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Abstract
The constant rank constraint qualification, introduced by Janin in 1984 for nonlinear
programming, has been extensively used for sensitivity analysis, global convergence
of first- and second-order algorithms, and for computing the directional derivative
of the value function. In this paper we discuss naive extensions of constant rank-
type constraint qualifications to second-order cone programming and semidefinite
programming, which are based on the Approximate-Karush–Kuhn–Tucker necessary
optimality condition and on the application of the reduction approach. Our definitions
are strictly weaker than Robinson’s constraint qualification, and an application to the
global convergence of an augmented Lagrangian algorithm is obtained.

Keywords Constraint qualifications · Optimality conditions · Second-order cone
programming · Semidefinite programming · Global convergence

1 Introduction

In this paper we investigate constraint qualifications (CQs) for second-order cone pro-
gramming and semidefinite programming. In particular, we are interested in constant
rank CQs as defined first in [15] and later extended in [7,8,19,21] in the context of
nonlinear programming. In particular, the definition in [15] gained some notoriety for
its ability to compute the directional derivative of the value function, a result known
to hold at the time only under Mangasarian-Fromovitz CQ [24]. Also, the definition
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from [15] includes naturally the case of linear constraints, which does not follow under
Mangasarian-Fromovitz CQ. The ability to handle redundant constraints (in particular,
linear ones) in the case of nonlinear programming is a powerful modeling tool that
frees the model builder from the apprehension of including them without preprocess-
ing. Actually, the effort of finding which constraints are redundant may be equivalent
to the effort of solving the problem.

For conic programming, it is well known that linearity of the constraints is not a
CQ [2,22] and this somehow stresses the difficulties in extending these ideas to the
conic context. In particular, a previous tentative extension to second-order cones [28]
has been shown to be incorrect [3].

In this paper, we make use of the reduction approach in order to propose new
constant rank-type CQs for second-order cone programming and semidefinite pro-
gramming that are strictly weaker than Robinson’s CQ. In our approach, we separate
the constraints into two sets: one consisting of the constraints that can be completely
characterized by standard equality and inequality nonlinear programming constraints,
and other with the irreducible conic constraints. For second-order cone programming,
the second block consists of constraints that are active at the vertex of a multi-
dimensional second-order cone, while for semidefinite programming these correspond
to semidefinite blocks where the zero eigenvalue is non-simple.

We consider our conditions to be naive extensions of the corresponding nonlinear
programming CQ in the sense that if the problem only has irreducible constraints then
all our conditions coincide with Robinson’s CQ; however we show some interesting
examples where our condition holds while Robinson’s CQ fails. Extending these ideas
to consider also the irreducible constraints is an ongoing topic of research.

Despite our inability of dealing with the irreducible conic constraints, the
Approximate-Karush–Kuhn–Tucker (AKKT) [5] necessary optimality condition,
recently extended to second-order cones [4] and semidefinite programming [9], can
easily be used to handle the remaining constraints bymeans of the reduction approach.
This allows obtaining CQs analogous to those defined in [7,8,15,19,21]. Analogous
definitions of [15,19] are independent of Robinson’s CQ, while analogues of [7,8,21]
are strictly weaker than Robinson’s CQ.

Since several algorithms are expected to generate AKKT sequences (this is the case,
for instance, of the augmented Lagrangian algorithms of [4,9]), a relevant corollary
of our analysis is that all CQs introduced in this paper can be used for proving global
convergence of these algorithms to a KKT point.

This paper is organized as follows. In Sect. 2, we briefly introduce constant rank
CQs for nonlinear programming. In Sect. 3, we revisit constraint qualifications for
second-order cone programming. Section 4 is devoted to the AKKT approach, while
in Sect. 5 we introduce and explain our new CQs for second-order cones. In Sect. 6 we
extend these ideas to semidefinite programming. Finally, our conclusions are presented
in Sect. 7.

Notation: For a continuously differentiable function g : Rn → R
m , we denote

Jg(x) the m × n Jacobian matrix of g at x , for which the j-th row is given by the
transposed gradient ∇g j (x)T of the j-th component function g j : Rn → R, j =
1, . . . , m. Any finite-dimensional space Rm is equipped with its standard Euclidean
inner product 〈x, y〉 := xT y = ∑m

j=1 x j y j . Then, given a closed convex cone K ⊆
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R
m , we denote its polar by K ◦ := {v ∈ R

m | 〈v, y〉 ≤ 0,∀y ∈ K }. Finally, we adopt
the following standard conventions on the empty set ∅: the sum over an empty index
set is null (i.e.,

∑
∅ = 0) and ∅ is linearly independent (considered as the basis of the

trivial linear space {0}).

2 Constant rank-type CQ conditions in nonlinear programming

Consider the following nonlinear programming problem (NLP):

Minimize f (x),

s.t. hi (x) = 0, i = 1, . . . , p,

g j (x) ≤ 0, j = 1, . . . , q, (1)

where f , hi , g j : Rn → R are continuously differentiable functions. We denote by
A(x∗) := { j ∈ {1, . . . , q} | g j (x∗) = 0}, the set of indices of active inequality
constraints at a feasible point x∗.

It is well known that at a local minimizer x∗, it holds that −∇ f (x∗) ∈ T (x∗)◦,
where T (x∗) denotes the (Bouligand) tangent cone to the feasible set at x∗ (see,
e.g., [20, Theorem 12.8]). However, since the tangent cone is a geometric object, this
necessary optimality condition is not always easy to manipulate. For this reason, one
considers the linearized cone, which is defined as follows:

L (x∗) :=
{

d ∈ R
n | ∇hi (x∗)T d = 0, i = 1, . . . , p; ∇g j (x∗)T d ≤ 0, j ∈ A(x∗)

}
.

Its polar may be computed via Farkas’ Lemma, obtaining:

L (x∗)◦ =
⎧
⎨

⎩
v ∈ R

n

∣
∣
∣
∣
∣
∣
v =

p∑

i=1

λi∇hi (x∗) +
∑

j∈A(x∗)

μ j ∇g j (x∗), μ j ≥ 0, j ∈ A(x∗)

⎫
⎬

⎭
.

Hence, when T (x∗)◦ = L (x∗)◦, this geometric optimality condition takes the form
of the usual, much more tractable, Karush–Kuhn–Tucker conditions. Vectors (λi , μ j )

above are called Lagrange multipliers associated with x∗, and the set of all these
vectors is denoted by Λ(x∗) in this manuscript.

