
Journal of Computational and Applied Mathematics 416 (2022) 114525

a

S
b

c

d

M

w

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

An extended delayedweighted gradient algorithm for solving
strongly convex optimization problems
R. Andreani a,∗, H. Oviedo b, M. Raydan c, L.D. Secchin d

Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas, Distrito Barão Geraldo, 13083-859 Campinas
P, Brazil
Escola de Matemática Aplicada, Fundação Getulio Vargas (FGV/EMAp), Rio de Janeiro, RJ, Brazil
Center for Mathematics and Applications (NovaMath), FCT NOVA, 2829-516, Caparica, Portugal
Department of Applied Mathematics, Federal University of Espírito Santo, Rodovia BR 101, Km 60, 29932-540, São
ateus, ES, Brazil

a r t i c l e i n f o

Article history:
Received 1 October 2021
Received in revised form 9 June 2022

MSC:
65K05
90C25
90C06

Keywords:
Gradient methods
Conjugate gradient methods
Strongly convex functions
Large-scale optimization

a b s t r a c t

The recently developed delayed weighted gradient method (DWGM) is competitive with
the well-known conjugate gradient (CG) method for the minimization of strictly convex
quadratic functions. As well as the CG method, DWGM has some key optimality and
orthogonality properties that justify its practical performance. The main difference with
the CG method is that, instead of minimizing the objective function on the entire
explored subspace, DWGM minimizes the 2-norm of the gradient vector on the same
subspace. The main purpose of this study is to extend DWGM for solving strongly
convex nonquadratic minimization problems while keeping a low computational cost per
iteration. We incorporate the scheme into a tolerant line search globalization strategy,
and we show that it exhibits q-linear convergence to the unique global solution. We
compare the proposed extended DWGM with state-of-the-art methods for large-scale
unconstrained minimization problems. We use some well-known strongly convex test
problems, but also solve some regularized logistic regression problems that appear in
machine learning. Our numerical results illustrate that the proposed scheme is promising
and exhibits a fast convergence behavior. Moreover, we show through numerical exper-
iments on CUTEst problems that the proposed extended DWGM can be very effective in
accelerating the convergence of a well-established Barzilai–Borwein-type method when
the iterates get close to minimizers of non-convex functions.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let us consider the strictly convex quadratic function given by

f (x) =
1
2
x⊤Ax− b⊤x, (1.1)

here b ∈ Rn and A ∈ Rn×n is a symmetric and positive definite (SPD) matrix. Since A is SPD and the gradient
g(x) ≡ ∇f (x) = Ax− b, then the global minimizer of (1.1) is the unique solution A−1b of the linear system Ax = b.

∗ Corresponding author.
E-mail addresses: andreani@unicamp.br (R. Andreani), harry.leon@fgv.br (H. Oviedo), m.raydan@fct.unl.pt (M. Raydan),

leonardo.secchin@ufes.br (L.D. Secchin).
https://doi.org/10.1016/j.cam.2022.114525
0377-0427/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2022.114525
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2022.114525&domain=pdf
mailto:andreani@unicamp.br
mailto:harry.leon@fgv.br
mailto:m.raydan@fct.unl.pt
mailto:leonardo.secchin@ufes.br
https://doi.org/10.1016/j.cam.2022.114525


R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525

t
d

e
F

v

Recently, Oviedo [1] proposed a low-cost iterative method to minimize large-scale convex quadratic functions, namely
he delayed weighted gradient method (DWGM). DWGM is based on a smoothing technique combined with a one-step
elayed gradient method, which, starting at a given x0 = x−1, can be described by the following iterative recursive scheme:

αMG
k := argmin

α
∥∇f (xk − α∇f (xk))∥2 =

∇f (xk)⊤A∇f (xk)
(A∇f (xk))⊤(A∇f (xk))

, (1.2a)

zk := xk − αMG
k ∇f (xk), (1.2b)

βk := argmin
β
∥∇f (βzk + (1− β)xk−1)∥2 =

(
g⊤k−1(gk−1 −∇f (zk))

)
∥gk−1 −∇f (zk)∥22

, (1.2c)

xk+1 := xk−1 + βk(zk − xk−1). (1.2d)

Notice that the gradient of f at zk can be computed as ∇f (zk) = ∇f (xk)−αMG
k A∇f (xk), and so the method only needs the

matrix–vector product A∇f (xk) per iteration. In practice, DWGM exhibits a convergence behavior that competes favorably
with the classical conjugate gradient (CG) method. It was recently established that DWGM has several key orthogonality
properties that add understanding to the practical behavior of the method, including its finite termination; see [2]. Indeed,
it was shown that if A has only p < n distinct eigenvalues, then the method terminates in p iterations. Moreover, it was
also established that the current iterate given by (1.2d) minimizes the 2-norm of ∇f (x) on the already explored subspace;
see [2] for details. This optimality property motivates the use of DWGM for the minimization of nonquadratic functions.
In this work, as a preliminary but fundamental step, we focus on the extension of DWGM to minimize strongly convex
(nonquadratic) functions keeping its low computational cost per iteration as well as its simple algorithmic structure.

The rest of the paper is organized as follows. In Section 2, we describe and analyze the proposed extension of DWGM
for strongly convex functions, which includes a suitable tolerant line search strategy. Section 3 is dedicated to an extensive
numerical comparison between the proposed scheme and state-of-the-art modern methods for large-scale unconstrained
minimization on some well-known sparse and dense test problems. We also solve some regularized logistic regression
problems that appear in machine learning applications. In Section 4, we present our conclusions and provide some
perspectives for a future work.

Notation. ∥ · ∥2, ∥ · ∥∞ and ∥ · ∥ stands for the Euclidean norm, sup-norm and a generic norm, respectively.

2. Extension of DWGM for strongly convex functions

Let us consider the following optimization problem

min
x∈Rn

f (x), (2.1)

where f : Rn
→ R is a twice continuously differentiable and σ -strongly convex function, for which the following

inequality holds for all points x and y in Rn:

f (y) ≥ f (x)+∇f (x)⊤(y− x)+
σ

2
∥y− x∥22.

An equivalent condition is

(∇f (x)−∇f (y))⊤(x− y) ≥ σ∥x− y∥22.

Since f is twice continuously differentiable, another equivalent condition is that ∇2f (x) ⪰ σ I , for all x, that is, the least
igenvalue λmin(∇2f (x)) ≥ σ for all x. For a review on strongly convex functions we recommend the book by Bertsekas [3].
rom now on we use the notation gk = ∇f (xk) and Hk = ∇

2f (xk).
Even though the function f is σ -strongly convex, it can be highly nonlinear. Therefore, if we apply directly the original

ersion of the method given by (1.2), using at each k the matrix Hk instead of A, then DWGM may fail to obtain the
solution of (2.1). This is a possibility since the step-size αk in (1.2a) is not always able to reduce the gradient norm. Thus,
to guarantee convergence of the method, it is crucial to select appropriately the step-size at each iteration. In the convex
quadratic case, DWGM computes αk carrying out an exact line search. However, the selection of an exact step-size for
solving (2.1) will not be feasible, due to the nonlinearity of ∇f . Therefore, we propose to equip the method with an inexact
line search, such that the kth step-size satisfies

∥∇f (xk − αkgk)∥22 ≤ ∥gk∥
2
2 − c1αkg⊤k H(xk)gk, (2.2)

where c1 ∈ (0, 1) is a constant. We clarify that it is always possible to find a positive real number αk such that (2.2) holds.
In fact, inequality (2.2) is exactly the Armijo rule applied to the square of the gradient norm of f . Notice that this relation
forces the reduction in the norm of two consecutive gradients, which will be a convenient property to establish the global
convergence of the proposed extension. In practice, to determine a step-size αk satisfying (2.2), we use the well-known
backtracking algorithm (see, e.g., [4]), starting at α0

k =
g⊤k Hkgk
∥H(xk)gk∥22

, since this quotient exploits the local information of the
objective function.
2



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525
In the second phase, the original DWGM also performs an exact line search to determine the parameter βk. Although
we can equip the method with a second inexact line search to choose the parameter βk satisfying a condition similar
to (2.2), in practice, this is an expensive task since this mechanism increases the number of gradient evaluations. In order
to avoid extra computational effort, we adopt a simple acceptance–rejection strategy based on a non-monotone criterion
on the gradient norm. Specifically, we compute the new iterate as follows

xk+1 =
{
xβ,k if ∥∇f (xβ,k)∥22 ≤ ∥∇f (zk)∥

2
2 +min{ϵk, γ tαk(g⊤k wk)}

zk otherwise,

where xβ,k = xk−1 + βk(zk − xk−1), βk is given by (1.2c), zk = xk − αkgk is the auxiliary point obtained in the first phase
of the algorithm, {ϵk} ⊂ R+ is any sequence such that

∑
∞

k=0 ϵk <∞, and t > 0 and γ ∈ (0, 1) are two constants.
Observe that the algorithmic essence of DWGM is retained since we still use the original formulas for the pair of

parameters (αk, βk), while we promote the reduction in the gradient norm, which is one of the emblematic properties
of DWGM. Additionally, under certain assumptions, we will prove in the next subsection that this extension generates a
sequence for which the gradient norm converges q-linearly to zero. This is also a feature of the method introduced in [1].
Keeping in mind all these descriptions, we propose in Algorithm 1 the extension of DWGM to solve (2.1).

Algorithm 1 DWGM for σ -strongly convex functions.

Require: x0 ∈ Rn, t > 0, x−1 = x0, {ϵk} ⊂ R+ such that
∑
∞

k=0 ϵk <∞; γ , δ ∈ (0, 1), g0 = ∇f (x0), g−1 = g0, k← 0.

1: while ∥gk∥ > 0 do
2: wk = Hkgk
3: αk = (g⊤k wk)/(w⊤k wk)
4: zk = xk − tαkgk
5: rk = ∇f (zk)
6: while ∥rk∥22 > ∥gk∥22 − γ tαk (g⊤k wk) do
7: αk ← δαk
8: zk = xk − tαkgk, rk = ∇f (zk)
9: end while

10: yk = rk − gk−1
11: βk = −

(
g⊤k−1yk

)
/
(
y⊤k yk

)
12: xk+1 = xk−1 + βk(zk − xk−1)
13: gk+1 = ∇f (xk+1)
14: if ∥gk+1∥22 > ∥rk∥22 +min{ϵk, γ tαk(g⊤k wk)} then
15: xk+1 = zk, gk+1 = rk
16: end if
17: k← k+ 1
18: end while

2.1. Convergence analysis of Algorithm 1

In the sequel, we prove the global convergence of Algorithm 1. Let us consider the merit function

r(x) =
1
2
∥∇f (x)∥22.

