), we can construct someΔk
j ∈ R

m j for every j ∈ I0(x)∪ IB(x),

such that g j (xk	(k))+Δk
j ∈ bd+Lm j andhence its eigenvectors are uniquely determined

by

u1(g j (x
k
	(k)) + Δk

j ) = 1

2

(

1,
ĝ j (xk	(k))

‖ĝ j (xk	(k))‖

)

, ∀ j ∈ J̃B,

and

u1(g j (x
k
	(k)) + Δk

j ) = 1

2

(
1,−wk

	(k)

)

and

u2(g j (x
k
	(k)) + Δk

j ) = 1

2

(
1, wk

	(k)

)
, ∀ j ∈ J̃− ∪ J̃+.

With this inmind, on the one hand, we have thatD J̃B , J̃−, J̃+(x, w) is linearly dependent,

because the family D J̃B , J̃−, J̃+(xk, wk) is linearly dependent for every k ∈ N. But

on the other hand, D J̃B , J̃−, J̃+(xk	(k), w
k
	(k)) is linearly independent for every k ∈ N,

and the fact that the eigenvectors of g j (xk	(k)) + Δk
j are uniquely determined for all

j ∈ J̃B ∪ J̃− ∪ J̃+, together with wk
	(k) → w, contradicts seq-CPLD at x .

The proof of item 2 follows analogously to the proof of [9,Theorem 5.1], which is
essentially a corollary of item 1 and Proposition 5.3; hence it will be omitted. 
�

For a better exposition, what follows is a diagram that represents the relationship
of some existing constraint qualifications and the ones that we present in this paper
(Fig. 1).

6 Conclusion

In our previous work, we studied two ways of incorporating some structural features
of the semidefinite cone into the nondegeneracy condition of Shapiro and Fan [45];
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Nondegeneracy Robinson’s CQ

Seq-CRCQ

Seq-CPLD MSCQ

Weak-CRCQ

Weak-CPLDWeak-nondegeneracy

Weak-Robinson’s CQ

Fig. 1 Constraint qualifications for NSOCP. Strict implications are represented by solid arrows. Possibly
two-sided implications are represented by dashed arrows

among them was the eigendecomposition, which has always been widely exploited
in the design of algorithms for NSDP—for instance, see [31]. Quite surprisingly,
after incorporating eigendecompositions into the nondegeneracy condition (and also
Robinson’s CQ) we obtained a strictly weaker constraint qualification by means of
considering only converging sequences of eigenvectors associated with a given point
of interest, which was called weak-nondegeneracy (respectively, weak-Robinson’s
CQ). Moreover, this “sequential approach” allowed us to bypass the main difficulty
in generalizing the celebrated constant rank constraint qualification of NLP, to NSDP
[9], which is the presence of a potentially nonzero duality gap even in feasible linear
problems (see also [12] for a more detailed discussion on this topic). In this paper
we bring those concepts to the context of NSOCP where several improvements with
respect to the NSDP approach were made.

It is well known (see, for instance, the seminal work of Alizadeh and Goldfarb [2])
that although NSOCP problems can be reformulated as particular instances of NSDP
problems, solving them via such a reformulation is generally not a good practice for
a handful of reasons. Likewise, extensions of the sequential-type constraint qualifica-
tions of [9, 10] to NSOCP demand a specialized analysis to be properly conducted.
In fact, the second-order cone induces a distinguished eigendecomposition that is
easily computable, contrary to NSDP, which allows a deeper analysis to be made.
For instance, besides extending the weak variants of the nondegeneracy condition
and Robinson’s CQ from NSDP to NSOCP, this paper also presents a full comparison
between these weak conditions and their standard versions, which is an issue we could
not properly address in [10]. Some technical results from [10] could also be explained
in a somewhat natural way in this paper. Moreover, besides extending the constant
rank conditions from [9], we also gave them a geometrical interpretation in terms of
the conical slices of the second-order cone (Remark 5.1).

Very recently, we have been extending the notions of constant rank-type constraint
qualifications to the contexts of NSDP and NSOCP. While [12] follows an implicit
function approach pioneered by Janin [29] and giving rise to a definition of CRCQ that
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enjoys strong second-order properties, in this paper we exploit a sequential approach
[7], which allows even weaker conditions to be defined, such as the CPLD condition,
while enjoying global convergence properties of several algorithms without assuming
boundedness of the set of Lagrange multipliers but still allowing computation of error
bounds. Not surprisingly, when extending NLP concepts to the conic context, different
points of view may give rise to different possible extensions, each one extending
different applications of the concept. Some relevant topics in conic programming that
we expect the conditions we define in this paper will be particularly relevant are: in
the global convergence analysis of other classes of algorithms, including second-order
algorithms; the study of the boundedness of Lagrange multipliers estimates and the
use of scaled stopping criteria ; stability analysis of parametric optimization problems ;
and necessary optimality conditions for some extended classes of bilevel optimization
problems with conic constraints .
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