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Abstract
Jordan Algebras are an important tool for dealing with semidefinite programming 
and optimization over symmetric cones in general. In this paper, a judicious use of 
Jordan Algebras in the context of sequential optimality conditions is done in order to 
generalize the global convergence theory of an Augmented Lagrangian method for 
nonlinear semidefinite programming. An approximate complementarity measure in 
this context is typically defined in terms of the eigenvalues of the constraint matrix 
and the eigenvalues of an approximate Lagrange multiplier. By exploiting the Jordan 
Algebra structure of the problem, we show that a simpler complementarity measure, 
defined in terms of the Jordan product, is stronger than the one defined in terms of 
eigenvalues. Thus, besides avoiding a tricky analysis of eigenvalues, a stronger nec-
essary optimality condition is presented. We then prove the global convergence of 
an Augmented Lagrangian algorithm to this improved necessary optimality condi-
tion. The results are also extended to an interior point method. The optimality condi-
tions we present are sequential ones, and no constraint qualification is employed; in 
particular, a global convergence result is available even when Lagrange multipliers 
are unbounded.
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1  Introduction

Optimization problems on a symmetric cone have attracted a lot of attention in 
recent years. The reason for this is the fact that the non-negative orthant of ℝm , 
the second-order cone (Lorentz cone), and the positive semidefinite cone of sym-
metric matrices are examples of symmetric cones. The approach via symmetric 
cones allows unifying many results for all these relevant problems (see, e.g., 
[1]), but when particularizing for each specific cone, one may exploit the specific 
structure of the cone to obtain new results. In this paper we are particularly inter-
ested in the nonlinear semidefinite programming (NSDP) problem due to its large 
number of applications such as material optimization [2, 3], control theory [4, 5] 
and others [6–8].

Our goal in this paper is to consider the algebraic structure of NSDPs, via 
the Jordan product, to improve the global convergence result of an Augmented 
Lagrangian method for NSDPs. Typically, the global convergence is done proving 
that a feasible limit point of a sequence generated by the Augmented Lagrangian 
satisfies the KKT conditions under Robinson’s constraint qualification (RCQ) (or 
Mangasarian-Fromovitz constraint qualification, in the context of nonlinear pro-
gramming). However, in [9], it was shown that such feasible limit points satisfy 
the so-called Approximate-KKT (AKKT) necessary optimality condition, which 
is a strictly stronger result. In particular, the dual sequence generated by the algo-
rithm may be unbounded, which is ruled out when RCQ is assumed.

In the context of nonlinear programming, several constraint qualifications weaker 
than RCQ were defined such that a point satisfying AKKT is in addition a KKT 
point. These have been called strict constraint qualifications, which gives new global 
convergence results to KKT points under weaker constraint qualifications. This has 
been a fruitful area of research in the past 10 years, where several constraint qualifi-
cations have been defined for this purpose. See, for instance, [10, 11].

One may say that weaker constraint qualifications, such as Abadie’s [12] or Guig-
nard’s [13] conditions, also imply the validity of the KKT conditions at solutions, 
even though they are not strict. This is true; however, the importance of sequential 
optimality conditions such as AKKT is not simply theoretical, as they are linked 
to the fact that the sequences in its definition can be typically generated by several 
primal-dual algorithms. In the context of nonlinear optimization, for instance, linear 
constraints satisfy a strict constraint qualification, hence there is no need for a sepa-
rate analysis of degenerate linear constraints. Even when the KKT conditions do not 
hold, one may say that sequential optimality conditions give an important notion of 
stationarity; this is true in particular for a class of problems where derivatives are 
absent at the solution [14] and approximate KKT conditions are the only notion of 
stationarity available. Extensions of these ideas to several classes of problems have 
been conducted (such as Nash equilibria [15], variational inequalities [16], quasi-
equilibrium problems [17], complementarity constraints [18], Banach spaces [19], 
among others), together with extensions to second-order KKT conditions [20, 21].

In [9], an Augmented Lagrangian method inspired by [22] was analyzed 
in the context of NSDPs; however, we expect that several other algorithms 
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generate sequences that satisfy sequential optimality conditions such as AKKT. 
For instance, for nonlinear optimization, Interior Point methods [23], Inexact 
Restoration methods [24], Sequential Quadratic Programming methods [25], and 
others. See [23]. For NSDPs, a Sequential Quadratic Programming method in 
[26] was also shown to satisfy the AKKT optimality condition.

In this paper, we present an improvement of the global convergence of the Aug-
mented Lagrangian method for NSDP from [9]. We prove that by using the structure 
of the Jordan product, inherent to the semidefinite cone, one may measure comple-
mentarity in a simpler and stronger way. This follows a previous work done in [27] 
where, similarly, the structure of the Jordan product was exploited in an Augmented 
Lagrangian algorithm for nonlinear second-order cone programming. We also show 
that the Interior Point method from [28] satisfies this stronger optimality condition.

This paper is organized as follows. In Sect. 2 we present some basic ideas about 
symmetric cones that can be seen in details in [29], and we prove that the new opti-
mality condition is stronger than AKKT in the context of NSDP. A discussion for 
general symmetric cones is also presented. In Sect. 3 we show the improved global 
convergence result of an Augmented Lagrangian method and an Interior Point 
method for NSDPs. We conclude with our final remarks.