In addition to assuming that f is twice continuously differentiable, for the forthcoming results we will assume either one
(or both) of the following hypotheses:

H1 f is σ -strongly convex,
H2 r is twice continuously differentiable.

A sufficient condition for H2 to be valid is that f has continuous third derivatives. Next, we prove the well definiteness
of Algorithm 1 under H1.

Theorem 2.1. Assume that H1 holds. Then Algorithm 1 is well defined.

Proof. For an arbitrary k, we have αk > 0 by the strong convexity of f whenever gk ̸= 0. Also, since −gk ̸= 0 is a descent
direction for r(x) at x (in fact, −g⊤∇r(x ) = −g⊤H g < 0), the Armijo condition (row 6 in Algorithm 1) fails only finitely
k k k k k k

3



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525

I

f

i

i

many times until

∥rk∥22 ≤ ∥gk∥
2
2 − γ tαk (g⊤k Hkgk). (2.3)

In particular, ∥rk∥2 < ∥gk∥2 whenever gk ̸= 0. For k = 0, we have ∥r0∥2 < ∥g0∥2 = ∥g−1∥2, and thus β0 is well defined if
the method did not stop at iteration 0 with g0 = 0. Now, suppose that at iteration k− 1, k ≥ 1, we have gk−1 ̸= 0. If gk
computed at row 13 is null, then the next iterate xk is the minimizer and the method stops. Otherwise, gk ̸= 0 and we
have, by the test in rows 14–16 of Algorithm 1 and (2.3) for k and k− 1, that

∥rk∥22 < ∥gk∥22 ≤ ∥rk−1∥
2
2 + γ tαk−1(g⊤k−1Hk−1gk−1) ≤ ∥gk−1∥22.

Thus, rk ̸= gk−1, and then βk is well defined. The statement follows by induction. □

Let us now prove the global convergence of Algorithm 1. From now on, we assume, without loss of generality, that
Algorithm 1 never reaches ∥gk∥2 = 0. Otherwise, the algorithm has been successfully stopped at a finite iteration and
there is nothing to prove. First, we provide a necessary technical result.

Lemma 2.1. Assume that H1 holds. In Algorithm 1, the Hessian of f remains uniformly bounded along the infinite sequence
{xk} generated by the method, that is, there is a constant M > 0 such that

∥Hk∥2 ≤ M, ∀k ≥ 0.

Furthermore, if H2 also holds, there exists a constant Lr > 0 such that the step-sizes αk satisfy

0 < min
{

σ

M2 ,
δ(2− γ )σ

tLr

}
≤ αk ≤

M
σ 2 , ∀k ≥ 0.

Proof. By the construction of Algorithm 1, we have, for all k,

∥∇f (xk+1)∥22 ≤ ∥rk∥
2
2 + ϵk ≤ ∥∇f (xk)∥22 + ϵk

since tαk(g⊤k wk) > 0. Take ϵ ≥
∑
∞

k=0 ϵk and consider the set

C = {x ∈ Rn
| ∥∇f (x)∥22 ≤ ∥∇f (x0)∥

2
2 + ϵ}.

mmediately, xk ∈ C for all k. We affirm that C is compact. In fact, it is closed by the continuity of ∇f . By the σ -strong
convexity of f we have

∇f (uk)⊤
(

uk − x∗

∥uk − x∗∥2

)
≥ σ∥uk − x∗∥2 →∞

or any sequence {uk} such that ∥uk∥2 →∞, where x∗ is the minimizer of f . In this case, we must have ∥∇f (uk)∥2 →∞
and thus {uk} cannot be in C . Then, C is bounded. The compactness of C together the continuity of ∇2f guarantee the
existence of a constant M > 0 such that

∥Hk∥2 ≤ M, ∀k.

For each k, let αMG
k := (g⊤k wk)/(w⊤k wk). The upper bound on αk follows from

αk ≤ αMG
k =

g⊤k Hkgk
g⊤k [Hk]

2gk
≤

M∥gk∥22
σ 2∥gk∥22

=
M
σ 2 .

As {xk} is contained in the compact set C and f is continuously differentiable, the positive scalar

R = lim sup
k
{∥∇f (xk − tαd)∥22 | ∥d∥

2
2 ≤ ∥g0∥

2
2 + ϵ, 0 ≤ α ≤ δ−1M/σ 2

}

s well defined. So, by H2 we can take a constant Lr > 0 that does not depend on k such that

∥∇r(y)−∇r(xk)∥2 ≤ Lr∥y− xk∥2, ∀y ∈ C, ∀k

where

C = {y ∈ Rn
| ∥∇f (y)∥22 ≤ ∥g0∥

2
2 + ϵ + R}

s a compact set containing C . Note that in particular xk, zk ∈ C for all k. The above condition is a kind of Lipschitz
continuity, and implies the inequality

r(y) ≤ r(xk)+∇r(xk)⊤(y− xk)+
Lr
2
∥y− xk∥22, ∀y ∈ C, ∀k. (2.4)

Now, let mk ≥ 0 be the smallest integer such that the Armijo rule (row 6 of Algorithm 1) is satisfied. So,

∥∇f (x − t δmkαMG g )∥2 ≤ ∥g ∥2 − γ tδmkαMG (g⊤w )
k k k 2 k 2 k k k

4



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525

I

N

t

C

N

P

C

T
a

with mk = 0 or

∥∇f (xk − tδmk−1αMG
k gk)∥22 > ∥gk∥22 − γ tδmk−1αMG

k (g⊤k wk). (2.5)

f mk = 0 then

αk = αMG
k =

g⊤k Hkgk
g⊤k [Hk]

2gk
≥

σ∥gk∥22
∥Hk∥

2
2∥gk∥

2
2
≥

σ

M2 .

ow, suppose that mk ≥ 1. We can rewrite (2.5) as

r(xk − tδ−1αkgk) > r(xk)−
γ tδ−1αk

2
(g⊤k wk) (2.6)

where αk = δmkαMG
k . On the other hand, xk ∈ C implies ∥gk∥22 ≤ ∥g0∥

2
2 + ϵ, and δ−1αk ≤ δ−1M/σ 2. Then it follows from

he definition of R and (2.4) that

r(xk − tδ−1αkgk) ≤ r(xk)− tδ−1αkg⊤k wk +
Lr t2δ−2α2

k

2
∥gk∥22. (2.7)

ombining inequalities (2.6) and (2.7), we arrive at

δ(2− γ )
tLr

g⊤k wk

∥gk∥22
< αk. (2.8)

ow, since f is σ -strongly convex, g⊤k wk = g⊤k Hkgk ≥ σ∥gk∥22. Using this inequality in (2.8), we obtain

αk >
δ(2− γ )

tLr

g⊤k wk

∥gk∥22
≥

δ(2− γ )σ
tLr

.

This concludes the proof. □

The theorem below presents the global convergence of Algorithm 1.

Theorem 2.2. Let {xk} be the sequence generated by Algorithm 1 and let us assume that H1–H2 are fulfilled. Then, the following
conditions hold:

(i) limk→∞ ∥gk∥2 = 0;
(ii) if for some c ∈ (0, 1) we choose ϵk ≤ cγ tαk(g⊤k wk), ∀k, then {∥gk∥2} converges at least q-linearly to zero;
(iii) let Lr > 0 be the constant provided by Lemma 2.1. If we choose t ∈ (0, σ 2/Lr ] then no line search is performed, that is,

the step-size αk = (g⊤k wk)/(w⊤k wk) always satisfies the Armijo test (row 6 of Algorithm 1).

roof. By the construction of Algorithm 1, we have, for all k,

∥rk∥22 ≤ ∥gk∥
2
2 − γ tαk (g⊤k Hkgk) and ∥gk+1∥22 ≤ ∥rk∥

2
2 + ϵk. (2.9)

ombining these two inequalities, we get

tαk (g⊤k Hkgk) ≤
∥gk∥22 − ∥gk+1∥

2
2

γ
+

ϵk

γ
.

Given an arbitrary positive integer N ≥ 1, we have

sN :=
N∑

k=0

tαk (g⊤k Hkgk) ≤
1
γ

N∑
k=0

(∥gk∥22 − ∥gk+1∥
2
2)+

1
γ

N∑
k=0

ϵk ≤
∥g0∥22

γ
+

1
γ

∞∑
k=0

ϵk.

hus the sequence of partial sums {sN} is bounded. In addition, observe that {sN} is monotonically increasing because it is
sum of positive scalars. Therefore,

∑
∞

k=0 tαk (g⊤k Hkgk) is convergent, which implies limk→∞ tαk (g⊤k Hkgk) = 0. This last
result together with Lemma 2.1 leads to

lim
k→∞

g⊤k Hkgk = 0. (2.10)

Since f is a σ -strongly convex function, we have g⊤k Hkgk ≥ σ∥gk∥22 ≥ 0 for all k, which implies, together with (2.10), that

lim
k→∞
∥gk∥2 = 0,

and item (i) is established.
Let us prove item (ii). Assume that ϵk ≤ cγ tαk(g⊤k wk) for all k. By the inequalities in (2.9), Lemma 2.1 and the σ -strong

convexity of f we have

∥gk+1∥22
2 ≤ 1− γ tαk

(g⊤k Hkgk)
2 +

ϵk
2 ≤ 1− (1− c)γ tνσ
∥gk∥2 ∥gk∥2 ∥gk∥2
5



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525

f

M

q
t
i
s
f
t

T
D

P
o

for all k and 0 < ν ≤ αk as in Lemma 2.1. So, the q-linear convergence of {∥gk∥2} to zero with rate (1− (1− c)γ tνσ )1/2
ollows from the last inequality by taking limits when k→∞.