A constraint qualification (CQ) is a condition that ensures the equality T (x∗)◦ =
L (x∗)◦. One of the most used CQ in the NLP literature is the well-known Linear
Independence Constraint Qualification (LICQ), which states the linear independence
of the set of gradients {∇hi (x∗)}p

i=1 ∪ {∇g j (x∗)} j∈A(x∗). LICQ ensures not only the
existence, but also the uniqueness of the Lagrange multiplier (see, e.g., [20, Section
12.3]). Several weaker CQs have been defined for NLP. In this paper, we are interested
in constant rank-type ones as first introduced by Janin in [15]. Recall that in the NLP
setting, we say that the Constant Rank Constraint Qualification (CRCQ) holds at a
feasible point x∗ if there exists a neighborhood V of x∗, such that for every subsets
I ⊆ {1, . . . , p} and J ⊆ A(x∗), the rank of {∇hi (x),∇g j (x); i ∈ I, j ∈ J} remains
constant for all x ∈ V . CRCQ is clearly weaker than LICQ.
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Note that requiring only constant rank of the full set of gradients {∇hi (x)}p
i=1 ∪

{∇g j (x)} j∈A(x∗) (which is known as the Weak Constant Rank (WCR) property) is
not a CQ, as shown in [10]. The necessity of considering every subset of this set
of gradients may be seen from the definition of the linearized cone. Indeed, given
d ∈ L (x∗), the relevant index set of inequality constraints gradients is given by
J = Jd := { j ∈ A(x∗) | ∇g j (x∗)T d = 0}, which cannot be chosen in advance
if one only considers the point x∗. However, this suggests that there is no need to
consider subsets of indices for the equality constraints, that is, it is enough to fix
I = {1, . . . , p}. This condition, called Relaxed-CRCQ (RCRCQ), has been shown to
be a CQ in [18]. This condition reads as follows: RCRCQ holds at a feasible point x∗
if there exists a neighborhood V of x∗, such that for every subset J ⊆ A(x∗), the rank
of {∇hi (x),∇g j (x); i ∈ {1, . . . , p}, j ∈ J} remains constant for all x ∈ V .

These conditions can be seen as constant linear dependence conditions and thus
it is natural to weaken these definitions by considering only constant positive linear
dependence, providing conditions CPLD [21] and its relaxed variant RCPLD [7],
both strictly weaker than Mangasarian-Formovitz CQ. This will be the most natural
formulation for the CQs we propose in this paper. We refer the reader to [7].

It turns out that the idea behind the construction of RCRCQ can be also extended
to inequality constraints, providing an even weaker CQ. One seeks at characteriz-
ing a single index set J which is relevant of having the constant rank property. This
set consists of the indices of gradients defining the subspace component of L (x∗)◦,
which is given by its lineality space. More precisely, the lineality space of L (x∗)◦,
defined as the largest linear space contained in L (x∗)◦, is in this case given by
L (x∗)◦ ∩ −L (x∗)◦. So, a gradient ∇g j (x∗) belongs toL (x∗)◦ ∩ −L (x∗)◦ if, and
only if, −∇g j (x∗) ∈ L (x∗)◦. Thus, for J = J−(x∗) := { j ∈ A(x∗) | −∇g j (x∗) ∈
L (x∗)◦}, we say that the Constant Rank of the Subspace Component (CRSC) CQ
holds at a feasible point x∗ if there exists a neighborhood V of x∗, such that the rank
of {∇hi (x),∇g j (x); i ∈ {1, . . . , p}, j ∈ J−(x∗)} remains constant for all x ∈ V . It
was proved in [8] that CRSC is sufficient for the existence of Lagrange multipliers at
a local minimizer, and this is the weakest of the CQs we have discussed.

CQ conditions discussed above in the NLP context have multiple applications. For
instance, RCRCQwas used to compute the directional derivative of the value function
in [19], as well as to prove the convergence of a second-order augmented Lagrangian
algorithm to second-order stationary points in [6]. RCPLD and CRSC were shown to
be sufficient for proving first-order global convergence of several algorithmswhile also
implying the validity of an error bound property (cf. [8]). Noteworthy, under CRSC,
all inequality constraints in the set J−(x∗) behave locally as equality constraints, in
the sense that they are active at any feasible point in a neighborhood of x∗. Therefore,
we strongly believe that the extension of these notions to a conic framework may have
a major impact in stability and algorithmic theory for conic programming.
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3 Constraint qualifications conditions in second-order cone
programming

Let us consider the second-order cone programming (SOCP) problem as follows:

Minimize f (x),

s.t. hi (x) = 0, i = 1, . . . , p,

g j (x) ∈ Km j , j = 1, . . . , �, (2)

where the functions are continuously differentiable and the second-order cones are
denoted by Km j := {(z0, z) ∈ R×R

m j −1 | z0 ≥ ‖z‖}when m j > 1, and Km j := R+
(non-negative reals) otherwise.

We say that the Karush–Kuhn–Tucker (KKT) conditions hold for problem (2) at a
feasible point x∗ if there exists λ ∈ R

p, μ j ∈ Km j , j = 1, . . . , �, such that

∇x L(x∗, λ, μ) = ∇ f (x∗) + Jh(x∗)T λ −
�∑

j=1

Jg j (x∗)T μ j = 0, (3)

〈μ j , g j (x∗)〉 = 0, j = 1, . . . , �. (4)

Here, L(x, λ, μ) := f (x)+〈λ, h(x)〉−∑�
j=1〈μ j , g j (x)〉 is the standard Lagrangian

function for problem (2), and∇x L(x, λ, μ) denotes the gradient of L at (x, λ, μ)with
respect to x . As usual, the set of all Lagrange multipliers (λ, μ) associated with the
feasible point x∗, such that (3)–(4) are fulfilled, is denoted by Λ(x∗).

As in NLP, one needs to assume a suitable CQ in order to ensure the existence of
Lagrange multipliers associated with a local minimizer. In what follows, we recall the
elements needed to define these CQs in the SOCP context.

The topological interior of Km j , denoted by int(Km j ), and the non-zero boundary,
denoted by bd+(Km j ), are respectively defined by

int(Km j ) := {(z0, z) ∈ R × R
m j −1 | z0 > ‖z‖},

bd+(Km j ) := {(z0, z) ∈ R × R
m j −1 | z0 = ‖z‖ > 0}.

Thus, given a feasible point x∗, we introduce the index sets:

Iint (x∗) := { j ∈ {1, . . . , �} | g j (x∗) ∈ int(Km j )},
IB(x∗) := { j ∈ {1, . . . , �} | g j (x∗) ∈ bd+(Km j )},
I0(x∗) := { j ∈ {1, . . . , �} | g j (x∗) = 0}.

Moreover, the complementarity condition (4) can be equivalently written as

μ j ◦ g j (x∗) = 0, j = 1, . . . , �, (5)
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where the operation ◦ is defined for any couple of vectors y := (y0, ȳ) and s := (s0, s̄),
with the same dimension, as follows:

y ◦ s :=
( 〈y, s〉

y0s̄ + s0 ȳ

)

.

For more details about this operation, its algebraic properties and its relation with
Jordan algebras, see [1, Section 4] and references therein.

From (5), it is easy to check that complementarity condition is equivalently written
in terms of the above-mentioned index sets as follows:

μ j = 0 if j ∈ Iint (x∗), μ j = α j Rm j g j (x∗), for some α j ≥ 0, if j ∈ IB(x∗),
(6)

and no condition on μ j can be inferred when j ∈ I0(x∗). Here, Rm is an m × m
diagonal matrix whose first entry is 1 and the remaining ones are −1. Consequently,
KKT conditions at x∗ can be characterized as the existence of λ ∈ R

p, μ j ∈ Km j ,
j ∈ I0(x∗), and α j ≥ 0, j ∈ IB(x∗), such that

∇ f (x∗) + Jh(x∗)T λ −
∑

j∈I0(x∗)
Jg j (x∗)T μ j −

∑

j∈IB (x∗)
α j∇φ j (x∗) = 0, (7)

where

φ j (x) := 1

2
([g j (x)]20 − ‖g j (x)‖2) for all j ∈ IB(x∗).