2 � Complementarity measures on symmetric cones

Let us consider the nonlinear optimization problem over a symmetric cone below

where f ∶ ℝ
n
→ ℝ and g ∶ ℝ

n
→ E  are continuously differentiable functions, E  is 

a finite dimensional real inner product space and K ⊆ E  is a symmetric cone, that 
is, a self-dual, homogeneous cone with non-empty interior. It is well known that 
K  induces an Euclidean Jordan Algebra (E, ◦) such that K = {u◦u ∶ u ∈ E} , where 
◦ ∶ E × E → E  is a bilinear operator such that: 

1.	 u◦v = v◦u,
2.	 u◦(u2◦v) = u2◦(u◦v),
3.	 ⟨u◦v,w⟩ = ⟨u, v◦w⟩ for all u, v,w ∈ E ,

where u2 = u◦u and ⟨⋅, ⋅⟩ is the inner product of E .
It is well known that the most relevant symmetric cones are the Car-

tesian product of semidefinite cones �
m
+
⊂ �

m , or second-order cones 
Km ∶= {z = (z0, z) ∈ ℝ ×ℝ

m−1 ∶ z0 ≥ ‖z‖} ⊂ ℝ
m . Here, �m denotes the set of 

m × m real symmetric matrices and �m
+

 denotes the semidefinite ones, while ‖ ⋅ ‖ 
is the Euclidean norm. When m = 1 , both cones reduce to the set of non-negative 
real numbers ℝ+ . In the case of the semidefinite cone �m

+
 , the Jordan product is 

given by X◦Y = (XY + YX)∕2,X, Y ∈ �
m whereas in the case of the second-order 

cone Km , the Jordan product is given by z◦w = (⟨z,w⟩, z0w + w0z), z,w ∈ ℝ
m . 

Minimize
x∈ℝn

f (x),

subject to g(x) ∈ K, (NSCP)
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When m = 1 , both products reduce to the usual multiplication of real numbers. 
Note that the Jordan product over a Cartesian product of Jordan algebras can be 
defined componentwise. Similarly for the inner product. In particular, a Jordan 
product associated with the symmetric cone ℝm

+
 is the Hadamard product. We 

refer the reader to [29] and [30] for more details on Euclidean Jordan Algebras 
and symmetric cones. In particular, an important tool is the spectral decomposi-
tion theorem below. To state it, let r be the rank of (E, ◦) and e its unity. A Jordan 
frame is a set of idempotents {c1,… , cr} ⊂ E  , that is, c2

i
= ci for all i, such that 

ci◦cj = 0 for all i ≠ j and 
∑r

i=1
ci = e.

Theorem 1  (Theorem III.1.2 in [29]) For every u ∈ E  , there exists a Jordan frame 
{c1(u),… , cr(u)} and so-called eigenvalues �1(u),… , �r(u) ∈ ℝ such that 
u =

∑r

i=1
�i(u)ci(u) . The decomposition is unique in the sense that if u =

∑r

i=1
�ici 

with a Jordan frame {c1,… , cr} , and {�i} , {�i(u)} are chosen in increasing order, 
then �i = �i(u) for all i and 

∑
{j∶�j=�}

cj =
∑

{j∶�j=�}
cj(u) , for all � ∈ ℝ . Also, fixing 

the ordering, the eigenvalues are continuous functions of u.

In [27], the following necessary optimality conditions for (NSCP) was 
proved. Let us denote the Lagrangian function of (NSCP) by L(x,�) , where 
(x,�) ∈ ℝ

n ×K → L(x,�) ∶= f (x) − ⟨g(x),�⟩.

Theorem 2  ( [27]) Let x∗ ∈ ℝ
n be a local minimizer of (NSCP). Then, there exists a 

primal sequence {xk} ⊂ ℝ
n, xk → x∗ , and a dual sequence {𝜇k} ⊂ K  such that

where �k
i
=
∑r

i=1
�i(�

k
i
)ci(�

k) and g(x∗) =
∑r

i=1
�i(g(x

∗))ci(g(x
∗)) are spectral 

decompositions.

When the cone K  in (NSCP) is the product of second-order cones (what we 
refer as nonlinear second-order cone programming (NSOCP)), an Augmented 
Lagrangian method was proposed in [27] such that its feasible limit points satisfy 
the optimality condition given in Theorem 2. In particular, when a feasible point 
x∗ admits the existence of a sequence {(xk,𝜇k)} ⊂ ℝ

n ×K  with xk → x∗ such that 
(1), (2), and (3) hold, we say that x∗ satisfies the Approximate-KKT (AKKT) nec-
essary optimality condition, whereas when the sequence is such that only (1) and 
(4) hold, x∗ is said to satisfy the Complementarity-AKKT (CAKKT) necessary 
optimality condition.

(1)∇xL(xk,�k) → 0,

(2)𝜆i(g(x
∗)) > 0 ⇒ 𝜆i(𝜇

k
i
) → 0, for all i = 1,… , r,

(3)ci(�
k) → ci(g(x

∗)), for all i = 1,… , r,

(4)g(xk)◦�k
→ 0,
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These are extensions of necessary optimality conditions well known in nonlinear 
programming. Condition AKKT was introduced in [10] while CAKKT was intro-
duced in [31]. We note that these are genuine necessary optimality conditions with-
out the need of assuming a constraint qualification. In fact, they are strictly stronger 
than Fritz-John’s necessary optimality condition.