Now, let us prove item (iii). Assume that t ≤ σ 2/Lr and define αMG
k := (g⊤k wk)/(w⊤k wk). It follows from (2.4) with

y = zk that

r(xk − tαMG
k gk) ≤ r(xk)− tαMG

k ∇r(xk)
⊤gk +

Lr
2
t2(αMG

k )2∥gk∥22

≤ r(xk)− tαMG
k g⊤k wk +

1
2
t(αMG

k )2σ 2
∥gk∥22. (2.11)

Since λmin(Hk) ≥ σ we have λmin(H⊤k Hk) ≥ σ 2, and then σ 2
∥gk∥22 ≤ ∥Hkgk∥22 = w⊤k wk. Using this last inequality in (2.11)

we get

r(xk − tαMG
k gk) ≤ r(xk)− tαMG

k g⊤k wk +
1
2
t(αMG

k )2w⊤k wk

= r(xk)− tαMG
k g⊤k wk +

1
2
tαMG

k g⊤k wk = r(xk)−
1
2
tαMG

k g⊤k wk.

ultiplying this expression by 2 leads to

∥∇f (xk − tαMG
k gk)∥22 ≤ ∥gk∥

2
2 − tαMG

k g⊤k wk ≤ ∥gk∥22 − γ tαMG
k g⊤k wk.

Therefore, the Armijo test is fulfilled with αk = αMG
k , and then item (iii) holds. This completes the proof. □

Remark 2.1. Condition ϵk ≤ cγ tαk(g⊤k wk) in item (ii) of Theorem 2.2 can be implemented in practice since ϵk is used
after the computation of αk, gk and wk in Algorithm 1. We can take, for example, ϵk = min{1/k2, 0.9γ tαk(g⊤k wk)}. In this
case, an increase in the magnitude of the gradient is allowed, especially at the first iterations for which ∥gk∥2 is expected
to be large. We emphasize that the q-linear rate of convergence in item (ii) is relative to the outer iterations, i.e., we
do not count the possible updates of zk performed by the Armijo test. Moreover, item (iii) says that no such update is
performed.

Remark 2.2. If t ∈ (0, σ 2/Lr ] was chosen in Algorithm 1, no additional gradient evaluation is performed by the Armijo
test. Note that the first evaluation rk = ∇f (zk) must always be computed to calculate βk. In that sense, Algorithm 1
encapsulates the case where no line search is necessary.

As discussed above, condition (2.4) in essential to prove convergence of Algorithm 1. It says that ∇r is Lipschitz
continuous over a compact set C containing all iterates, whose existence is naturally guaranteed by the method. Obviously,
this condition is satisfied if we assume Lipschitz continuity of ∇r on the entire space, that is, that there exists a constant
L > 0 such that

∥∇r(x)−∇r(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn. (2.12)

In this case, item (iii) of Theorem 2.2 is valid for all t ∈ (0, σ 2/L] (note that we can always choose Lr ≤ L). However,
the above condition is restrictive and should only be expected for particular functions. One of them is the strictly convex
quadratic function, which we consider in the sequel.

Suppose that f is given by (1.1) where A is SPD. Then it is easy to see that hypothesis H1 is fulfilled with σ := λmin(A),
and also that L := λmax(A2) is the tightest Lipschitz constant to satisfy (2.12). Now,

σ 2

L
=

(λmin(A))2

λmax(A2)
=

(
λmin(A)
λmax(A)

)2

≤ 1.

Thus, σ 2/L measures the square of the condition number of A. Choosing t ≤ σ 2/L < 1 is a conservative strategy for
uadratics, since the step-size α in the original DWGM [1] (scheme (1.2)) corresponds exactly to that of Algorithm 1 with
= 1. The difference between the original DWGM and Algorithm 1 is the line search. While in DWGM for quadratics there
s no line search, in Algorithm 1 we force a sufficient decrease of ∥∇f (zk)∥2 in relation to ∥∇f (xk)∥2. On the other hand,
cheme (1.2) has excellent properties on quadratics, like finite termination and conjugacy [2]. So, it would be desirable
or Algorithm 1 to generate the sequences (1.2) when applied on quadratics. Fortunately, this is true when we choose
= 1.

heorem 2.3. Let us assume that f is given by (1.1) where A is SPD. Then Algorithm 1 with t = 1 coincides with the original
WGM given by (1.2), independently of the choice of {ϵk} and γ . In this case, no line search is performed.

roof. Here we have ∇2f (xk) = Hk = A for all k, and we set t = 1. Since βk in (1.2c) is obtained by the minimization
f ∥∇f (x + β(z − x ))∥ , we have ∥g ∥

2
≤ ∥r ∥2. That is, the test in row 14 of Algorithm 1 never takes place,
k−1 k k−1 2 k+1 2 k 2

6



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525

α

L
c

w
e

T
n
h

independently of ϵk ≥ 0. Therefore, it is sufficient to prove that the Armijo test in row 6 is always fulfilled with
MG
k := (g⊤k wk)/(w⊤k wk) = (g⊤k Agk)/(g⊤k A2gk). In fact, we have

∥∇f (xk − αMG
k gk)∥22 = ∥A(xk − αMG

k gk)− b∥22
= ∥gk∥22 − 2αMG

k (g⊤k Agk)+ (αMG
k )2(g⊤k A2gk)

= ∥gk∥22 − 2αMG
k (g⊤k Agk)+ αMG

k (g⊤k Agk)

= ∥gk∥22 − αMG
k (g⊤k wk)

≤ ∥gk∥22 − γαMG
k (g⊤k wk),

since γ ∈ (0, 1). This concludes the proof. □

For solving (2.1), when f is strongly convex but not quadratic, the situation is more delicate. In practice, we do not
know in general what is the tightest Lr so that (2.4) holds, and we do not know the value of σ . If we choose an arbitrary
t > 0 in Algorithm 1, for example t = 1, Theorem 2.2 ensures its global convergence with the gradient sequence vanishing
at a q-linear rate. On the other hand, item (iii) of Theorem 2.2 suggests that t = σ 2/Lr is the best choice. Of course, if
r (or even L) and σ are available, then we could define such a convenient value of t and establish a q-linear rate of
onvergence without imposing a line search strategy.
In practice, when Lr and σ are not available, a successful strategy could be to adjust t during the minimization process.

In that case, the proof of Theorem 2.2 can be easily adapted to deal with a sequence {tk} bounded below away from zero.
Nevertheless, Theorem 2.3 suggests that choosing t = 1 does not imply frequent reductions in the step size αk, at least if
the quadratic approximation of f locally around xk is good enough along the direction −gk. This will be illustrated in the
numerical experiments of Section 3.

3. Numerical experiments

To illustrate the performance of our extended DWGM algorithm in solving nonquadratic strictly convex minimization
problems, we consider the following algorithms:

• our extended DWGM (Algorithm 1) with t = 1;
• the globalized nonmonotone Barzilai–Borwein method, also known as the spectral BB gradient (SG-BB) algorithm

(see [5,6]);
• the ABBmin 1 (or simply ABBmin) method that was developed as an acceleration of the SG-BB algorithm (see [7–9]);
• the Dai–Kou Conjugate Gradient method that was developed as a smoothing improvement of the SG-BB algorithm

(see [10,11]);
• the CG_DESCENT method developed by Hager and Zhang [12], which has been considered so far as the best extension

of CG in minimizing nonquadratic functions [13].

We implement these methods in Julia, except CG_DESCENT, where we use the implementation provided in the package
Optim.jl [14] (github.com/JuliaNLSolvers/Optim.jl). Gradients are provided manually. For the SG-BB method, we follow
the implementation in Fortran 90 provided by the TANGO project (https://www.ime.usp.br/~egbirgin/tango/codes.php)
with its default parameters; in particular, we set m = 100, γ = 10−4 and the maximum number of outer iterations
equals to 50,000. This code presents a good behavior on CUTEst problems [15]. The ABBmin and Dai–Kou methods require
a nonmonotone line search to guarantee convergence, and for that we impose the same strategy used in the SG-BB method.
This line search depends on a parameter m ≥ 1 that indicates the number of last iterations to be considered, and the
well-known Armijo-type reduction parameter γ ∈ (0, 1). As in the case of SG-BB, we set m = 100 and γ = 10−4 for both
methods. For Algorithm 1, we also set γ = 10−4, δ = 0.9 and ϵk = min{1/k2, 0.9γ tαk(g⊤k wk)} for all k (see Remark 2.1).
Following SG-BB, the maximum number of outer iterations for the previous methods is set to 50,000. For CG_DESCENT,
we use the parameters suggested originally by Hager and Zhang [12].

We note that in the original DWGM for strictly convex quadratics, the Hessian matrix A is only required to build the
vector wk = Agk. It means that the matrix A is not needed explicitly but instead we only need the product of the Hessian
times gk. From basic calculus, the product Hkgk in Algorithm 1 can be obtained with high numerical accuracy using a finite
difference approximation that only requires an additional gradient evaluation:

Hkgk = ∇2f (xk)gk ≈ (∇f (xk + hgk)− gk)/h, (3.1)

here h > 0 is a small number. In practice, for smooth convex functions, using the exact Hessian Hk or the finite difference
xpression in (3.1) produce the same iterations. In our tests, we take

h =
10−5

min{1,max{10−3, 105∥gk∥2}}
∈ [10−5, 10−2].

hus, h = 10−5 when ∥gk∥2 ≥ 10−5 and h > 10−5 otherwise. The idea is to take h larger if ∥gk∥ is much small, avoiding
umerical instabilities associated with too small steps hgk. This strategy proved to be more effective than simply taking
constant.
7

https://github.com/JuliaNLSolvers/Optim.jl
https://www.ime.usp.br/~egbirgin/tango/codes.php


R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525

a
i
m
A
e
n

E
t
e
a
p
t

i
‘
N
i

E

w

h

Fig. 1. Convergence history of all methods for SC2 function with n = 1000 (left) and n = 5000 (right), starting from x0 = 2 ∗ ones(n).

In all our experiments we report the results using semilog curves, i.e., the y-axis is in logarithmic scale (base 10). The
stopping criterion for all algorithms is

∥∇f (xk)∥∞ ≤ 10−8.

All the experiments were run in a computer equipped with Intel© Xeon© Silver 4114 CPU 2.20 GHz, 160 Gb RAM,
GNU/Linux Ubuntu 20.04.3 LTS and Julia v1.6.2.