Indeed, it is straightforward to check that∇φ j (x) = Jg j (x)T Rm j g j (x) andmultipliers
μ j for all j /∈ I0(x∗) are recovered from (6).

The use of mappings φ j is a consequence of applying the reduction approach to
problem (2). Actually, condition (7) is simply KKT conditions at point x∗ for a locally
equivalent version of problem (2) for which constraints g j (x) ∈ Km j are replaced
by φ j (x) ≥ 0 when j ∈ IB(x∗), and are omitted when j ∈ Iint (x∗). For the sake of
completeness, this reduced equivalent problem is explicitly stated here below:

Minimize f (x),

s.t. hi (x) = 0, i = 1, . . . , p,

g j (x) ∈ Km j , j ∈ I0(x∗),
φ j (x) ≥ 0, j ∈ IB(x∗). (8)

Despite its apparent simplicity in the SOCP setting, the reduction approach is a
key tool in conic programming. It permits obtaining first- and second-order optimality
conditions, to simplify some well-known CQs, among other crucial properties. See
[13, Section 3.4.4] and [12, Section 4] for more details. Throughout this article we
will use KKT condition (7) and problem (8) to adapt CQ conditions from NLP to the
SOCP setting (2).
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One of the most used (and strong) conditions to guarantee the existence of a
Lagrange multiplier at a local minimizer x∗ is the nondegeneracy condition. Thanks
to the reduction approach (cf. [13, Equation 4.172]), this condition can be equivalently
defined as follows:

Definition 1 Let x∗ be a feasible point of (2). Consider all the row vectors of the
matrices Jh(x∗) and Jg j (x∗), j ∈ I0(x∗) together with the row vectors∇φ j (x∗)T , j ∈
IB(x∗). We say that nondegeneracy holds at x∗ when these vectors are linearly inde-
pendent.

The nondegeneracy condition implies the existence and uniqueness of a Lagrange
multiplier at a local minimizer x∗, and the reciprocal is true provided that (x∗, λ, μ)

(with (λ, μ) ∈ Λ(x∗)) is strictly complementary, that is, g j (x∗) + μ j ∈ int(Km j ) for
all j = 1, . . . , �; see [13, Proposition 4.75]. Thus, nondegeneracy is the analogue of
LICQ from nonlinear programming. Note that there are other definitions of nonde-
generacy e.g. [1, Definition 18] and [12, Definition 16]. However, all these definitions
coincide in the case of SOCP problem (2). We address the reader to [12, Section 4]
for more details about nondegeneracy in the context of SOCP.

As LICQ in NLP, nondegeneracy condition is often considered too strong. For this
reason, one typically assumes a weaker condition, called Robinson’s CQ, which was
originally defined in [23] for a general conic setting. In our SOCP setting, we can use
characterizations given in [13, Proposition 2.97, Corollary 2.98 and Lemma 2.99] to
obtain the following equivalent definition:

Definition 2 Let x∗ be a feasible point of (2).We say that Robinson’s CQ holds at x∗ if

Jh(x∗)T λ +
�∑

j=1

Jg j (x∗)T μ j = 0 and λ ∈ R
m , μ j ∈ Km j , 〈μ j , g j (x∗)〉 = 0, j = 1, . . . , �

⇒ λ = 0 and μ j = 0, j = 1, . . . , �.

(9)

As in NLP, when x∗ is assumed to be a local solution of (2), Robinson’s CQ (9)
is equivalent to saying that the set of Lagrange multipliers Λ(x∗) is nonempty and
compact (cf. [13, Props. 3.9 and 3.17]). In this sense, condition (9) can be seen as an
extension of Mangasarian-Fromovitz CQ in NLP to the SOCP setting (2), written in
a dual form.

Thanks to (6), condition (9) can be rewritten as follows:

Jh(x∗)T λ +
∑

j∈I0(x∗)
Jg j (x∗)T μ j +

∑

j∈IB (x∗)
α j∇φ j (x∗) = 0,

λ ∈ R
m, μ j ∈ Km j , j ∈ I0(x∗); α j ≥ 0, j ∈ IB(x∗)

⇒ λ = 0, μ j = 0, j ∈ I0(x∗); α j = 0, j ∈ IB(x∗).

(10)

As we will see in the forthcoming sections, condition (10) best fits our analysis.
Note that (10) can be interpreted as a conic linear independence of the (transposed)

Jacobians and gradients involved in its definition. Indeed, given some finite number
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of convex and closed cones C j and denoting by
∏

j C j the cartesian product of these
sets, we say that a correspondent set of matrices Vj of appropriate dimensions is∏

j C j -linearly independent if

∑

j

V j s j = 0 and − s j ∈ C◦
j for all j ⇒ s j = 0 for all j .

Then, (10) coincides with the {0p} × ∏
j∈I0(x∗) Km j × R

|IB (x∗)|
+ -linear independence

of matrices: Jh(x∗)T , Jgi (x∗)T with j ∈ I0(x∗), and ∇φ j (x∗)with j ∈ IB(x∗). Here,
0p denotes the null vector in Rp. Moreover, when C j = R+ for all j in the definition
above (and consequently, each matrix Vj is simply a column vector),

∏
j C j -linear

independence coincides with the well-known positive linear independence. Then,
condition (10) reminds the characterization of Mangasarian-Fromovitz CQ condi-
tion given by the positive linear independence of the gradients of active constraints
(after replacing each equality constraint hi (x) = 0 by two inequalities hi (x) ≥ 0
and hi (x) ≤ 0). It is also interesting to note that {0p} × ∏

j=1,...,� Km j -linear inde-

pendence of matrices Jh(x∗)T and Jgi (x∗)T with j = 1, . . . , �, is strictly stronger
than Robinson’s CQ (9). This again shows how useful is the reduction approach for
our analysis. Given the analyzed above, when Robinson’s CQ fails, we say that the
corresponding matrices in (10) are conic linearly dependent.

4 The Approximate-KKT approach

For the nonlinear programmingproblem (1), the followingApproximate-KKT (AKKT)
necessary optimality condition [5] is well known:

Theorem 1 Let x∗ be a local minimizer of (1). Then, there exist sequences {xk} ⊂ R
n,

{λk} ⊂ R
p, {μk} ⊂ R

q
+ such that xk → x∗ and

∇ f (xk) +
p∑

i=1

λk
i ∇hi (xk) +

∑

j∈A(x∗)
μk

j∇g j (xk) → 0. (11)

We define μk
j → 0 (or, equivalently, μk

j = 0) for j /∈ A(x∗). Note that this
does not require any constraint qualification at all and the sequence of approximate
Lagrange multipliers {(λk, μk)} may be unbounded. If the sequence has a bounded
subsequence, one may take a convergent subsequence such that the KKT conditions
hold. In the unbounded case, one may define Mk := max{|λk

i |, i = 1, . . . , p;μk
j , j ∈

A(x∗)} → +∞ and divide the expression in (11) by Mk . Thus, one may take an
appropriate subsequence such that

λk

Mk
→ λ ∈ R

p and
μk

j

Mk
→ μ j ≥ 0, j ∈ A(x∗),
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obtaining the existence of scalars λi , i = 1, . . . , p;μ j ≥ 0, j ∈ A(x∗), not all equal
to zero, satisfying

p∑

i=1

λi∇hi (x∗) +
∑

j∈A(x∗)
μ j∇g j (x∗) = 0.