In the context of nonlinear programming, the fact that CAKKT implies AKKT 
follows trivially from the spectral decomposition of x ∈ ℝ

m as x =
∑m

i=1
xiei , where 

xi ∈ ℝ is the i-th component of x and ei is the i-th vector of the canonical basis, and 
from the fact that the Jordan product resumes to the Hadamard product.

In the context of NSOCPs it was proved in [27] that CAKKT also implies AKKT. 
In this case, a spectral decomposition of z ∈ ℝ

m is given by 
z = �−(z)c−(z) + �+(z)c+(z) , where �±(z) ∶= z0 ± ‖z‖ and c±(z) ∶= 1∕2(1,±

z

‖z‖ ) , 
when z ≠ 0 , and when z = 0 , the term z

‖z‖ can be replaced by any unit norm vector. 
In particular, it was shown in [27] that the convergence of the Jordan product (4) 
implies the convergence of the Jordan frames (3) in reverse order, namely, 
c±(�

k) → c∓(g(x
∗)).

Let us now show that CAKKT also implies AKKT in the context of nonlinear 
semidefinite programming (NSDP). A discussion of CAKKT in this context was 
considered in [9] but no adequate definition was available. Here, the spectral decom-
position coincides with the usual spectral decomposition of symmetric matrices, 
where the Jordan frame {ci(X)} of X ∈ �

m is given by ci(X) ∶= qi(X)qi(X)
T , where 

{qi(X)} forms a basis of ℝm of orthonormal eigenvectors of X. We consider a single 
semidefinite cone for simplicity of notation.

Theorem 3  If K = �
m
+
 then CAKKT implies AKKT.

Proof  Let x∗ be a CAKKT point, that is, there exist {xk} ⊂ ℝ
n and {𝜇k} ⊂ �

m
+
 such 

that xk → x∗ , ∇xL(xk,�k) → 0 , and

Consider the following decomposition

where �k
i
∶= �i(�

k) and vk
i
 such that ci(�k) = vk

i
(vk

i
)T denote the eigenvalues and the 

unitary eigenvectors of �k , respectively, for all i = 1,… ,m . Given K′ ⊂ ℕ an infinite 
set, let us define

Let us fix K maximal in the sense that |�K
0
| is maximum. Thus,

2g(xk)◦�k = g(xk)�k + �kg(xk) → 0.

(5)�k =

m∑

i=1

�i(�
k)ci(�

k),

�K�

0
= {i | lim

k∈K�
�k
i
= 0}.

(6)j ∉ 𝛬K
0
⇒ lim inf

k∈K
𝜆k
j
> 0,



	 R. Andreani et al.

1 3

otherwise we could take a subsequence with indexes in K in order to increase the 
cardinality of �K

0
 . In this sense, �K

0
 “captures′′ all eigenvalues of �k that converge to 

zero. This allows us to define a new sequence of multipliers {𝜇̃k}k∈K as follows: for 
each k ∈ K , we take the decomposition (5) of �k given by

Defining 𝜇̃k = SkD̃kS
T
k
 , k ∈ K , where

is the eigenvalue matrix obtained from Dk making equal to zero the diagonal ele-
ments that converge to zero. Note that, 𝜇̃k ∈ �

m
+
 , limk∈K(D̃k − Dk) = 0 and hence,

Also note that the same vk
1
,… , vk

m
 are the eigenvectors of 𝜇̃k ( k ∈ K ), associated with 

eigenvalues �k
j
 , j ∉ �K

j
 , and zero for j ∈ �K

0
.

If �K
0
≠ ∅ , take j ∉ �K

0
 . Let us show that the accumulation points of eigenvector 

sequences vk
j
 of 𝜇̃k associated with �k

j
 are eigenvectors of g(x∗) associated with zero. 

In this sense, it is possible to decompose g(x∗) so that 𝜆j(g(x∗)) > 0 ⇒ 𝜆j(𝜇̃
k) →k∈K 0 

worth for these indexes j, and also for the pairing of these eigenvectors.
For each k ∈ K , consider (�k

j
, vk

j
) of 𝜇̃k . Equation (7) gives us

Since 𝜆k
j
I + 𝜇̃k − 1∕2(lim infl∈K 𝜆l

j
)I ∈ �

m
+
 and 1∕2(lim infl∈K �l

j
)I is positive definite 

for all k ∈ K large enough, we have limk∈K g(xk)vk
j
= 0 . Thus, (0, v∗

j
) is a pair of 

eigenvalue and eigenvector of g(x∗) where v∗
j
 is any point of accumulation of the unit 

sequence {vk
j
}k∈K.

The above argument holds true for all j ∉ �K
0

 . Let us consider for simplicity that 
�K

0
= {d + 1,… ,m} . Let us take K1 ⊂ K so that limk∈K1

vk
1
= v∗

1
 ; K2 ⊂ K1 so that 

limk∈K2
vk
2
= v∗

2
 ; and so on until Kd . Note that vk

i
vk
j
= 0 for all k ∈ Kd , i ≠ j , and then 

v∗
i
v∗
j
= 0 . Thus, we build an orthonormal set of eigenvectors

obtained as limits of eigenvectors of 𝜇̃kassociated with eigenvalues with indexes out 
of �K

0
  which is also an orthonormal set of eigenvectors of g(x∗) associated to zero. 

This provides the pairing of the eigenvectors of 𝜇̃k e g(x∗) required in AKKT for 
indices j ∉ �K

0
.

We will now build a complete and paired basis of eigenvectors for g(x∗) . The fol-
lowing argument serves the case �K

0
= �.