Experiment 1. For our first experiment we consider the so-called Strictly Convex 2 (SC2) function (see [6])

f (x) =
n∑

i=1

i
10

(exi − xi),

and we start all the methods from x0 = (2, . . . , 2)⊤. Clearly, the unique minimizer of SC2 is the origin x∗ = (0, . . . , 0)⊤,
nd the Hessian at x∗ has n distinct positive eigenvalues. For large values of n, the Hessian matrix is always diagonal but
ll-conditioned. In Fig. 1 we show the convergence history of all algorithms for n = 1000 (left) and n = 5000 (right). All
ethods converge to the unique global minimizer. We note the smooth and monotone faster convergence behavior of
lgorithm 1 compared to the other methods. It can be observed the monotone behavior of the Dai–Kou method, which
xhibit a similar behavior on average to the highly nonmonotone SG-BB method. Finally, we note that ABBmin is also
onmonotone and that after reaching a certain accuracy it exhibits a significant acceleration when compare with SG-BB.

xperiment 2. Let us now consider the same experiment as before, but instead of using x0 = (2, . . . , 2)⊤, let us choose
he starting point randomly generated uniformly in [−2, 2]n. In that case, the methods will converge to the zero vector,
ither from negative entries or positive entries. We ran each method starting from five random initial guess. Fig. 2 shows
typical convergence history for n = 1000 (left) and n = 5000 (right). It is worth noticing that for the chosen starting
oints with negative entries, some of the Hessian matrices during the convergence process are very ill-conditioned and
hat clearly reduces the speed of convergence of some of the methods. For n = 1000, we observe that Algorithm 1 is
the best algorithm. For n = 5000, Algorithm 1 is better than CG_DESCENT. Surprisingly, for these problems, the Dai–Kou
method presents a consistent decrease of the gradient norm, while ABBmin shows its typical oscillatory behavior and
converges prematurely.

Table 1 presents the results for the SC2 function. Columns ‘‘iter’’, ‘‘f evals’’ and ‘‘g evals’’ bring the number of required
terations, the number of function evaluations and the number of gradient evaluations, respectively. Columns ‘‘fbest’’ and
‘∥g∥∞’’ brings the best functional value founded so far and the sup-norm of the gradient at the last iterate, respectively.
ote that no function evaluation is necessary for the extended DWGM (Algorithm 1); the number 1 in column ‘‘f evals’’
ndicates the evaluation of f at the final iterate to return the found functional value ‘‘fbest’’.

xperiment 3. For our next experiment, we consider the convex function

f (x) = − log(λ2
− x⊤x),

here λ > 0 is a given scalar and log(z) denotes the natural logarithm of z. Simple calculations reveal that

∇f (x) =
2

(λ2 − x⊤x)
x and ∇2f (x) =

2
(λ2 − x⊤x)

I +
4

(λ2 − x⊤x)2
xx⊤,

where I is the n× n identity matrix. Hence, when we restrict the domain to {x | ∥x∥22 ≤ λ2
− σ } for some σ ∈ (0, λ2), we

ave ∇2f (x) ⪰ σ I , and thus f is σ -strongly convex. Furthermore, the unique global minimizer is x∗ = (0, . . . , 0)⊤ and the
Hessian is dense for all x ̸= (0, . . . , 0)⊤. In our experiments, we set λ2

= 10n. Concerning Algorithm 1, we recall from
8



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525

u

t
e

x

w

Fig. 2. Typical convergence history of all methods for the SC2 function with n = 1000 (left) and n = 5000 (right), starting from x0 randomly chosen
niformly in [−2, 2]n .

he proof of Lemma 2.1 that the gradient norm does not grow much from the initial point (∥gk∥22 ≤ ∥g0∥
2
2+ ϵ), so we can

xpect that ∥xk∥22 < 10n for all k.
We vary n between 1000, 2000, 3000, 4000 and 5000. For each of these n, we ran all algorithms starting from

0 = (2, . . . , 2)⊤ and five times starting from a point with uniformly random entries chosen in [−2, 2]. In each test, all
methods generate a monotonic sequence of gradients norms and converge to the global minimizer x∗ in a few iterations
(from 3 to 6). This is probably a consequence of the well-conditioned Hessian matrices of f at every iteration. Therefore,
the density of the Hessian matrices does not produce a negative effect on the convergence process, whereas the condition
number is the key factor to affect the convergence of the methods. We also note that Algorithm 1 converges generally
requiring 1 or 2 less iterations than the other methods, and never activates the Armijo line search. We note that for
this particular problem, with dense and well-conditioned Hessian matrices, all the considered methods seem to exhibit a
q-superlinear rate of convergence.

Experiment 4. Given pairs of vectors (z i, yi) ∈ Rn
× {−1, 1}, i = 1, . . . ,m, let us consider the logistic loss function with

ℓ2-regularization

f (x) =
σ

2
∥x∥22 +

m∑
i=1

log(1+ e−(x
⊤zi)yi ), (3.2)

here σ ≥ 0 is a parameter. By straightforward calculations, we obtain

∇f (x) = σx−
m∑
i=1

yihi(x)
1+ hi(x)

z i

and

∇
2f (x) = σ I +

m∑
i=1

(yi)2hi(x)
1+ hi(x)

[
1−

1
1+ hi(x)

]
z i(z i)⊤,

where hi(x) = e−(x
⊤zi)yi . Immediately, f is σ -strongly convex if σ > 0. However, we also consider in our tests the case

σ = 0. Actually, note that hi(x) > 0, i = 1, . . . ,m, remain bounded when minimizing f , and thus the Rayleigh quotients
(u⊤∇2f (x)u)/(u⊤u) remain uniformly above a positive scalar during the minimization process, at least when z forms a
basis for Rn (usually, m > n). That is, ∇2f (x) has a great chance to be positive definite with a positive uniform lower
bound for all its eigenvalues even if σ = 0.

The function (3.2) appears in binary classification problems. In fact, note that minimizing the sum in (3.2) leads each
weighted data x⊤z i to have the same sign as yi. In this sense, let us consider (3.2) constructed from the Ionosphere dataset,
available from the UCI Machine Learning Repository [16]. This dataset consists of 351 radar returns z i from the ionosphere
together a binary label yi that indicates weather or not each return is good for analysis (in our case, y = 1 for good returns
and −1 otherwise). Each entry z i encodes 34 continuous attributes, all normalized to [−1, 1], so z i ∈ [−1, 1]34 for all i. It
is worth mentioning that we are not training a model/neural network to predict the correct answer to an unknown data,
as originally proposed [17]. In particular, we do not divide the dataset into training and test data.

Fig. 3 illustrates the behavior of ∥gk∥∞ for σ = 0 and σ = 0.1 of all methods, starting from x0 = (1, . . . , 1)⊤. In both
cases, Algorithm 1 needs fewer iterations to converge. We observe that the SG-BB, ABBmin and Dai–Kou methods suffer
to converge if σ increase from 0 to 0.1, while Algorithm 1 and CG_DESCENT do not. For σ = 0.4, Algorithm 1 still needs
significantly fewer iterations than the other methods to converge. In this case, ABBmin overcomes CG_DESCENT, while
SG-BB and Dai–Kou take 31,729 and 10,014 iterations, respectively, to converge. See Table 2.
9



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525

x

b
p

u
d

E

N

T
g

Fig. 3. Convergence history of all methods for the logistic loss (Ionosphere data) function with σ = 0 (left) and σ = 0.1 (right), starting from
0 = ones(n).

It is worth noticing that the extended DWGM does not present a perfect monotonicity of {∥gk∥∞} in Fig. 3. This is
ecause Algorithm 1 is constructed to ensures monotonicity with respect to the Euclidean norm, not the sup-norm; if we
lot using {∥gk∥2}, these oscillations vanish.
Finally, we ran the methods starting from initial random points, and also for problems with z ij randomly generated

niformly in [−1, 1] and yi chosen between±1. In all tests, Algorithm 1 was superior. For these experiments with random
ata, SG-BB, ABBmin 1 and Dai–Kou methods do not present the typical oscillatory behavior of {∥gk∥∞}.

xperiment 5. Here we consider the minimization of

f̃ (x) =
1
2
x⊤Ax+

β

4

n∑
i=1

x4i

over the sphere S = {x ∈ Rn
| ∥x∥2 = 1}, where A is a Hermitian n × n matrix and β > 0 is a regularization parameter.

This problem is related to the discretization of the energy function in Bose–Einstein condensates (see [18]). In such a
problem, the data values are complex. In our case, however, we assume all data real and A positive definite. To transform
this problem into an unconstrained one, we penalize the constraint x⊤x = 1 leading to the function

f (x) =
1
2
x⊤Ax+

β

4

n∑
i=1

x4i +
ρ

2
(x⊤x− 1)2,

where ρ > 0 is a penalization parameter. We have

∇
2f (x) = A+ 3β diag(x2i )+ 4ρ xx⊤ + 2ρ(x⊤x− 1)I.

ote that ∇2f (x) ⪰ σ (x)I where

σ (x) = λmin(A)+ 3β min
i

x2i + 2ρ(x⊤x− 1).

hus, the smallest eigenvalue of the Hessian of f is greater or equal than λmin(A) for ∥x∥2 ≥ 1, but we do not have the
uarantee that ∇2f (x) remains positive definite for ∥x∥2 < 1. Nevertheless, at the desirable points x where ∥x∥2 ≈ 1, the

Hessian is positive definite.
We take ρ = 2×105 and, following [18], we set β = 500. We consider positive definite matrices from the University of

Florida Sparse Matrix Collection [19]. We select the matrices from the HB group with n ≤ 10, 000. The initial point is taken
as 1.1× v/∥v∥2, where v is the smallest eigenvector computed by the implicitly restarted Lanczos method implemented
in the package Arpack.jl (https://github.com/JuliaLinearAlgebra/Arpack.jl). This choice is justified by the fact that the
problem becomes an eigenvalue problem when β = 0. So, we aim to start the methods close to the minimizer, although
there is no guarantee that this is going to happen due to the presence of the quartic terms x4i .