That is, the gradients of equality constraints and active inequality constraints are
positive linearly dependent. This provides a simple proof for the existence of Lagrange
multipliers under the Mangasarian-Fromovitz CQ (MFCQ). A very similar argument
shows that the set of Lagrange multipliers at x∗ is bounded if, and only if, MFCQ
holds.

In order to go beyond MFCQ in nonlinear programming, one relies on the well-
known Carathéodory’s Lemma, as stated in [7]:

Lemma 1 Let v1, . . . , vp+q ∈ R
n be such that {vi }p

i=1 are linearly independent. Con-

sider scalars βi , i = 1, . . . , p + q, and denote y := ∑p+q
i=1 βivi . Then, there exist

J ⊆ {p+1, . . . , p+q} and scalars β̂i , i ∈ {1, . . . , p}∪J , such that {vi }i∈{1,...,p}∪J are
linearly independent, βi > 0 implies β̂i > 0, for all i ∈ J , and y = ∑

i∈{1,...,p}∪J β̂ivi .

Thus, in order to prove that CRCQ (and its weaker variants) is a CQ for the nonlinear
programming problem (1), we apply Carathéodory’s Lemma to (11). This yields

∇ f (xk) +
∑

i∈I k

λ̃k
i ∇hi (xk) +

∑

j∈J k

μ̃k
j∇g j (xk) → 0,

with I k ⊆ {1, . . . , p}, J k ⊆ A(x∗), μ̃k
j ≥ 0, j ∈ J k , and such that the vectors of the

set {∇hi (xk)}i∈I k ∪ {∇g j (xk)} j∈J k are linearly independent for all k. Here, by the
infinite pigeonhole principle and passing to a subsequence if necessary, index subsets
I k and J k can be taken as fixed and not depending on k. Then, the AKKT approach
described above is similarly followed. It is worth to emphasize here that the application
of Carathéodory’s Lemma preserves the sign of the candidate to multipliers, that is,
μ̃k

j has the same sign than μk
j . This is a crucial step which is not clearly extended to

the conic case (see [3]). Note that if {∇hi (xk)}p
i=1 is linearly independent for all k, we

may take Ik = {1, . . . , p}, which will be relevant in our analysis.
In the sequel, wewill use the extension of theAKKTnecessary optimality condition

for second-order cone programming (2), as presented in [4]:

Theorem 2 Let x∗ be a local minimizer of (2). Then, there exist sequences {xk} ⊂ R
n,

{λk} ⊂ R
p, {μk

j } ⊂ Km j , j ∈ I0(x∗), {αk
j } ⊂ R+, j ∈ IB(x∗) such that xk → x∗

and

∇ f (xk) + Jh(xk)T λk −
∑

j∈I0(x∗)
Jg j (xk)T μk

j −
∑

j∈IB (x∗)
αk

j ∇φ j (xk) → 0. (12)

123



R. Andreani et al.

5 A proposal of constraint qualifications for second-order cones

Following the previous discussion, we present a “naive” formulation of constant rank
constraint qualifications for the second-order cone programming problem (2).

Definition 3 Let x∗ be a feasible point of problem (2) and I ⊆ {1, . . . , p} be such
that {∇hi (x∗)}i∈I is a basis of the linear space generated by vectors {∇hi (x∗)}p

i=1.
We say that the Relaxed Constant Positive Linear Dependence (RCPLD) condition
holds at x∗ when, for all J ⊆ IB(x∗), there exists a neighborhood V of x∗ such that:

– {∇hi (x)}p
i=1 has constant rank for all x in V ;

– if the system

∑

i∈I

λi∇hi (x∗) +
∑

j∈I0(x∗)
Jg j (x∗)T μ j +

∑

j∈J

α j∇φ j (x∗) = 0,

λi ∈ R, i ∈ I ; μ j ∈ Km j , j ∈ I0(x∗); α j ≥ 0, j ∈ J ,

has a not all zero solution (λi )i∈I , (μ j ) j∈I0(x∗), (α j ) j∈IB (x∗), then vectors
{∇hi (x)}i∈I ∪ {∇φ j (x)} j∈J are linearly dependent for all x in V .

Note that Robinson’s CQ implies RCPLD since it states the conic linear indepen-
dence of the corresponding sets (and thus, for all its subsets) while RCPLD allows
its conic linear dependence, as long as the linearly dependence is maintained for a
reduced subset in a neighborhood.

The definition above takes into account our inability to relax Robinson’s CQ for
cones Km j with j ∈ I0(x∗), as the linear dependence for x near x∗ is required only
for equalities and for constraints at the boundary. Indeed, note that in the case when
IB(x∗) = ∅ and no equalities are considered (i.e., p = 0), RCPLD coincides with
Robinson’s CQ (9). This is an immediate consequence of the adopted convention
that states that the empty set is always a linear independent set. On the other hand,
we are aware that Definition 3 is unnecessarily strong when m j = 1 for an index
j ∈ I0(x∗). Indeed, in such case, the associated inequality g j (x) ∈ Km j corresponds
to an inequality constraint of the form g j (x) ≥ 0, which is active at x∗. Hence, RCPLD
definition can be slightly modified to take this situation into account as follows: define
A(x∗) := { j ∈ I0(x∗) | m j = 1}, and remove those indices from I0(x∗), that is, define
Ĩ0(x∗) := I0(x∗)\A(x∗). Indices in A(x∗) can thus be treated similarly to those in
IB(x∗). So, by defining φ j (x) := g j (x) when j ∈ A(x∗), a slightly weaker version of
RCPLD can be obtained by replacing I0(x∗) by Ĩ0(x∗) and IB(x∗) by IB(x∗)∪ A(x∗)
in Definition 3. Since this modification has no consequence in the proof of Theorem 3,
we do not include it in its statement.

The point raised in the last paragraph explains why Definition 3 is considered a
“naive” extension of a constant rank-type condition. Before proving that RCPLD is a
CQ for problem (2), we make further observations related to this point.
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Remark 1 (a) When we choose J = ∅ in Definition 3, we necessarily obtain that there
is no non-zero solution (λi , μ j ), with i ∈ I and j ∈ I0(x∗), to the system:

∑

i∈I

λi ∇hi (x∗) +
∑

j∈I0(x∗)
Jg j (x∗)T μ j = 0 and λi ∈ R, i ∈ I ; μ j ∈ Km j , j ∈ I0(x∗).