V+ can be completed to an orthonormal basis of ℝm by taking eigenvector limits 
not only on their first d (those with indexes outside �K

0
 ), but on

�k = SkDkS
T
k
.

(D̃k)ij =

{
0, i = j ∈ 𝛬K

0

(Dk)ij, otherwise

(7)
2g(xk)◦𝜇̃k = 2g(xk)◦𝜇k + g(xk)Sk(D̃k − Dk)S

T
k
+ Sk(D̃k − Dk)S

T
k
g(xk) →k∈K 0.

[g(xk)𝜇̃k + 𝜇̃kg(xk)]vk
j
= (𝜆k

j
I + 𝜇̃k)(g(xk)vk

j
) →k∈K 0.

V+ = {v∗
1
,… , v∗

d
}
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in a construction similar to the previous one. This does not affect the previous dis-
cussion as it does not depend on the accumulation points we take. Let us say that 
a subsequence Km ⊂ K is obtained in this way. Each set {v∗

1
,… , v∗

d
, v∗

d+1
,… , v∗

m
} 

obtained in this way will be orthonormal. Note that it is trivial that

for j ∈ �K
0

 , since �k
j
= 0 for all k ∈ Km and all j ∈ �K

0

It remains to be shown that the pairing of eigenvectors is possible. We will show 
that, completing a basis of eigenvectors of g(x∗) from eigenvectors in V+ , associated 
with null eigenvalues, we managed to change the eigenvector basis (8) of the 𝜇̃k ’s 
correspondingly.

If for some �K
0
∋ j ≥ d + 1 we have lim infk∈Km

g(xk)vk
j
= 0 , then we extract a sub-

sequence if necessary to conclude that (0, v∗
j
) is an eigenvalue and eigenvector pair 

of g(x∗) . The remaining case is when ‖g(xk)vk
j
‖ ≥ c > 0 , ∀k ≫ 1 , k ∈ Km . Suppose 

without loss of generality that this occurs with eigenvectors v∗
r
,… , v∗

m
 , r ≥ d + 1 . Let 

ṽ∗
r
,… , ṽ∗

m
 be unitary eigenvectors of g(x∗) associated with positive eigenvalues, 

taken in a way that

is an orthonormal basis of ℝm (which is possible since we can take vectors succes-
sively in each orthogonal autospace, and orthonormalize them). In particular, each 
ṽ∗
j
 , j ≥ r , is combination of v∗

r
,… , v∗

m
 , that is,

For each k ∈ Km we define

(�j

i
 ’s are constants here). Note that, for j ∈ �K

0
 , in particular j ≥ r , (0, vk

j
) is a pair of 

eigenvalue and eigenvector 𝜇̃k and then

That is, for j ≥ r , we have (0, ṽk
j
) a pair of eigenvalue and eigenvector of 𝜇̃k . 

Moreover,

(8){vk
1
,… , vk

d
, vk

d+1
,… , vk

m
},

𝜆j(g(x
∗)) > 0 ⇒ 𝜆j(𝜇̃

k) →k∈Kn
0

{v∗
1
,… , v∗

d
,… , v∗

r−1
, ṽ∗

r
,… , ṽ∗

m
}

ṽ∗
j
=

m∑

i=r

𝛼
j

i
v∗
i
.

ṽk
j
∶=

m∑

i=r

𝛼
j

i
vk
i

𝜇̃kṽk
j
=

m∑

i=r

𝛼
j

i
(𝜇̃kvk

i
) = 0.

(vk
l
)T ṽk

j
=

m∑

i=r

𝛼
j

i
[(vk

l
)Tvk

i
] = 0
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for all l < r and k ∈ Km , and

for all l ≥ r and k ∈ Km . We can then replace the basis (8) of eigenvectors of 𝜇̃k by 
its other orthonormal basis of eigenvectors

Pairing eigenvectors with indexes j = r,… ,m follows from the convergence

 

It is somewhat surprising that (4) is enough to ensure (2) and (3) in the context 
of semidefinite programming. Note that (3) is needed in order for (2) to make 
sense, since (3) provides a correspondence of the eigenvalues of the Lagrange 
multipliers with the eigenvalues of the constraint function.

Let us show that when (3) holds with an additional continuity property of the 
Jordan frame, we may provide a simple proof of this implication for general sym-
metric cones.

Theorem 4  Let K ⊆ E  be a symmetric cone and x∗ ∈ K  satisfying CAKKT with a 
primal-dual sequence {(xk,�k)} . Let us assume that there is a way of ordering the 
idempotents of {g(xk)} and {�k} such that

Then AKKT also holds.

Proof  We have

Given p = 1,… , r , we take the inner product with cp(�k) . Since

and using the properties of the Jordan frame, we arrive at

(ṽk
l
)T ṽk

j
=

(
m∑

i=r

𝛼l
i
(vk

i
)T

)(
m∑

p=r

𝛼j
p
vk
p

)
=

m∑

i=r

𝛼l
i
𝛼
j

i
= (ṽ∗

l
)T ṽ∗

j
=

{
1, l = j

0, l ≠ j

{vk
1
,… , vk

d
,… , vk

r−1
, ṽk

r
,… , ṽk

m
}.

lim
k∈Km

ṽk
j
= ṽ∗

j
.