For these experiments, we declare convergence when

∥∇f (xk)∥∞ ≤ 10−4

due to numerical difficulties in dealing with the terms βx4i /4. Also, we set the maximum number of outer iterations
to 100,000 for all methods. Algorithm 1 has computed a negative αk during the minimization process in 14 out of 54
problems. This indicates that the extended DWGM reaches a non-convexity region, where ∥x∥2 ≪ 1, and therefore these
problems were discarded. Additionally, other 7 problems were rejected because no method was able to solve them. So,
we considered 33 problems.
10

https://github.com/JuliaLinearAlgebra/Arpack.jl


R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525
Table 1
Computational results for Experiments 1 and 2.
Function n Method iter fbest ∥g∥∞ f evals g evals

SC2 1000 ABBmin 342 5.01E+04 9.59E−09 343 343
CG_DESCENT 424 5.01E+04 9.90E−09 1446 1023
DWGM 299 5.01E+04 9.76E−09 1 898
Dai–Kou 371 5.01E+04 9.61E−09 372 372
SG_BB 470 5.01E+04 7.23E−09 471 471

SC2 (rand 1) 1000 ABBmin 305 5.01E+04 8.67E−09 306 306
CG_DESCENT 423 5.01E+04 8.57E−09 1399 978
DWGM 431 5.01E+04 9.49E−09 1 1294
Dai–Kou 350 5.01E+04 9.56E−09 351 351
SG_BB 373 5.01E+04 4.85E−09 374 374

SC2 (rand 2) 1000 ABBmin 393 5.01E+04 6.39E−09 394 394
CG_DESCENT 448 5.01E+04 9.59E−09 1446 999
DWGM 361 5.01E+04 9.60E−09 1 1084
Dai–Kou 374 5.01E+04 9.77E−09 375 375
SG_BB 418 5.01E+04 1.08E−09 419 419

SC2 (rand 3) 1000 ABBmin 351 5.01E+04 9.46E−09 352 352
CG_DESCENT 416 5.01E+04 6.91E−09 1430 1015
DWGM 292 5.01E+04 9.87E−09 1 877
Dai–Kou 350 5.01E+04 9.64E−09 351 351
SG_BB 435 5.01E+04 7.60E−09 436 436

SC2 (rand 4) 1000 ABBmin 380 5.01E+04 4.29E−09 381 381
CG_DESCENT 461 5.01E+04 9.70E−09 1501 1041
DWGM 413 5.01E+04 9.26E−09 1 1240
Dai–Kou 406 5.01E+04 9.71E−09 407 407
SG_BB 490 5.01E+04 9.80E−09 491 491

SC2 (rand 5) 1000 ABBmin 315 5.01E+04 9.02E−09 316 316
CG_DESCENT 404 5.01E+04 9.83E−06 1371 968
DWGM 258 5.01E+04 9.98E−09 1 775
Dai–Kou 327 5.01E+04 9.85E−09 328 328
SG_BB 413 5.01E+04 7.23E−09 415 414

SC2 5000 ABBmin 568 1.25E+06 8.70E−09 571 569
CG_DESCENT 1203 1.25E+06 9.74E−09 4592 3390
DWGM 673 1.25E+06 9.83E−09 1 2020
Dai–Kou 839 1.25E+06 9.86E−09 840 840
SG_BB 1499 1.25E+06 2.62E−09 1529 1500

SC2 (rand 1) 5000 ABBmin 599 1.25E+06 9.31E−09 604 600
CG_DESCENT 1292 1.25E+06 9.70E−09 4820 3529
DWGM 1202 1.25E+06 9.95E−09 1 3607
Dai–Kou 898 1.25E+06 9.92E−09 899 899
SG_BB 1143 1.25E+06 5.73E−09 1154 1144

SC2 (rand 2) 5000 ABBmin 558 1.25E+06 8.17E−09 561 559
CG_DESCENT 1186 1.25E+06 9.69E−09 4549 3364
DWGM 651 1.25E+06 9.75E−09 1 1954
Dai–Kou 791 1.25E+06 9.93E−09 792 792
SG_BB 916 1.25E+06 4.85E−09 921 917

SC2 (rand 3) 5000 ABBmin 582 1.25E+06 7.48E−09 585 583
CG_DESCENT 1233 1.25E+06 9.54E−09 4564 3332
DWGM 1233 1.25E+06 9.89E−09 1 3700
Dai–Kou 860 1.25E+06 9.96E−09 861 861
SG_BB 954 1.25E+06 8.62E−09 977 955

SC2 (rand 4) 5000 ABBmin 723 1.25E+06 9.81E−09 726 724
CG_DESCENT 1319 1.25E+06 9.21E−09 4871 3553
DWGM 1154 1.25E+06 9.84E−09 1 3463
Dai–Kou 872 1.25E+06 9.70E−09 873 873
SG_BB 1474 1.25E+06 9.84E−09 1545 1475

SC2 (rand 5) 5000 ABBmin 637 1.25E+06 5.73E−09 639 638
CG_DESCENT 1280 1.25E+06 8.89E−09 4793 3514
DWGM 884 1.25E+06 9.99E−09 1 2653
Dai–Kou 823 1.25E+06 9.99E−09 824 824
SG_BB 912 1.25E+06 4.72E−09 926 913
11



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525
Table 2
Computational results for Experiment 4.
Function n Method iter fbest ∥g∥∞ f evals g evals

Logistic loss, 34 ABBmin 227 9.58E+01 6.56E−09 231 228
σ = 0 CG_DESCENT 180 9.58E+01 9.28E−09 430 268

DWGM 160 9.58E+01 8.85E−09 1 489
Dai–Kou 370 9.58E+01 8.14E−09 372 371
SG_BB 267 9.58E+01 9.95E−09 272 268

Logistic loss, 34 ABBmin 370 1.01E+05 7.44E−09 375 371
σ = 0.1 CG_DESCENT 319 1.01E+05 9.73E−09 773 486

DWGM 185 1.01E+05 9.96E−09 1 564
Dai–Kou 690 1.01E+05 9.90E−09 692 691
SG_BB 498 1.01E+05 5.67E−09 502 499

Logistic loss, 34 ABBmin 596 9.58E+01 9.96E−09 610 597
σ = 0.4 CG_DESCENT 762 9.58E+01 8.97E−09 2,162 1,541

DWGM 367 9.58E+01 7.62E−09 1 1,110
Dai–Kou 10,014 9.58E+01 9.89E−09 10,087 10,015
SG_BB 31,729 9.58E+01 9.96E−09 40,450 31,730

Fig. 4. Performance profile for the data of Table 3, where λmin(A) is large. On the left, we present a comparison based on the number of outer
iterations; and on the right, a comparison based on the number of gradient evaluations.

Tables 3 and 4 show the results. Column ‘‘st’’ stands for the resolution status: 0 for convergence and 1 for maximum
number of iterations reached. An asterisk indicates that an error has occurred. In column ‘‘λmin(A)’’ we report an estimation
of the smallest eigenvalue of A computed using the Arpack.jl package.

We separate tests by the magnitude of λmin(A). Algorithm 1 behaves very well in problems where the smallest
eigenvalue has an order of magnitude one or more (Table 3). In fact, this seems to be a favorable situation for the extended
DWGM, since ∇2f tends to be ⪰ σ I with a large constant σ on a wide set containing the solutions. As a consequence,
the step-sizes αk tends to be larger. In the results reported in Table 3, Algorithm 1 usually converges with much less
outer iterations, leading to a smaller overall number of gradient evaluations. We also note that Algorithm 1 converges
while other methods do not. As before, we emphasize that in the extended DWGM, f is evaluated only at the final
iteration to return the functional value at the solution. Fig. 4 brings the performance profiles [20] related to Table 3,
which were generated using the package BenchmarkProfiles.jl [21]. For these problems, it can be observed that
Algorithm 1 overcomes, on average, all other methods in terms of the number of outer iterations and the number of
gradient evaluations.

The scenario changes if λmin(A) is small (Table 4). Although this is not always the case, Algorithm 1 suffers to converge,
or it is not able to solve the problem. This is critical in problems where λmin(A) < 1. Notice that for all problems of Tables 3
and 4, the Euclidean norm of the final iterate x is approximately 0.99 or even 0.9999, except for bcsstk03 and bcsstk09,
where ∥x∥2 ≈ 0.923340 and ≈ 0.982075, respectively.

3.1. Tests with Algorithm 1 varying t

As we already mentioned in the end of Section 2, no Armijo line search is performed when t ≤ σ 2/L ≤ 1, where L is
the tightest Lipschitz constant associated with ∇r(x). This upper bound can probably be relaxed in view of item (iii) of
Theorem 2.2, which says that L can be exchanged for a constant Lr that acts only locally around the iterates xk (Eq. (2.4)).
Also, Theorem 2.3 says that for strictly convex quadratic functions, no line search is performed with t = 1. In view of our
numerical tests, where t = 1, we could ask if Algorithm 1 remains working without line search for t > 1.
12



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525

L

F

Fig. 5. Relation of outer iterations and the number of Armijo tests in the DWGM for different values of t .

We aim to evaluate the ambiguous effect of increasing t: on the one hand, αk tends to be reduced more times by the
Armijo line search, increasing the number of gradient evaluations; on the other hand, the number of outer iterations tends
to be smaller since larger steps are obtained. For this analysis, we selected the following previous experiments:

• SC2 function starting from x0 = (2, . . . , 2)⊤ (experiment 1);
• logistic loss function (3.2) constructed with Ionosphere data (experiment 4).

Let us bound σ 2/L for the SC2 function. In this case, the smallest eigenvalue of ∇2f is σ = 0.1 and

[∇r(x)]i =
(

i
10

)2

exi (exi − 1), i = 1, . . . , n.

The derivative of this expression in relation to xi is (i/10)2(2e2xi − exi ), which assumes the value (i/10)2 at xi = 0. So, the
ipschitz constant L for ∇r is at least (n/10)2. This implies that, for the SC2 function,

σ 2

L
≤

1
n2 ≪ 1. (3.3)

or function (3.2), this computation is more complicated and depends on the data y, z.
In Fig. 5 we plot the number of outer iterations performed by Algorithm 1 to declare convergence for different values

of t (solid lines). The dotted lines represent the number of times the Armijo condition (row 6 of Algorithm 1) has been
checked. For a better visualization, we cut extreme values of t . When solid and dotted lines are together, only one Armijo
test is made per iteration, and thus no line search is performed. Otherwise, separate lines indicate reductions in the
step-size α during the minimization process.

We observe that Algorithm 1 keeps working without line search until t ≈ 1.75 for the SC2 function. This value is much
higher than the bound (3.3). Also, note that the behavior is the same for n = 1000 and n = 5000, while (3.3) is different
for each case (10−3 for n = 1000 and 2× 10−4 for n = 5000). For the logistic loss function (3.2), the line search starts to
be activated before t = 1, but its use remains moderate until t ≈ 2.

Finally, we note that, as illustrated in Fig. 5, a very small t leads the extended DWGM to require more outer iterations.