This is equivalent to saying that Robinson’s CQ holds at x∗ for the constrained set
Γ0 := {x | hi (x) = 0, i ∈ I , g j (x) ∈ Km j , j ∈ I0(x∗)}. So, RCPLD ensures that
Robinson’s CQ is fulfilled at x∗ for the active set Γ0. Actually, by using the slight
modification discussed above, we can exclude standard nonlinear constraints from
I0(x∗), and conclude that it only implies the weaker condition: Robinson’s CQ holds
at x∗ for the constrained set Γ̃0 := {x | hi (x) = 0, i ∈ I , g j (x) ∈ Km j , j ∈
I0(x∗), m j > 1}.

(b) Consider the case when problem (2) reduces to NLP (1), that is, Ĩ0(x∗) = ∅
and IB(x∗) = ∅. Then, RCPLD in Definition 3 reduces to the respective definition
for nonlinear programming [7]. In particular, by enlarging the system to include α j ∈
R, j ∈ J , instead of only considering α j ≥ 0, j ∈ J , the definition reduces to an
equivalent characterization (see [7]) of RCRCQ: {∇hi (x)}p

i=1 has constant rank for x
around x∗ and for all J ⊆ A(x∗), if the set {∇hi (x∗)}i∈I ∪ {∇φ j (x∗)} j∈J is linearly
dependent, then {∇hi (x)}i∈I ∪ {∇φ j (x)} j∈J must remain linearly dependent for all
x in a neighborhood of x∗ (here, the set I is fixed as in Definition 3). The latter
also explains why RCPLD, given in Definition 3, is considered a constant rank-type
condition for problem (2).

(c) Differently from the definition of nondegeneracy and Robinson’s CQ, the choice
of the reduction function φ(·) gives rise to different constant rank conditions. For
instance, one could formulate a similar, but different, condition by considering the
alternative reduction function φ̃ j (x) := [g j (x)]0 − ‖g j (x)‖ for j ∈ IB(x∗). This is a
well-known fact for nonlinear programming, which establishes that when a constraint
set satisfies CRCQ, it can be rewritten in such a way that it fulfills Robinson’s CQ
[16]. See also [17] where the result is proved under a weaker CQ.

Theorem 3 Let x∗ be a feasible point of problem (2) satisfying the AKKT condition (12)
and RCPLD. Then, the KKT conditions hold at x∗. In particular, RCPLD is a constraint
qualification.

Proof AKKT condition (12) ensures the existence of sequences {xk} ⊂ R
n , {λk} ⊂

R
p, {μk

j } ⊂ Km j , j ∈ I0(x∗), {αk
j } ⊂ R+, j ∈ IB(x∗), such that xk → x∗ and

∇ f (xk) +
p∑

i=1

λk
i ∇hi (xk) −

∑

j∈I0(x∗)
Jg j (xk)T μk

j −
∑

j∈IB (x∗)
αk

j ∇φ j (xk) → 0.

By the constant rank assumption on the equality constraints, and the definition of I , we
may rewrite

∑p
i=1 λk

i ∇hi (xk) = ∑
i∈I λ̃k

i ∇hi (xk) for new scalars λ̃k
i ∈ R, i ∈ I , such

that vectors {∇hi (xk)}i∈I are linearly independent. Applying Carathéodory’s Lemma,
for each k, we get J k ⊆ IB(x∗) and new scalars λ̂k

i ∈ R, i ∈ I , α̂k
j ≥ 0, j ∈ J k , such

that
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∇ f (xk) +
∑

i∈I

λ̂k
i ∇hi (xk) −

∑

j∈I0(x∗)
Jg j (xk)T μk

j −
∑

j∈J k

α̂k
j ∇φ j (xk) → 0, (13)

and vectors {∇hi (xk)}i∈I ∪ {∇φ j (xk)} j∈J k are linearly independent. By the infinite
pigeonhole principle, without loss of generality we can consider subsequences, which
are renamed as the original ones, for which sets J k are the same for all k. This set is
denoted by J .

Define Mk := max{|λ̂k
i |, i ∈ I ; ‖μk

i ‖, i ∈ I0(x∗); α̂ j , j ∈ J }. If {Mk} is bounded,
any accumulation point of {λ̂k

i , i ∈ I ;μk
i , i ∈ I0(x∗); α̂ j , j ∈ J } (after replacing by 0

the values for indices that are neither in I , nor in J ) satisfies (7). Hence, x∗ is a KKT
point of (2). Otherwise, we may take a subsequence such that Mk → +∞, and divide
the expression in (13) by Mk , considering convergent subsequences such that

− λ̂k
i

Mk
→ λi ∈ R, i ∈ I ; μk

j

Mk
→ μ j ∈ Km j , j ∈ I0(x∗);

α̂k
j

Mk
→ α j ≥ 0, j ∈ J , with (λi , μ j , α j ) �= 0,

and obtaining
∑

i∈I

λi∇hi (x∗) +
∑

j∈I0(x∗)
Jg j (x∗)T μ j +

∑

j∈J

α j∇φ j (x∗) = 0.

Then, since vectors {∇hi (xk)}i∈I ∪ {∇φ j (xk)} j∈J are linearly independent, this con-
tradicts the definition of RCPLD. ��

Exact definition of RCPLD in nonlinear programming can be consulted in [7]. The
definition of CRCQ [15], RCRCQ [19], and CPLD [21] may be analogously extended.
They are omitted. We only introduce the extension of CRSC [8] for this SOCP setting,
since its definition is more involving and differs from its nonlinear programming
counterpart. For the sake of completeness, the definition ofCRSCconsiders sets Ĩ0(x∗)
and A(x∗). To prove that CRSC is a CQ is enough to follow the proof of Theorem 3,
so it is omitted.

Definition 4 Let x∗ be a feasible point of (2) and J−(x∗) ⊆ IB(x∗) ∪ A(x∗) be
defined as

J−(x∗) :=
{

j0 ∈ IB(x∗) ∪ A(x∗)
∣
∣
∣ − ∇φ j0 (x∗) =

p∑

i=1

λi ∇hi (x∗) +
∑

j∈IB (x∗)∪A(x∗)

α j ∇φ j (x∗),

for some λi ∈ R, α j ≥ 0

}

.

Set J+(x∗) := IB(x∗) ∪ A(x∗)\J−(x∗). We also define I ⊆ {1, . . . , p} and J ⊆
J−(x∗) such that {∇hi (x∗)}i∈I ∪{∇φ j (x∗)} j∈J is a basis of the linear space generated
by {∇hi (x∗)}p

i=1∪{∇φ j (x∗)} j∈J−(x∗). We say that the Constant Rank of the Subspace
Component (CRSC) condition holds at x∗ when there exists a neighborhood V of x∗
such that:

123



Naive constant rank-type constraint qualifications for…

– {∇hi (x)}p
i=1 ∪ {∇φ j (x)} j∈J−(x∗) has constant rank for all x in V ;

– the system

∑

i∈I

∇hi (x∗)λi +
∑

j∈ Ĩ0(x∗)

Jg j (x∗)μ j +
∑

j∈J∪J+(x∗)
∇φ j (x∗)α j = 0,

λi ∈ R, i ∈ I ; μ j ∈ Km j , j ∈ Ĩ0(x∗); α j ∈ R, j ∈ J ; α j ≥ 0, j ∈ J+(x∗),

has only the trivial solution.

Note that when Ĩ0(x∗) = ∅, the second requirement in the definition of CRSC
always holds [8].