(9)ci(�
k) → ci(g(x

∗)), for all i = 1,… , r,

(10)ci(g(x
k)) → ci(g(x

∗)), for all i = 1,… , r.

g(xk)◦�k =

r∑

i=1

r∑

j=1

�i(g(x
k))�j(�

k)ci(g(x
k))◦cj(�

k) → 0.

⟨ci(g(xk))◦cj(�k), cp(�
k)⟩ = ⟨ci(g(xk)), cj(�k)◦cp(�

k)⟩
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That is, �p(�k)⟨g(xk), cp(�k)⟩ → 0. Let us take p such that 𝜆p(g(x∗)) > 0 . Since

�i(g(x
k)) → �i(g(x

∗)) , and ⟨ci(g(xk)), cp(�k)⟩ → 0 if i ≠ p and converges to

otherwise, we arrive at ⟨g(xk), cp(𝜇k)⟩ → 𝜆p(g(x
∗))‖cp(g(x∗))‖2 > 0 . This implies 

that �p(�k) → 0 and AKKT follows.  	�  ◻

The following example shows that this extra assumption may not hold in general.

Example 1  Let us consider the sequence of matrices g(xk) ∶=
(
1∕k 1∕k

1∕k 1∕k

)
 and 

�k ∶=

(
1 0

0 0

)
 . Then,

Computing the spectral decompositions we have:

Thus, since c1(g(xk)), c2(g(xk)), c1(�k), c2(�
k)) are different constant vectors, it is not 

the case that (9) and (10) hold together, although the decomposition of g(x∗) may be 
chosen such that one of these limits holds.

Finally, we end this section with a discussion of the relation of CAKKT with the 
optimality condition Trace-AKKT (TAKKT) introduced in [9] as a tentative to avoid 
the eigenvalue computation in AKKT. A feasible point x∗ ∈ ℝ

n of (NSCP) with 
K = �

m
+
 satisfies TAKKT when there are sequences {(xk,𝜇k)} ⊂ ℝ

n × 𝕊
m
+
, xk → x∗, 

such that (1) holds and the complementarity condition (4) of CAKKT is replaced by 
⟨g(xk),�k⟩ → 0. In [27], the relation of AKKT and TAKKT was clarified as being 
independent conditions. However, CAKKT is strictly stronger than both conditions 
in this context. To see this, it is sufficient to see that ⟨g(xk),�k⟩ = Tr(g(xk)◦�k) , 
where Tr(⋅) denotes the trace operator. Since CAKKT implies both TAKKT and 
AKKT, being the latter conditions independent [27, Example 3.1], it must be the 
case that CAKKT is strictly stronger than both conditions.

r�

i=1

�p(�
k)�i(g(x

k))⟨ci(g(xk)), cp(�k)⟩ → 0.

⟨g(xk), cp(�k)⟩ =
r�

i=1

�i(g(x
k))⟨ci(g(xk)), cp(�k)⟩,

‖cp(g(x∗))‖2 > 0

2g(xk)◦�k =

(
2∕k 1∕k

1∕k 0

)
→ 0.

g(xk) =(2∕k)

�
1∕

√
2

1∕
√
2

�
(1∕

√
2, 1∕

√
2) + 0

�
1∕

√
2

−1∕
√
2

�
(1∕

√
2,−1∕

√
2)

�k =1

�
1

0

�
(1, 0) + 0

�
0

1

�
(0, 1).
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Note that the Sequential Quadratic Programming algorithm [26] and the Augmented 
Lagrangian method [9] generate sequences whose feasible limit points satisfy both 
AKKT and TAKKT, where in [9] an additional smoothness assumption is needed for 
the TAKKT result, which we will describe in the next section.

3 � Extended global convergence of an Augmented Lagrangian 
algorithm and a primal‑dual interior point method

An important use of sequential optimality conditions are their ability to improve global 
convergence of algorithms. In NLP, it is well-known that relevant algorithms such as 
Augmented Lagrangian, Sequential Quadratic Programming, Interior Point methods 
and others have their global convergence results improved by sequential optimality 
conditions [23]. In [26], the authors prove that a stabilized Sequential Quadratic Pro-
gramming method for NSDPs generates AKKT and TAKKT sequences. The result was 
extended to CAKKT in [32]. In this section, we will improve the global convergence 
of the Augmented Lagrangian method proposed in [9] for NSDPs and of a primal-dual 
interior point method proposed in [28] for NSDPs showing that both generate CAKKT 
sequences. This extends to NSDPs these known results in nonlinear programming [21, 
31] and, in the case of the Augmented Lagrangian method, nonlinear second-order 
cone programming [27].

3.1 � Augmented Lagrangian

In order to improve global convergence results for the Augmented Lagrangian algo-
rithm, let us recall the definition of the algorithm. We use [A]+ to denote the projection 
of A ∈ �

m onto �m
+
 . Given a penalty parameter 𝜌 > 0 , the Powell-Hestenes-Rockafel-

lar Augmented Lagrangian function L� ∶ ℝ
n × 𝕊

m
+
→ ℝ

n for problem (NSCP) when 
K = �

m
+
 is given by

where x ∈ ℝ
n , � ∈ �

m
+
 , and [⋅]+ is the orthogonal projection onto �m

+
 . The partial 

derivative with respect to x is given by

where Dg(x)∗ is the adjoint of the derivative operator Dg(x) ∶ ℝ
n
→ 𝕊

m . The formal 
definition of the algorithm is given in Algorithm 1.