3.2. Towards an effective hybrid strategy for general non-convex smooth functions

Our extension of DWGM to strongly convex functions decreases the gradient 2-norm q-linearly to zero. Besides, the
previous numerical tests indicate that it is effective to minimize different functions. So, we can expect this method to
work effectively near local isolated minimizers x∗ of non-convex functions, where ∇2f (x∗) is positive definite, since in
this case f is locally strongly convex.
13



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525
Table 3
Computational results for Experiment 5—matrices with large smallest eigenvalue.
Matrix n λmin(A) Method iter fbest ∥g∥∞ st f evals g evals

bcsstk01 48 3.42E+03 ABBmin 100,000 1.74E+03 8.70E+00 1 16,298,527 100,001
CG_DESCENT 12,367 1.74E+03 8.90E−05 0 50,679 44,778
DWGM 772 1.74E+03 8.15E−05 0 1 2,317
Dai–Kou * * * * * *
SG_BB 100,000 1.74E+03 4.28E−01 1 15,512,241 100,001

bcsstk03 112 2.94E+04 ABBmin 100,000 1.47E+04 5.21E+05 1 3,964,206 100,001
CG_DESCENT 61,585 1.42E+04 9.61E−05 0 2,182,236 2,170,022
DWGM 5,298 1.47E+04 9.97E−05 0 1 15,895
Dai–Kou 100,000 1.47E+04 3.42E+05 1 3,201,574 100,001
SG_BB 100,000 1.47E+04 2.20E+01 1 2,796,735 100,001

bcsstk06 420 4.61E+02 ABBmin 100,000 2.32E+05 3.70E−01 1 16,198,528 100,001
CG_DESCENT 11,846 2.32E+05 9.20E−05 0 38,717 32,706
DWGM 6,961 2.32E+05 1.00E−04 0 1 20,884
Dai–Kou * * * * * *
SG_BB 100,000 2.32E+05 6.72E−02 1 13,897,216 100,001

bcsstk07 420 4.61E+02 ABBmin 100,000 2.32E+05 4.28E−01 1 16,224,302 100,001
CG_DESCENT 11,420 2.32E+05 9.44E−05 0 37,350 31,527
DWGM 6,721 2.32E+05 9.97E−05 0 1 20,164
Dai–Kou * * * * * *
SG_BB 100,000 2.32E+05 3.50E−02 1 12,089,251 100,001

bcsstk08 1074 2.95E+03 ABBmin 100,000 1.49E+03 6.60E+00 1 4,884,570 100,001
CG_DESCENT 81,213 1.49E+03 9.70E−05 0 475,215 436,216
DWGM 49,097 1.49E+03 1.00E−04 0 1 147,292
Dai–Kou * * * * * *
SG_BB 100,000 1.49E+03 6.39E+00 1 4,821,927 100,001

bcsstk09 1083 7.10E+03 ABBmin 221 3.53E+03 8.88E−05 0 227 222
CG_DESCENT 8,572 3.52E+03 7.48E−05 0 461,395 461,277
DWGM 71 3.55E+03 9.93E−05 0 1 214
Dai–Kou 212 3.53E+03 9.28E−05 0 215 213
SG_BB 266 3.53E+03 9.86E−05 0 273 267

bcsstk10 1086 8.54E+01 ABBmin 14,255 4.46E+01 9.78E−05 0 14,600 14,256
CG_DESCENT 40,967 4.46E+01 9.40E−05 0 642,568 621,225
DWGM 19,352 4.46E+01 9.92E−05 0 1 58,057
Dai–Kou 30,545 4.46E+01 9.82E−05 0 103,713 30,546
SG_BB 89,617 4.46E+01 6.22E−05 0 109,361 89,618

bcsstk26 1922 9.54E+02 ABBmin 100,000 4.95E+05 2.75E+05 1 3,002,140 100,001
CG_DESCENT 73,319 4.95E+05 9.18E−05 0 309,999 271,875
DWGM 38,436 4.96E+05 1.00E−04 0 1 115,309
Dai–Kou 100,000 4.96E+02 2.86E+01 1 3,561,618 100,001
SG_BB 100,000 4.96E+05 3.32E+01 1 14,364,476 100,001

bcsstm19 817 1.69E+02 ABBmin 613 1.16E+05 8.71E−05 0 622 614
CG_DESCENT 1,036 1.16E+05 2.99E−05 0 55,483 55,429
DWGM 4,160 1.16E+05 8.39E−05 0 1 12,508
Dai–Kou 3,669 1.16E+05 8.95E−05 0 9,989 3,670
SG_BB 14,965 1.16E+05 9.30E−05 0 18,264 14,966

bcsstm20 485 1.87E+02 ABBmin 181 1.56E+05 3.77E−05 0 184 182
CG_DESCENT 1,679 1.56E+05 7.24E−05 0 92,930 92,876
DWGM 956 1.56E+05 8.76E−05 0 1 2,897
Dai–Kou 3,752 1.56E+05 8.33E−05 0 7,428 3,753
SG_BB 7,874 1.56E+05 9.42E−05 0 9,238 7,875

lund_a 147 8.00E+01 ABBmin 1,427 4.49E+01 9.28E−05 0 1,472 1,428
CG_DESCENT 1,485 4.49E+01 9.61E−05 0 5,413 4,628
DWGM 388 4.49E+01 9.94E−05 0 1 1,165
Dai–Kou 2,359 4.48E+04 8.69E−05 0 6,110 2,360
SG_BB 11,976 4.49E+01 4.99E−05 0 14,243 11,977

nos1 237 1.23E+02 ABBmin 100,000 6.40E+01 4.55E−01 1 2,589,828 100,001
CG_DESCENT 3,132 6.40E+01 9.81E−05 0 12,802 11,387
DWGM 646 6.40E+01 9.48E−05 0 1 1,939
Dai–Kou 100,000 6.40E+01 8.06E−01 1 4,931,890 100,001
SG_BB 100,000 6.40E+01 3.52E−02 1 1,850,983 100,001

nos2 957 3.08E+01 ABBmin 100,000 1.60E+01 6.62E−02 1 2,387,577 100,001
CG_DESCENT 100,000 1.60E+01 1.26E−01 1 325,260 275,413
DWGM 20,275 1.60E+01 1.00E−04 0 1 60,826
Dai–Kou 100,000 1.60E+01 5.40E−01 1 4,012,386 100,001
SG_BB 100,000 1.60E+04 6.92E−02 1 1,483,670 100,001
14



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525
Table 4
Computational results for Experiment 5—matrices with small smallest eigenvalue.
Matrix n λmin(A) Method iter fbest ∥g∥∞ st f evals g evals

1138_bus 1138 3.52E−03 ABBmin 1,581 1.12E−01 9.57E−05 0 1,648 1,582
CG_DESCENT 1,373 1.12E−01 9.48E−05 0 11,825 10,940
DWGM 6,737 1.12E−01 9.98E−05 0 1 20,253
Dai–Kou 4,330 1.12E−01 9.39E−05 0 4,407 4,331
SG_BB 1,248 1.12E−01 8.33E−05 0 1,463 1,249

662_bus 662 5.05E−03 ABBmin 525 1.92E−01 9.21E−05 0 552 526
CG_DESCENT 479 1.92E−01 8.79E−05 0 4,864 4,601
DWGM 100,000 1.92E−01 1.04E−03 1 1 300,153
Dai–Kou 1,313 1.92E−01 9.65E−05 0 1,344 1,314
SG_BB 521 1.92E−01 1.08E−05 0 544 522

685_bus 685 6.19E−02 ABBmin 2,283 2.26E−01 7.29E−05 0 2,318 2,284
CG_DESCENT 1,949 2.26E−01 9.31E−05 0 31,821 30,519
DWGM 87,335 2.26E−01 1.00E−04 0 1 262,007
Dai–Kou 3,270 2.26E−01 7.18E−05 0 3,340 3,271
SG_BB 1,676 2.26E−01 8.62E−05 0 1,925 1,677

bcsstk02 66 4.21E+00 ABBmin 255 5.03E+00 4.02E−05 0 261 256
CG_DESCENT 510 5.03E+00 9.57E−05 0 20,248 20,109
DWGM 15,238 5.03E+00 5.64E−07 0 1 45,715
Dai–Kou 679 5.03E+00 7.66E−05 0 685 680
SG_BB 270 5.03E+00 9.40E−05 0 276 271

bcsstk04 132 4.21E+00 ABBmin 2,370 5.03E+00 3.13E−05 0 2,477 2,371
CG_DESCENT 2,118 5.03E+00 9.51E−05 0 41,940 40,920
DWGM 2,192 5.03E+00 9.85E−05 0 1 6,577
Dai–Kou 3,089 5.03E+00 9.21E−05 0 5,497 3,090
SG_BB 18,199 5.03E+00 4.21E−05 0 21,987 18,200

bcsstk11 1473 2.96E+00 ABBmin 100,000 2.44E+00 4.02E−02 1 4,519,434 100,001
CG_DESCENT 100,000 2.44E+00 1.09E+00 1 320,008 254,311
DWGM 37,722 2.43E+00 9.99E−05 0 1 113,167
Dai–Kou * * * * * *
SG_BB 100,000 2.44E+00 1.83E−01 1 122,400 100,001

bcsstk12 1473 2.96E+00 ABBmin 100,000 2.43E+00 1.80E−02 1 10,403,286 100,001
CG_DESCENT 100,000 2.44E+00 9.95E−01 1 323,747 259,216
DWGM 37,774 2.43E+00 9.99E−05 0 1 113,323
Dai–Kou * * * * * *
SG_BB 100,000 2.46E+00 7.92E−02 1 122,719 100,001

bcsstk21 3600 7.21E+00 ABBmin 9,528 4.21E+00 9.25E−05 0 9,838 9,529
CG_DESCENT 39,440 4.21E+00 9.82E−05 0 133,136 109,947
DWGM 4,836 4.21E+00 1.00E−04 0 1 14,509
Dai–Kou 47,913 4.21E+00 9.99E−05 0 162,530 47,914
SG_BB 37,169 4.21E+03 1.00E−04 0 45,085 37,170

bcsstk28 4410 8.14E−01 ABBmin 100,000 5.06E−01 1.03E−02 1 1,325,301 100,001
CG_DESCENT 100,000 5.06E−01 3.32E−01 1 273,847 194,065
DWGM 82,076 5.05E−01 9.99E−05 0 1 246,229
Dai–Kou * * * * * *
SG_BB 100,000 5.17E−01 5.51E−02 1 124,051 100,001

bcsstm07 420 3.30E−01 ABBmin 9,451 1.13E+00 5.76E−05 0 9,585 9,452
CG_DESCENT 2,810 1.13E+00 8.43E−05 0 81,336 79,835
DWGM 97,466 1.13E+00 9.91E−05 0 1 336,288
Dai–Kou 4,726 1.13E+00 8.32E−05 0 5,012 4,727
SG_BB 1,759 1.13E+00 9.02E−05 0 2,125 1,760

bcsstm08 1074 1.75E−01 ABBmin 6 1.25E+02 2.12E−07 0 8 7
CG_DESCENT 4 1.25E+05 3.10E−10 0 13 10
DWGM 3 1.25E+05 4.07E−05 0 1 10
Dai–Kou 6 1.25E+02 2.12E−07 0 8 7
SG_BB 6 1.25E+02 2.12E−07 0 8 7

bcsstm11 1473 2.67E−04 ABBmin 44 1.04E+01 3.54E−07 0 48 45
CG_DESCENT 175 1.04E+01 4.71E−05 0 6,858 6,817
DWGM 636 1.04E+01 9.07E−06 0 1 3,496
Dai–Kou 200 1.04E+01 1.45E−05 0 223 201
SG_BB 52 1.04E+01 4.12E−05 0 76 53

bcsstm22 138 1.03E−05 ABBmin 15 6.25E+01 8.79E−08 0 18 16
CG_DESCENT 377 6.25E+01 2.90E−05 0 19,490 19,480
DWGM 36 6.25E+01 5.84E−07 0 1 190
Dai–Kou 50 6.25E+01 4.04E−05 0 53 51
SG_BB 21 6.25E+01 2.02E−08 0 28 22