As said above, both definitions, RCPLD and CRSC, are “naive” in the sense that
they do not improve on Robinson’s CQ regarding multi-dimensional cones at zero.
That is, when all constraint indices belong to Ĩ0(x∗), both definitions coincide with
Robinson’s CQ (9). However, the example below shows that RCPLD and CRSC are
strictly weaker than Robinson’s CQ:

Example 1 Consider the constraint set defined by

g(x) := (g0(x), g1(x)) := (x, x) ∈ K2,

where x is one-dimensional. Clearly, x∗ = 1 is feasible and the single constraint is in
the boundary, i.e. IB(x∗) is the only nonempty index set. Reduced constraint is such
that φ(x) := 1

2 (g0(x)2 − g1(x)2) = 0 for all x . Then, it follows that ∇φ(x∗) = 0
and consequently, Robinson’s CQ fails. However, ∇φ(x) = 0 for all x , which implies
that RCPLD holds. CRSC also holds by noting that the reduced constraint belongs
to the index set J−(x∗), whose gradient has constant rank, and Ĩ0(x∗) = ∅, which is
sufficient for ensuring the second condition. Indeed, J = ∅ is a basis for the linear
space generated by the constraint gradient in J−(x∗) and the result follows by the
linear independence of the empty set.

6 Extension to semidefinite programming

Consider the semidefinite programming (SDP) problem with multiple constraints:

Minimize f (x),

s.t. h(x) = 0,

g j (x) ∈ S
m j
+ , j = 1, . . . , �, (14)

where f : Rn → R, h : Rn → R
p, and g j : Rn → S

m j are continuously differen-
tiable functions, Sm j is the linear space of m j ×m j real symmetric matrices equipped
with the inner product A · B := trace(AB), where trace(AB) denotes the sum of the
elements of the diagonal of AB for all matrices A, B ∈ S

m j , and

S
m j
+ := {M ∈ S

m j | zT Mz ≥ 0,∀z ∈ R
m j }
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is the closed convex cone of all positive semidefinite elements of Sm j , for all j =
1, . . . , �. We denote by � j the partial order relation induced by S

m j
+ , that is, A � j B

if, and only if, B− A ∈ S
m j
+ . For the sake of notation, the index j is omitted throughout

the paper and this relation order is simply denoted by �. The order relations �, �,
and ≺ are similarly defined.

We end this subsection by recalling the Karush–Kuhn–Tucker conditions in the
SDP framework. We say that KKT conditions hold at a feasible point x∗ of problem
(14) when there exist Lagrange multipliers λ ∈ R

p and μ j ∈ S
m j , j = 1, . . . , � such

that

∇ f (x∗) + Jh(x∗)T λ −
�∑

j=1

Jg j (x∗)T μ j , (15a)

g j (x∗) · μ j = 0, j = 1, . . . , �, (15b)

with

Jg j (x∗)T z := (∂1g j (x∗) · z, . . . , ∂ng j (x∗) · z)T , ∀z ∈ S
m j ,

where ∂i g j (x∗) is the partial derivative of g j with respect to the variable xi , at x∗,
for each i = 1, . . . , n. In fact, Jg j (x∗)T is the adjoint of the linear mapping Jg j (x∗),
defined by

Jg j (x∗)d :=
n∑

i=1

di∂i g j (x∗),

for all d = (d1, ..., dn)T ∈ R
n , j = 1, . . . , �.

6.1 Revisiting constraint qualifications for multifold SDP

Constraint qualification conditions recalled in Sect. 3 for SOCP have been also well
established for SDP problem (14). In this section, we start by quickly recalling Robin-
son’s CQ, before proceeding with the study of nondegeneracy condition, which needs
more attention for our purposes.

As in the SOCP setting, Robinson’s CQ [23] can be equivalently characterized via
the properties established in [13, Proposition 2.97, Corollary 2.98 and Lemma 2.99]
in its dual form:

Definition 5 We say that Robinson’s CQ holds at a feasible point x∗ of problem (14)
when

Jh(x∗)T λ +
�∑

j=1

Jg j (x∗)T μ j = 0,

g j (x∗) · μ j = 0, ∀ j = 1, . . . , �,

μ j ∈ S
m j
+ , ∀ j = 1, . . . , �,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⇒ μ j = 0, ∀ j = 1, . . . , �. (16)
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As in SOCP, Robinson’s CQ is considered as the natural extension of Mangasarian-
Fromovitz CQ fromNLP to the SDP setting. Actually, when x∗ is assumed to be a local
solution of (2), Robinson’s CQ (16) is equivalent to saying that the set of Lagrange
multipliers Λ(x∗) is nonempty and compact (cf. [13, Props. 3.9 and 3.17]).

Let us now recall nondegeneracy condition in the SDP context. The notion of
nondegeneracy (called transversality therein) was introduced by Shapiro and Fan in
[26, Section 2] by means of tangent spaces in the context of eigenvalue optimization.
An equivalent form is proven in [13, Equation (4.172)] for reducible cones. This is
adopted as a formal definition in our multifold SDP setting:

Definition 6 We say that a feasible point x∗ of problem (14) is nondegenerate when
the following relation is satisfied

ImA (x∗) + {0} ×
�∏

j=1

lin(T
S

m j
+

(g j (x∗))) = R
p ×

�∏

j=1

S
m j , (17)

where

A (x∗) :=
(

Jh(x∗)
Jg j (x∗); j = 1, ..., �

)

is a linear mapping from R
n to Rp × ∏�

j=1 S
m j .

As it happens in SOCP, the nondegeneracy condition is considered to be a natural
analogue of LICQ from NLP to SDP. Actually, nondegeneracy condition (17) implies
the existence and uniqueness of a Lagrange multiplier at a local minimizer x∗, and
the reciprocal is true provided that (x∗, λ, μ) (with (λ, μ) ∈ Λ(x∗)) is strictly com-
plementary, that is, g j (x∗) + μ j � 0 for all j = 1, . . . , �; see [13, Proposition 4.75].
However, this analogy only makes sense when matrix blocks g j (x∗) are chosen in a
“minimal” way, in the sense of avoiding zeros in the off diagonal entries. In particular,
an NLP problem with � inequality constraints should be modeled as an instance of
(14) with m1 = . . . = m� = 1. Only in that case, nondegeneracy coincides LICQ. To
stress the point above, we recall here below some results from [11, Section 5].

Consider the NLP problem of minimizing f (x) under two constraints: g1(x) ≥ 0
and g2(x) ≥ 0, where f , g1, and g2 are smooth real-valued functions. Let x∗ be
a local mimimun for which g1(x∗) = g2(x∗) = 0 and LICQ holds (i.e., vectors
∇g1(x∗) and ∇g2(x∗) are linearly independent). Denote by μ̄1 and μ̄2 the unique
associatedLagrangemultipliers, and assume that strict complementarity holds: μ̄i > 0
for i = 1, 2. If this NLP problem is written as the following SDP problem

Minimize f (x),

s.t.