(11)L�(x,�) = f (x) +
1

2�
{‖[� − �g(x)]+‖2 − ‖�‖2},

(12)∇L�(x,�) = ∇f (x) − Dg(x)∗[� − �g(x)]+,
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Similarly to the previously known cases [9, 27, 31], the proof is based on the 
assumption below. This is a weak assumption on the smoothness of the function 
g. See [31].

Assumption 1  All feasible points x∗ ∈ ℝ
n that are limit points of {xk} generated by 

Algorithm 1 satisfy the generalized Lojasiewicz inequality below, that is, there exist 
𝛿 > 0 and a continuous function � ∶ B(x∗;�) → ℝ,

with �(x) → 0 when x → x∗ and

where P(x) is the square of the Frobenius norm of [−g(x)]+ and B(x∗;�) is the Euclid-
ean ball of radius � around x∗.

In [9], the authors proved that the Augmented Lagrangian algorithm tends 
to find feasible points in the sense that all limit points are stationary points of 
the problem of minimizing P(x). Now let us show that Algorithm  1 generates 
CAKKT sequences.

Theorem 5  Let Assumption 1 hold. If x∗ ∈ ℝ
n is a feasible limit point of a sequence 

{xk} generated by Algorithm 1, then x∗ satisfies CAKKT.

Proof  By item (i) of Algorithm 1 and �k → 0 we have that

where 𝜇k = [𝜇̄k − 𝜌kg(x
k)]+ . It remains to prove that 

2g(xk)◦�k = g(xk)�k + �kg(xk) → 0. We will consider two cases: when �k → +∞ 
and when the sequence {�k} is bounded. 

�P(x) − P(x∗)� ≤ �(x)‖∇P(x)‖, ∀x ∈ B(x∗;�)

(13)∇f (xk) − Dg(xk)∗[𝜇̄k − 𝜌kg(x
k)]+ → 0,
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	 (i)	 Assuming that �k → +∞ , let us first prove that g(xk)�k
→ 0. Consider the fol-

lowing spectral decomposition 

 where Sk is an orthogonal matrix and Dk is a diagonal matrix with all eigen-
values of 

(
𝜇̄k

𝜌k
− g(xk)

)
 . Thus, we have that 

 Since g(xk) =
𝜇̄k

𝜌k
+ SkDkS

T
k
 we have 

 Note that 𝜇̄kSk[Dk]+S
T
k
= 𝜇̄k

[
𝜇̄k

𝜌k
− g(xk)

]

+

→ 0. Then, it is necessary to 

show only that 

 where �k
i
, i = 1,… ,m are the diagonal elements of Dk with correspondent 

column sk
i
 of Sk . Since Sk are orthogonal matrices for all k, there exists a sub-

sequence of {Sk} that converges to some orthogonal matrix S. Hence, it is 
enough to show that �k�ki [�

k
i
]+ → 0. This follows from the proof of [9, Theo-

rem 4.2], where Assumption 1 is used to ensure that �k[�ki ]
2
+
→ 0 , which is 

essential to complete the proof.
	 (ii)	 Supposing now that {�k} is bounded, that is, there exists k0 such that for k ≥ k0 

t h e  p e n a l t y  p a r a m e t e r  �k  r e m a i n s  u n ch a n ge d .  S i n c e 

Vk =

[
𝜇̄k

𝜌k0

− g(xk)

]

+

−
𝜇̄k

𝜌k0

→ 0 and {𝜇̄k} is bounded, one can take a subse-

quence such that 𝜇̄k converges to some � ∈ �
m
+
 with 

 Considering the spectral decomposition 𝜇̄k − 𝜌k0g(x
k) = SkDkS

T
k
 with Sk → S 

and Dk → D , we have that 

 Hence, 

𝜇̄k

𝜌k
− g(xk) = SkDkS

T
k
,

𝜇k = [𝜇̄k − 𝜌kg(x
k)]+ = 𝜌kSk[Dk]+S

T
k
.

(14)g(xk)𝜇k =

(
𝜇̄k

𝜌k
+ SkDkS

T
k

)
𝜌kSk[Dk]+S

T
k

(15)=𝜇̄kSk[Dk]+S
T
k
+ 𝜌kSkDk[Dk]+S

T
k
.

�kSkDk[Dk]+S
T
k
= �k

m∑

i=1

�k
i
[�k

i
]+s

k
i
[sk

i
]T → 0,

[� − �k0g(x
∗)]+ = �.

� = S[D]+S
T and g(x∗) =

1

�k0

S([D]+ − D)ST .
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 with ([D]+ − D)[D]+ = 0 . With a similar argument used to prove that 
g(xk)�k

→ 0 , one can show that �kg(xk) → 0 . Thus CAKKT follows.
 	�  ◻

3.2 � A primal‑dual interior point method for NSDP

It is well-known that interior point methods are widely used for solving NSDPs. 
In this paper we consider the primal-dual interior point method from [28], but the 
results can be extended to other interior point methods. In order to define the algo-
rithm, let us consider the positive barrier parameter � and let us consider the per-
turbed complementarity measure g(x)� = �I , where I is the m × m identity matrix. 
The idea of the method is to approximately solve the system of equations below for a 
sequence of parameters � converging to zero, without losing interiority, that is:

and

where we use A ≻ 0 to denote that A is a symmetric positive definite matrix. In [28], 
the authors propose a method for solving the subproblems while proving that under 
Robinson’s CQ, assuming the subproblem can be solved, a KKT point is found at 
the limit [28, Theorem 1]. However, we can easily show that in these conditions the 
algorithm clearly generates CAKKT sequences, which is a strictly stronger result. 
The algorithm is formally introduced as Algorithm 2 below.