(continued on next page)
15



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525

i
D
d
t
S
w

Table 4 (continued).
Matrix n λmin(A) Method iter fbest ∥g∥∞ st f evals g evals

bcsstm23 3134 8.74E−03 ABBmin 10 1.25E+05 4.91E−05 0 12 11
CG_DESCENT 4 1.25E+05 6.84E−07 0 13 10
DWGM 3 1.25E+05 4.07E−05 0 1 10
Dai–Kou 6 1.25E+05 2.12E−07 0 8 7
SG_BB 10 1.25E+05 4.91E−05 0 12 11

bcsstm26 1922 5.78E−06 ABBmin 6 1.25E+05 2.12E−07 0 8 7
CG_DESCENT 4 1.25E+05 3.21E−10 0 13 10
DWGM 3 1.25E+05 4.07E−05 0 1 10
Dai–Kou 6 1.25E+05 2.12E−07 0 8 7
SG_BB 6 1.25E+05 2.12E−07 0 8 7

gr_30_30 900 6.15E−02 ABBmin 106 2.22E−01 9.69E−05 0 114 107
CG_DESCENT 188 2.22E−01 7.73E−05 0 1,199 1,075
DWGM 7,103 2.22E−01 9.90E−05 0 1 40,685
Dai–Kou 503 2.22E−01 9.93E−05 0 524 504
SG_BB 76 2.22E−01 8.44E−05 0 114 77

nos3 960 1.83E−02 ABBmin 2,257 3.35E−01 8.17E−05 0 2,316 2,258
CG_DESCENT 1,106 3.35E−01 8.27E−05 0 26,665 26,026
DWGM 100,000 3.35E−01 4.59E−04 1 1 318,430
Dai–Kou 1,889 3.35E−01 7.26E−05 0 2,019 1,890
SG_BB 565 3.35E−01 9.22E−05 0 628 566

nos4 100 5.38E−04 ABBmin 61 1.40E+00 4.57E−05 0 66 62
CG_DESCENT 227 1.40E+00 2.42E−05 0 5,604 5,479
DWGM 3,961 1.40E+00 6.09E−05 0 1 22,270
Dai–Kou 560 1.40E+00 7.53E−05 0 585 561
SG_BB 94 1.40E+00 4.86E−05 0 134 95

nos7 729 4.15E−03 ABBmin 28,724 1.74E−01 3.51E−05 0 29,121 28,725
CG_DESCENT 11,653 1.74E−01 7.95E−05 0 33,196 23,501
DWGM 76,729 1.74E−01 9.96E−05 0 1 230,188
Dai–Kou 12,163 1.74E−01 9.94E−05 0 15,612 12,164
SG_BB 100,000 1.74E−01 6.99E−02 1 122,995 100,001

plat362 362 3.55E−12 ABBmin 423 3.85E−01 9.39E−05 0 456 424
CG_DESCENT 484 3.85E−01 8.34E−05 0 4,304 3,935
DWGM 21,204 3.85E−01 9.56E−05 0 1 119,987
Dai–Kou 1,627 3.84E−01 8.41E−05 0 1,778 1,628
SG_BB 241 3.85E−01 4.48E−05 0 474 242

To illustrate our expectation, we conduct some numerical tests with a simple scheme that hybridizes the extended
DWGM and ABBmin methods. ABBmin was chosen because it was the best gradient-type method in our previous tests.
So, we compare the following two strategies:

• pure ABBmin method with optimality tolerance ε = 10−8, that is, declaring convergence if ∥∇f (xk)∥∞ ≤ 10−8;
• start running ABBmin, and at the first iterate xk satisfying ∥∇f (xk)∥∞ ≤

√
10−8 = 10−4 (if found), switch to the

extended DWGM with optimality tolerance ε = 10−8.

The maximum number of iterations is set to 50,000 in both strategies, which has been the same maximum number of
iterations allowed to ABBmin and DWGM in our previous tests. The other parameters were the same used in the previous
experiments for each method.

The second strategy, which we will refer as ABBmin+DWGM, is a simple way to decide if we are close to a minimizer.
Evidently, there are more effective heuristics to do this, which should be carefully studied in future work. Nevertheless,
this simple hybrid scheme leads to encouraging results. Table 5 shows the comparison of the two above strategies on 38
selected unconstrained functions from the CUTEst collection, with number of variables between 50 and 2000. Columns
‘‘DWGM activation/iter, ∥g∥∞’’ show the iteration and the gradient norm at which Algorithm 1 is activated, respectively.
Column ‘‘ABBmin+DWGM/it total’’ is the number of ABBmin and extended DWGM iterations combined. Asterisks indicate
failure. It is worth noticing that when both strategies converges successfully (columns ‘‘st’’ equal to 0), they reached the
same functional value. In Fig. 6 we show the convergence history for some selected problems.

Although the extended DWGM fails on some problems, we can observe that ABBmin+DWGM generally needs fewer
iterations than ABBmin, especially for large-scale problems (compare columns ‘‘ABBmin/it’’ and ‘‘ABBmin+DWGM/it
total’’). Also, Algorithm 1 was able to solve two problems not solved by ABBmin, while for PENALTY3 the situation
s the opposite. In other 7 problems, namely DIAMON2DLS, DIAMON3DLS, DMN15102LS, DMN15103LS, DMN15333LS,
MN37143LS and MNISTS5LS, a negative αk was encountered during the extended DWGM execution, and thus they were
iscarded. This could be due to numerical instabilities in approximating Hkgk by (3.1), or because 10−4 is not small enough
o ensure an adequate initialization of the extended DWGM, or even because f is not locally strongly convex around x∗.
trategies to identify and escape from those situations must be considered in future work. Finally, we discard problems
here ABBmin never reaches ∥∇f (x )∥ ≤ 10−4, since in this case we do not switch to the extended DWGM.
k ∞

16



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525

s

q

Fig. 6. Convergence history of ABBmin and ABBmin+DWGM on CUTEst problems. The vertical axis stands for the gradient sup-norm in logarithmic
cale. The extended DWGM clearly speeds up the convergence for ARGTRIGLS, BA-L1SPLS, COATING, SPIN2LS and TOINTGOR. In particular, ABBmin
was not able to solve COATING. Both strategies behave similarly on problem GENROSE. For ERRINROS and SPINLS, ABBmin reaches the solution
uickly, turning the extended DWGM ineffective.
17



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525

e
n
p
e
p
a

p
c
a
e

Table 5
Computational results on CUTEst problems.
Problem n ABBmin ABBmin+DWGM

DWGM activation

∥g∥∞ iter st iter ∥g∥∞ ∥g∥∞ iter st it total

ARGLINB 200 5.05E−04 50,000 1 6 4.69E−05 * * * *
ARGLINC 200 1.63E−01 50,000 1 49 6.89E−05 * * * *
ARGTRIGLS 200 9.18E−09 2,116 0 1,054 6.34E−05 9.77E−09 275 0 1,329
BA-L1LS 57 3.83E−09 45 0 31 6.08E−05 6.17E−09 6 0 37
BA-L1SPLS 57 5.69E−09 97 0 71 9.21E−05 6.18E−09 11 0 82
BROWNAL 200 6.56E−02 50,000 1 5 1.50E−06 * * * *
CHNROSNB 50 4.98E−09 1,265 0 1,131 8.79E−05 8.92E−09 34 0 1,165
CHNRSNBM 50 8.80E−09 1,630 0 1,552 8.09E−05 7.89E−06 27 0 1,579
COATING 134 3.70E−06 50,000 1 7,146 9.69E−05 9.81E−09 7937 0 15,083
DMN15332LS 66 1.38E−09 42 0 40 2.33E−05 1.38E−09 1 0 41
EDENSCH 2000 9.10E−09 48 0 33 3.42E−05 7.31E−09 9 0 42
EG2 1000 7.34E−14 5 0 4 1.46E−06 1.48E−13 1 0 5
ERRINROS 50 4.09E−09 15,911 0 15,437 1.26E−05 9.96E−09 2224 0 17,661
FLETCHCR 1000 2.10E−09 325 0 281 3.61E−05 7.52E−09 22 0 303
GENROSE 500 9.79E−09 2,951 0 2,937 4.40E−05 8.88E−09 11 0 2,948
INTEQNELS 502 9.28E−10 9 0 5 1.19E−05 3.84E−09 3 0 8
LUKSAN11LS 100 5.63E−11 4,347 0 4,346 2.99E−05 2.19E−12 1 0 4,347
LUKSAN12LS 98 4.75E−09 443 0 308 5.06E−05 7.40E−09 25 0 333
LUKSAN13LS 98 3.35E−09 319 0 253 2.51E−05 3.59E−09 17 0 270
LUKSAN14LS 98 3.98E−09 249 0 175 5.98E−05 9.54E−09 25 0 200
LUKSAN15LS 100 2.72E−09 36 0 24 5.76E−05 6.69E−09 9 0 33
LUKSAN16LS 100 8.56E−09 43 0 29 3.42E−05 4.98E−09 9 0 38
LUKSAN17LS 100 9.02E−09 554 0 359 7.56E−05 9.93E−09 97 0 456
LUKSAN21LS 100 9.21E−09 1,248 0 1,028 6.74E−05 7.90E−09 113 0 1,141
LUKSAN22LS 100 1.09E−08 50,000 1 1,458 3.79E−05 9.83E−09 7528 0 8,986
MSQRTALS 1024 9.96E−09 8,355 0 1,076 8.36E−05 9.99E−09 3996 0 5,072
MSQRTBLS 1024 9.43E−09 5,287 0 885 9.74E−05 9.70E−09 2315 0 3,200
OSCIPATH 500 1.68E−09 15 0 9 1.30E−05 4.76E−09 5 0 14
PENALTY1 1000 8.13E−09 1,608 0 42 2.19E−05 9.40E−09 232 0 274
PENALTY2 200 8.28E−09 340 0 255 5.09E−05 9.01E−09 38 0 293
PENALTY3 200 9.37E−09 233 0 95 8.26E−05 * * * *
QING 100 1.08E−09 107 0 67 7.75E−05 5.26E−09 20 0 87
SENSORS 100 1.42E−09 252 0 251 1.50E−06 1.33E−09 1 0 252
SPIN2LS 102 1.00E−08 1,474 0 185 9.30E−05 7.40E−09 50 0 235
SPINLS 1327 7.46E−09 159 0 39 4.11E−05 8.32E−09 760 0 799
TOINTGOR 50 9.83E−09 237 0 137 8.52E−05 8.96E−09 49 0 186
TOINTPSP 50 8.55E−09 314 0 248 4.34E−05 5.04E−09 24 0 272
TOINTQOR 50 1.93E−11 79 0 41 6.08E−05 4.22E−09 14 0 55