[
g1(x) 0
0 g2(x)

]

∈ S
2+, (18)

then nondegeneracy condition (17) never holds. Indeed, the Lagrange multiplier asso-
ciated with x∗ for the reformulated problem (18) is never unique. It is enough to note
that the matrix
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μ̄ :=
[
μ̄1 0
0 μ̄2

]

is an associated Lagrange multiplier as well as

μ̄ + t

(
0 1
1 0

)

,

for any t ∈ R such that t2 ≤ μ̄1μ̄2. Of course, this apparent inconsistency occurs not
only for diagonal matrices but also for any SDP problemwith a diagonal structure (see
e.g. [11, Lemma 5.1]), and it is due to an inappropriate modeling decision regarding
the sparse structure of the studied SDP problem.

On the other hand, this phenomenon does not occur with Robinson’s CQ, which
is always preserved independently of the block structure of the SDP constraint set.
This may be one of the reasons why multifold SDP is not often taken into consider-
ation in the literature, along with the fact that interior-point methods are knowingly
capable of exploiting block-diagonal structure (see Gondzio’s review [14] and refer-
ences therein for details). It is not expected, though, that every constraint qualification
will be preserved between multifold and block-diagonal representations. In particular,
the constraint qualifications we define in the next section are defined by means of
exploiting the multifold structure. In this context, they are strictly weaker than Robin-
son’s CQ, while if one considers a single block-diagonal representation our condition
would resume to Robinson’s CQ. Furthermore, since our analysis is related to AKKT
sequences, which describe the output of many practical algorithms, our results pro-
vide a stronger convergence theory for them when applied to SDP problems under
multifold representation.

For more details about the nondegeneracy condition in the semidefinite program-
ming context, see e.g. [11,25]. In particular, Nondegeneracy condition for multifold
SDP given in Definition 6 and the discussion above are inspired from [11, Section 5].

In the next section we propose a naive RCPLD condition similar to Definition 3 for
multifold SDP, as in (14). We note that CPLD has already been used in the context
of SDP problems in [27], however, they consider the application of an augmented
Lagrangian method for a mixed problem with SDP constraints and NLP constraints,
where the NLP constraints are not penalized and are carried out to the subproblems.
Hence, the usual CPLD is assumed for the NLP constrained subproblems, in the
context of feasibility results, while Robinson’s CQ is assumed for the full problem in
the context of optimality results. In particular, no CPLD-type CQ is introduced for the
full problem.

6.2 A constant rank condition for SDP

Denote the smallest eigenvalue of a matrix A by σmin(A) and its associated unitary
eigenvectors by νmin(A) and −νmin(A). It is known that σmin is continuously differ-
entiable at A when σmin(A) is simple, i.e., when it has algebraic multiplicity equal to
one, and that Jσmin(A) = νmin(A)νmin(A)T in this case (see, e.g., [26]). So, given a
local minimizer x∗, the composition σmin ◦ g j is a reduction mapping for the block j
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when σmin(g j (x∗)) is simple, playing a similar role to φ j (x) for problem (8). Also, in
this scenario,

∇(σmin(g j (x)) = Jg j (x)T Jσmin(g j (x)) (19)

when x is close enough to x∗. This motivates us to define an analogue of problem (8)
for SDP as follows:

Minimize f (x),

s.t. h(x) = 0,

g j (x) ∈ S
m j
+ , j ∈ IN (x∗),

σmin(g j (x)) ≥ 0, j ∈ IR(x∗), (20)

where

IR(x∗) := { j ∈ {1, . . . , �} | 0 = σmin(g j (x∗)) is simple}

and

IN (x∗) := { j ∈ {1, . . . , �} | 0 = σmin(g j (x∗)) is not simple}.

Note that (20) is locally equivalent to (14) and that we have removed for simplicity
all the constraints such that g j (x∗) � 0, i.e., the “inactive” ones, in the reformulated
problem. However, in problem (20), we have not applied the reduction approach to
blocks j ∈ IN (x∗). Roughly speaking, our approach consists of defining a constraint
qualification that relaxes Robinson’s CQ to a constant rank-type condition, but only at
the constraints indexed by IR(x∗), which are the ones that are well-behaved enough
to be fully replaceable by a single real-valued constraint. As in the SOCP case, our
strategy for proving that this is indeed a constraint qualification is based on sequential
optimality conditions.

In [9], the AKKT condition was extended for SDP. Next, we present an adapted
version of it for problems with mixed NLP and SDP constraints, like (20):

Theorem 4 Let x∗ be a local minimizer of (20). Then, there exist AKKT sequences
{xk} ⊂ R

n, {λk} ⊂ R
p, {αk

j } ⊂ R+, and {μk
j } ⊂ S

m j
+ such that xk → x∗ and

∇ f (xk) + Jh(xk)T λk −
∑

j∈IN (x∗)
Jg j (xk)T μk

j

−
∑

j∈IR(x∗)
αk

j ∇σmin(g j (xk)) → 0, (21)

σi (g j (x∗)) > 0 ⇒ σi (μ
k
j ) → 0, i = 1, . . . , m j , ∀ j ∈ IN (x∗), (22)
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where σi (μ
k
j ) and σi (g j (x∗)) denote corresponding eigenvalues of μk

j and g j (x∗),
respectively, regarding ordered orthonormal eigenbasis {νi (μ

k
j )}

m j
i=1 and {νi (g j (x∗))}m j

i=1

such that νi (μ
k
j ) → νi (g j (x∗)) for all i = 1, . . . , m j and all j ∈ IN (x∗).

With this result at hand, we proceed in a similar manner to Definition 3 in order to
extend the Relaxed Constant Positive Linear Dependence (RCPLD) condition to SDP
via problem (20).

Definition 7 Let x∗ be feasible for problem (14) and let I ⊆ {1, . . . , p} be such that
{∇hi (x∗)}i∈I is a basis for the space spanned by {∇hi (x∗)}p

i=1. We say that Relaxed
Constant Positive Linear Dependence holds at x∗ when, for every J ⊆ IR(x∗), there
exists a neighborhood V of x∗ such that:

– {∇hi (x)}p
i=1 has constant rank for all x ∈ V ;

– If the system

Jh(x∗)T λ +
∑

j∈IN (x∗)
Jg j (x∗)T μ j +

∑

j∈J

α j∇σmin(g j (x∗)) = 0,

λ ∈ R
p, μ j � 0, ∀ j ∈ IN (x∗), α j ≥ 0, ∀ j ∈ J

has a nontrivial solution, then {∇hi (x)}i∈I ∪{∇σmin(g j (x))} j∈J is linearly depen-
dent for every x ∈ V .

Next, we show that RCPLD is a constraint qualification using AKKT sequences
(Theorem 4).

Theorem 5 Let x∗ be a feasible point of problem (14) satisfying the AKKT condi-
tion (21) and RCPLD stated in Definition 7. Then, the KKT conditions (15) hold at
x∗. In particular, RCPLD is a constraint qualification.

Proof Let {xk} → x∗, {λk} ⊂ R
p, {αk

j } ⊂ R+, and {μk
j } ⊂ S

m j
+ be sequences such

that (21) and (22) hold. By the constant rank assumption and the definition of I , the
set {∇hi (xk)}i∈I is a basis for the space spanned by {∇hi (xk)}p

i=1 when k is large
enough. Hence, for all such k, there are new scalars λ̃k ∈ R

|I | such that

p∑

i=1

λk
i ∇hi (xk) =

∑

i∈I

λ̃k
i ∇hi (xk),

for all k. Set λ̃k
i = 0 for all i /∈ I . So, Jh(xk)T λk = Jh(xk)T λ̃k for all k.