Theorem 6  If x∗ ∈ ℝ
n is a feasible limit point of a sequence {xk} generated by Algo-

rithm 2, then x∗ satisfies CAKKT.

Proof  Since r(xk,�k, �k) → 0 , we have that ∇L(xk,�k) → 0 and g(xk)�k
→ 0 with 

�k ∈ �
m
+
 . Since g(xk) ∈ �

m we have �kg(xk) = (g(xk)�k)T → 0 , hence

g(xk)�k
→ g(x∗)� =

1

�k0

S([D]+ − D)[D]+S
T ,

r(x,�, �) ∶=

(
∇L(x,�)

g(x)� − �I

)
=

(
0

0

)

g(x) ≻ 0, 𝜇 ≻ 0,
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g(xk)◦�k
→ 0 and CAKKT follows.  	�  ◻

4 � Final remarks

In [9], an Augmented Lagrangian method for NSDPs was introduced with global 
convergence theory based on a constraint qualification strictly weaker than Robin-
son’s constraint qualification. Thus, as far as we know, the case of an unbounded 
Lagrange multiplier could be treated for the first time. There, two necessary opti-
mality conditions were introduced which are satisfied by feasible limit points of the 
algorithm. In one of them, complementarity is measured in terms of the eigenval-
ues of the constraints and an approximate Lagrange multiplier matrix; and in the 
other, one relies on the inner product structure of �m . It was shown in [27] that these 
are independent global convergence results, in the sense that no optimality condi-
tion is implied by the other. In this paper we show that the optimality condition 
CAKKT presented in [27] is strictly stronger than both optimality conditions pre-
viously defined in [9], and we show that the Augmented Lagrangian method still 
enjoys global convergence to points satisfying this renewed condition. We extend 
our results by proving similar properties for an Interior Point method, which are also 
satisfied by Sequential Quadratic Programming methods [26, 32]. The results were 
obtained by exploiting the Jordan algebraic structure of NSDPs, which points to a 
more general global convergence result in the context of optimization over a general 
symmetric cone, which will be the subject of further studies.

Acknowledgements  We thank the reviewers for their valuable comments and suggestions.

Declarations 

Conflict of Interest  The authors declare that they have no conflict of interest.

References

	 1.	 Lourenço, B.F., Fukuda, E.H., Fukushima, M.: Optimality conditions for problems over symmetric cones 
and a simple augmented Lagrangian method. Math. Op. Res. 43(4), 1233–1251 (2018)

	 2.	 Kanno, Y., Takewaki, I.: Sequential semidefinite program for maximum robustness design of structures 
under load uncertainty. J. Optim. Theory Appl. 130, 265–287 (2006)

	 3.	 Stingl, M., Kočvara, M., Leugering, G.: A sequential convex semidefinite programming algorithm with an 
application to multiple-load free material optimization. SIAM J. Op. 20(1), 130–155 (2009)

	 4.	 Fares, B., Apkarian, P., Noll, D.: An augmented Lagrangian method for a class of LMI-constrained prob-
lems in robust control theory. Int. J. Control 74(4), 348–360 (2001)

	 5.	 Fares, B., Noll, D., Apkarian, P.: Robust control via sequential semidefinite programming. SIAM J. Con-
trol. Optim. 40(6), 1791–1820 (2002)

	 6.	 Freund, R.W., Jarre, F., Vogelbusch, C.H.: Nonlinear semidefinite programming: sensitivity, convergence, 
and an application in passive reduced-order modeling. Math. Program. 109, 581–611 (2007)

	 7.	 Konno, H., Kawadai, N., Wu, D.: Estimation of failure probability using semi-definite Logit model. CMS 
1(1), 59–73 (2003)

	 8.	 Vandenberghe, L., Boyd, S., Wu, S.P.: Determinant maximization with linear matrix inequality constraints. 
SIAM J. Matrix Anal. Appl. 19(2), 499–533 (1998)



1 3

On the use of Jordan Algebras for improving global convergence…

	 9.	 Andreani, R., Haeser, G., Viana, D.: Optimality conditions and global convergence for nonlinear semidefi-
nite programming. Math. Program. 180, 203–235 (2020)

	10.	 Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained 
optimization. Optimization 60(5), 627–641 (2011)

	11.	 Andreani, R., Martínez, J.M., Ramos, A., Silva, P.J.S.: Strict constraint qualifications and sequential 
optimality conditions for constrained optimization. Math. Oper. Res. 43(3), 693–717 (2018)

	12.	 Abadie, J.: On the Kuhn-Tucker Theorem. In: Abadie, J. (ed.) Nonlinear Programming, pp. 21–36. John 
Wiley, New York (1967)

	13.	 Guignard, M.: Generalized Kunh-Tucker conditions for mathematical programming in a banach space. 
SIAM Journal of Control 7, 232–241 (1969)

	14.	 Haeser, G., Liu, H., Ye, Y.: Optimality condition and complexity analysis for linearly-constrained opti-
mization without differentiability on the boundary. Math. Program. 178, 263–299 (2019). https://​doi.​
org/​10.​1007/​s10107-​018-​1290-4