4. Conclusions and future work

In this work, we developed an extension of DWGM for strongly convex functions. Under mild assumptions, we
stablished its global and q-linear convergence. Furthermore, we established that if the Lipschitz constant of the gradient
orm of the function and a uniform positive bound of the Hessian eigenvalues are known in advance, the new method
reserves the same convergence status without ever activating the line search globalization strategy. Our numerical
xperiments, on a variety of test problems, show that the new method is competitive and computationally efficient. In
articular, it outperforms state-of-the-art methods for solving large-scale regularized logistic regression problems that
ppear in machine learning applications.
Motivated by the obtained theoretical results and by the observed practical behavior on different strongly convex test

roblems, we should expect that the proposed new algorithm works effectively near local isolated minimizers of non-
onvex functions. The preliminary results, with a simple scheme to detect if the iterations are close to a local minimizer,
re encouraging; see Table 5 and Fig. 6. Hence, we believe that the use of the extended DWGM as a local search method
mbedded into a more robust hybrid globalization strategy is a promising topic for future research.
Another research topic is inspired by our numerical tests with t > 1 (Section 3.1). They indicate that, for moderate

values of t , the line search strategy rarely reduces the step-size during the convergence process of Algorithm 1. This could
be beneficial for some problems since larger step-sizes may reduce the number of iterations (this is illustrated in Fig. 5).
Thus, it can be a good strategy to adjust t > 0 heuristically considering the history of ∥∇f (x)∥2 and the number of recent
line search reductions of the step-size.
18



R. Andreani, H. Oviedo, M. Raydan et al. Journal of Computational and Applied Mathematics 416 (2022) 114525

B
(
G
t
U
s
3
s

R

Acknowledgments

The first author was financially supported by FAPESP, Brazil (Projects 2013/05475-7 and 2017/18308-2), CEPID-CeMEAI,
razil (FAPESP 2013/07375-0) and the National Council for Scientific and Technological Development – CNPq, Brazil
Projects 301888/2017-5 and 306988/2021-6). The second author was financially supported by FGV, Brazil (Fundação
etulio Vargas) through the excellence post-doctoral fellowship program. The third author was financially supported by
he Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the projects
IDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). The fourth author was financially
upported by FAPES (Fundação de Amparo à Pesquisa e Inovação do Espírito Santo) (grant 116/2019) and CNPq (Project
09136/2021-0). We would like to thank two anonymous referees and the Principal Editor for their comments and
uggestions that helped us to improve the final version of this paper.

eferences

[1] H. Oviedo, A delayed weighted gradient method for strictly convex quadratic minimization, Comput. Optim. Appl. 74 (2019) 729–746,
http://dx.doi.org/10.1007/s10589-019-00125-6.

[2] R. Andreani, M. Raydan, Properties of the delayed weighted gradient method, Comput. Optim. Appl. 78 (2021) 167–180, http://dx.doi.org/10.
1007/s10589-020-00232-9.

[3] D.P. Bertsekas, Convex Analysis and Optimization, Athena Scientific, Belmont, Massachusetts, 2003.
[4] J. Nocedal, S. Wright, Numerical Optimization, Springer Science & Business Media, New York, 2006.
[5] J. Barzilai, J.M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal. 8 (1988) 141–148, http://dx.doi.org/10.1093/imanum/8.1.141.
[6] M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM J. Optim. 7 (1) (1997)

26–33, http://dx.doi.org/10.1137/S1052623494266365.
[7] D. di Serafino, V. Ruggiero, G. Toraldo, L. Zanni, On the steplength selection in gradient methods for unconstrained optimization, Appl. Math.

Comput. 318 (2018) 176–195, http://dx.doi.org/10.1016/j.amc.2017.07.037, Recent Trends in Numerical Computations: Theory and Algorithms.
[8] G. Frassoldati, L. Zanni, G. Zanghirati, New adaptive stepsize selections in gradient methods, J. Ind. Manag. Optim. 4 (2008) 299–312,

http://dx.doi.org/10.3934/jimo.2008.4.299.
[9] B. Zhou, L. Gao, Y.-H. Dai, Gradient methods with adaptive step-sizes, Comput. Optim. Appl. 35 (1) (2006) 69–86, http://dx.doi.org/10.1007/

s10589-006-6446-0.
[10] Y. Dai, C. Kou, A Barzilai-Borwein conjugate gradient method, Sci. China Math. 59 (2016) 1511–1524, http://dx.doi.org/10.1007/s11425-016-

0279-2.
[11] H. Liu, Z. Liu, An efficient Barzilai–Borwein conjugate gradient method for unconstrained optimization, J. Optim. Theory Appl. 180 (2019)

879–906, http://dx.doi.org/10.1007/s10957-018-1393-3.
[12] W.W. Hager, H. Zhang, Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent, ACM Trans. Math. Software 32 (1)

(2006) 113–137, http://dx.doi.org/10.1145/1132973.1132979.
[13] W.W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods, Pac. J. Optim. 2 (1) (2006) 35–58.
[14] P.K. Mogensen, A.N. Riseth, Optim: A mathematical optimization package for Julia, J. Open Source Softw. 3 (24) (2018) 615, http://dx.doi.org/

10.21105/joss.00615.
[15] E.G. Birgin, J.M. Martínez, M. Raydan, Algorithm 813: SPG-software for convex-constrained optimization, ACM Trans. Math. Software 27 (3)

(2001) 340–349, http://dx.doi.org/10.1145/502800.502803.
[16] V.G. Sigillito, S.P. Wing, L.V. Hutton, K.B. Baker, Ionosphere, UCI Machine Learning Repository, 1988.
[17] V.G. Sigillito, S.P. Wing, L.V. Hutton, K.B. Baker, Classification of radar returns from the ionosphere using neural networks, Johns Hopkins APL

Tech. Dig. 10 (3) (1989).
[18] J. Hu, A. Milzarek, Z. Wen, Y. Yuan, Adaptive quadratically regularized Newton method for Riemannian optimization, SIAM J. Matrix Anal. Appl.

39 (3) (2018) 1181–1207, http://dx.doi.org/10.1137/17M1142478.
[19] T.A. Davis, Y. Hu, The university of Florida sparse matrix collection, ACM Trans. Math. Software 38 (1) (2011) http://dx.doi.org/10.1145/2049662.

2049663.
[20] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91 (2) (2002) 201–213, http://dx.doi.org/

10.1007/s101070100263.
[21] D. Orban, A.N. Riseth, E. Saba, T. Kelman, BenchmarkProfiles.jl: A simple Julia package to plot performance and data profiles, 2019, http:

//dx.doi.org/10.5281/zenodo.6214088, https://github.com/JuliaSmoothOptimizers/BenchmarkProfiles.jl.
19

http://dx.doi.org/10.1007/s10589-019-00125-6
http://dx.doi.org/10.1007/s10589-020-00232-9
http://dx.doi.org/10.1007/s10589-020-00232-9
http://dx.doi.org/10.1007/s10589-020-00232-9
http://refhub.elsevier.com/S0377-0427(22)00258-8/sb3
http://refhub.elsevier.com/S0377-0427(22)00258-8/sb4
http://dx.doi.org/10.1093/imanum/8.1.141
http://dx.doi.org/10.1137/S1052623494266365
http://dx.doi.org/10.1016/j.amc.2017.07.037
http://dx.doi.org/10.3934/jimo.2008.4.299
http://dx.doi.org/10.1007/s10589-006-6446-0
http://dx.doi.org/10.1007/s10589-006-6446-0
http://dx.doi.org/10.1007/s10589-006-6446-0
http://dx.doi.org/10.1007/s11425-016-0279-2
http://dx.doi.org/10.1007/s11425-016-0279-2
http://dx.doi.org/10.1007/s11425-016-0279-2
http://dx.doi.org/10.1007/s10957-018-1393-3
http://dx.doi.org/10.1145/1132973.1132979
http://refhub.elsevier.com/S0377-0427(22)00258-8/sb13
http://dx.doi.org/10.21105/joss.00615
http://dx.doi.org/10.21105/joss.00615
http://dx.doi.org/10.21105/joss.00615
http://dx.doi.org/10.1145/502800.502803
http://refhub.elsevier.com/S0377-0427(22)00258-8/sb16
http://refhub.elsevier.com/S0377-0427(22)00258-8/sb17
http://refhub.elsevier.com/S0377-0427(22)00258-8/sb17
http://refhub.elsevier.com/S0377-0427(22)00258-8/sb17
http://dx.doi.org/10.1137/17M1142478
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.5281/zenodo.6214088
http://dx.doi.org/10.5281/zenodo.6214088
http://dx.doi.org/10.5281/zenodo.6214088
https://github.com/JuliaSmoothOptimizers/BenchmarkProfiles.jl

	An extended delayed weighted gradient algorithm for solving strongly convex optimization problems
	Introduction
	Extension of DWGM for strongly convex functions
	Convergence analysis of Algorithm 1

	Numerical experiments
	Tests with Algorithm 1 varying t
	Towards an effective hybrid strategy for general non-convex smooth functions

	Conclusions and future work
	Acknowledgments
	References