	15.	 Bueno, L., Haeser, G., Rojas, F.: Optimality conditions and constraint qualifications for generalized 
Nash equilibrium problems and their practical implications. SIAM J. Optim. 29(1), 31–54 (2019). 
https://​doi.​org/​10.​1137/​17M11​62524

	16.	 Haeser, G., Schuverdt, M.L.: On approximate KKT condition and its extension to continuous varia-
tional inequalities. J. Optim. Theory Appl. 149(3), 528–539 (2011)

	17.	 Bueno, L.F., Haeser, G., Lara, F., Rojas, F.: An augmented Lagrangian method for quasi-equilibrium 
problems. Comput. Optim. Appl. (2020). https://​doi.​org/​10.​1007/​s10589-​020-​00180-4

	18.	 Andreani, R., Haeser, G., Secchin, L., Silva, P.: New sequential optimality conditions for mathemati-
cal programs with complementarity constraints and algorithmic consequences. SIAM J. Optim. 29(4), 
3201–3230 (2019). https://​doi.​org/​10.​1137/​18M12​1040X

	19.	 Kanzow, C., Steck, D., Wachsmuth, D.: An augmented Lagrangian methods for optimization problems 
in Banach spaces. SIAM J. Control Op. 56(1), 272–291 (2018). https://​doi.​org/​10.​1137/​16M11​07103

	20.	 Andreani, R., Haeser, G., Ramos, A., Silva, P.J.S.: A second-order sequential optimality condition asso-
ciated to the convergence of algorithms. IMA J. Numer. Anal. 37(4), 1902–1929 (2017)

	21.	 Haeser, G.: A second-order optimality condition with first- and second-order complementarity associ-
ated with global convergence of algorithms. Comput. Optim. Appl. 70(2), 615–639 (2018)

	22.	 Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with 
general lower-level constraints. SIAM J. Optim. 18(4), 1286–1309 (2007)

	23.	 Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: Two new weak constraint qualifications and 
applications. SIAM J. Optim. 22(3), 1109–1135 (2012)

	24.	 Martínez, J.M., Pilotta, E.: Inexact restoration algorithm for constrained optimization. J. Op. Theory 
Appl. 104(1), 135–163 (2000)

	25.	 Qi, L., Wei, Z.: On the constant positive linear dependence conditions and its application to SQP meth-
ods. SIAM J. Op. 10(4), 963–981 (2000)

	26.	 Yamakawa, Y., Okuno, T.: Global convergence of a stabilized sequential quadratic semidefinite pro-
gramming method for nonlinear semidefinite programs without constraint qualifications. ArXiv:​1909.​
13544 (2019)

	27.	 Andreani, R., Fukuda, E.H., Haeser, G., Santos, D.O., Secchin, L.D.: Optimality conditions for nonlin-
ear second-order cone programming and symmetric cone programming. Optimization Online (2019)

	28.	 Yamashita, H., Yabe, H., Harada, K.: A primal-dual interior point method for nonlinear semidefinite 
programming. Math. Program. 135(1–2), 89–121 (2012)

	29.	 Faraut, J., Korànyi, A.: Analysis on symmetric Cones. Clarendon Press, Oxford, Oxford mathematical 
monographs (1994)

	30.	 Baes, M.: Convexity and differentiability properties of spectral functions and spectral mappings on 
Euclidean Jordan algebras. Linear Algebra Appl. 422(2), 664–700 (2007)

	31.	 Andreani, R., Martínez, J.M., Svaiter, B.F.: A new sequencial optimality condition for constrained opti-
mization and algorithmic consequences. SIAM J. Optim. 20(6), 3533–3554 (2010)

	32.	 Okabe, K.: Improvement of the stabilized sequential quadratic semidefinite programming method for 
nonlinear programming problems (in Japanese) (2021). Kyoto University, Undergraduate thesis

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1007/s10107-018-1290-4
https://doi.org/10.1007/s10107-018-1290-4
https://doi.org/10.1137/17M1162524
https://doi.org/10.1007/s10589-020-00180-4
https://doi.org/10.1137/18M121040X
https://doi.org/10.1137/16M1107103
http://arxiv.org/abs/1909.13544
http://arxiv.org/abs/1909.13544


	 R. Andreani et al.

1 3

Authors and Affiliations

R. Andreani1 · E. H. Fukuda2 · G. Haeser3   · D. O. Santos4 · L. D. Secchin5

	 R. Andreani 
	 andreani@ime.unicamp.br

	 E. H. Fukuda 
	 ellen@i.kyoto-u.ac.jp

	 D. O. Santos 
	 daiana@ime.usp.br

	 L. D. Secchin 
	 leonardo.secchin@ufes.br

1	 Department of Applied Mathematics, University of Campinas, Campinas‑SP, Brazil
2	 Graduate School of Informatics, Kyoto University, Kyoto, Japan
3	 Department of Applied Mathematics, University of São Paulo, São Paulo‑SP, Brazil
4	 Institute of Science and Technology, Federal University of São Paulo, São José dos Campos‑SP, 

Brazil
5	 Department of Applied Mathematics, Federal University of Espírito Santo, São Mateus, ES, 

Brazil

http://orcid.org/0000-0002-1195-3347

	On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming
	Abstract
	1 Introduction
	2 Complementarity measures on symmetric cones
	3 Extended global convergence of an Augmented Lagrangian algorithm and a primal-dual interior point method
	3.1 Augmented Lagrangian
	3.2 A primal-dual interior point method for NSDP

	4 Final remarks
	Acknowledgements 
	References