Also, thanks to Carathéodory’s Lemma (Lemma 1) in (21), for every fixed k there
is a nonempty subset J k ⊂ IR(x∗) such that {∇hi (xk)}i∈I

⋃{∇σmin(g j (xk))} j∈J k is
linearly independent and, consequently, (21) can be rewritten as follows

∇ f (xk) + Jh(xk)T λ̃k −
∑

j∈IN (x∗)
Jg j (xk)T μk

j −
∑

j∈J k

α̃k
j ∇σmin(g j (xk)) → 0,

(23)
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for some α̃k
j ≥ 0, where j ∈ J k . Note that in this process the scalars λ̃k

i , i ∈ I , also

changes, but we abuse the notation by still denoting them by λ̃k
i . Now, by the infinite

pigeonhole principle, we can assume, without loss of generality, that J k = J , for all
k ∈ N. That is, we can take a subsequence if necessary such that J k does not vary
with k.

Now, we claim that the sequences {λ̃k}, {μk
j }, j ∈ IN (x∗), and {α̃k

j }, j ∈ J are
bounded. Indeed, set

Mk := max{α̃k
j , j ∈ J ; ‖μk

j‖, j ∈ IN (x∗); ‖λ̃k‖}

and suppose that {Mk} is unbounded. This implies, by passing to a subsequence if
necessary, that

− λ̃k
i

Mk
→ λi ∈ R, i ∈ I ; μk

j

Mk
→ μ j ∈ Km j , j ∈ IN (x∗);

α̃k
j

Mk
→ α j ≥ 0, j ∈ J , with (λi , μ j , α j ) �= 0.

Then, by dividing (21) by Mk and passing to the limit, we contradict RCPLD.
Finally, let μ̄ j ∈ S

m j
+ ( j ∈ IN (x∗)), ᾱ j ≥ 0 ( j ∈ IR(x∗)), and λ̄, be limit points of

the sequences {μk
j } ( j ∈ IN (x∗)), {α̃k

j } ( j ∈ IR(x∗)), and {λ̃k}, respectively. Note that
these limit points are Lagrange multipliers associated with x∗. Indeed, by definition
of IR(x∗), we always have σmin(g j (x∗))ᾱ j = 0, for all j ∈ IR(x∗). So, for each
j ∈ IR(x∗) the matrix μ̄ j := ᾱ jνmin(g j (x∗))νmin(g j (x∗))T is positive semidefinite
and satisfies that Jg j (x∗)T μ̄ j = ᾱk

j ∇σmin(g j (xk)) (cf. (19)). Additionally, set μ̄ j := 0
when j is such that g j (x∗) � 0. Then, it follows from (21) that

∇ f (x∗) + Jh(x∗)T λ̄ −
�∑

j=1

Jg j (x∗)T μ̄ j = 0,

which together with (22) implies that g j (x∗) · μ̄ j = 0 for every j . The desired
result follows.

��
The CRSC condition can also be extended in a very similar manner. That is, we

treat the conic constraints that “look like equality constraints” near the feasible point
x∗, as equality constraints, which means it is not necessary to consider the rank-type
structure of every subset of their gradients, but only of one fixed set. To formalize our
analyses, we define the set

J−(x∗) :=
{

j0 ∈ IR(x∗)
∣
∣
∣ − ∇σmin(g j0 (x∗)) =

p∑

i=1

λi ∇hi (x∗) +
∑

j∈IR (x∗)

α j ∇σmin(g j (x∗)),

for some λi ∈ R, α j ≥ 0

}

,

(24)
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and the set J+(x∗) := IR(x∗)\J−(x∗). Now, the Constant Rank of the Subspace
Component (CRSC) constraint qualification for SDP is defined as follows:

Definition 8 Let x∗ be a feasible point of (2) and J−(x∗) ⊆ IR(x∗) be defined as
in (24). We also take I ⊆ {1, . . . , p} and J ⊆ J−(x∗) such that {∇hi (x∗)}i∈I ∪
{∇σmin(g j (x∗))} j∈J is a basis of the space spanned by the set {∇hi (x∗)}p

i=1 ∪
{∇σmin(g j (x∗))} j∈J−(x∗). We say that Constant Rank of the Subspace Component
(CRSC) condition holds at x∗ when there exists a neighborhood V of x∗ such that:

– {∇hi (x)}p
i=1 ∪ {∇σmin(g j (x))} j∈J−(x∗) has constant rank for all x in V ;

– the system

∑

i∈I

λi∇hi (x∗) +
∑

j∈IN (x∗)
Jg j (x∗)T μ j +

∑

j∈J∪J+(x∗)
α j∇σmin(g j (x∗)) = 0,

λi ∈ R, i ∈ I ; μ j ∈ S
m j
+ , j ∈ IN (x∗); α j ∈ R, j ∈ J ; α j ≥ 0, j ∈ J+(x∗),

has only the trivial solution.

It is possible to prove that CRSC is indeed a constraint qualification, but since
the proof follows from the same arguments provided in the proof of Theorem 5, it is
omitted. The next counterexample, analogous to Example 1, shows that CRSC and
RCPLD are strictly weaker than Robinson’s CQ.

Example 2 Consider the following pair of constraints:

g1(x) := 1

2

[
x + 1 x − 1
x − 1 x + 1

]

∈ S
2+, g2(x) := 1

2

[
1 − x −x − 1

−x − 1 1 − x

]

∈ S
2+

and the point x∗ = 0, which is the unique feasible point. The eigenvalues of
g1(x) are σmin(g1(x)) = x and σmax(g1(x)) = 1, with corresponding eigenvectors
νmin(g1(x)) = (1, 1)T and νmax(g1(x)) = (1,−1)T , respectively, for all x close to
x∗. With the same eigenvectors, the eigenvalues of g2(x) are σmin(g2(x)) = −x and
σmax(g2(x)) = 1, when x is close to x∗.

Also, note that σmin(g1(x∗)) and σmin(g2(x∗)) are both simple, which means the
reformulation of the problem as in (20) is simply an NLP problem.Moreover, we have
that ∇σmin(g1(x)) = 1, ∇σmin(g2(x)) = −1, for all x close enough to x∗ = 0. Then,
RCPLD and CRSC (with J−(x∗) = {1, 2} and, consequently, J+(x∗) = ∅ and J
equals either {1} or {2}) hold. However, Robinson’s CQ does not hold. Thus, RCPLD
and CRSC are strictly implied by Robinson’s CQ.

7 Conclusion

We have presented naive definitions of constant rank-type CQs for second-order cone
programming and semidefinite programming. The definition is naive in the sense that
no improvement is made with respect to irreducible constraints, where our definitions
resume to Robinson’s CQ. However, in general, our definitions are strictly weaker
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than Robinson’s CQ. In order to present a definition that takes into account the true
conic constraints, we expect that a much more involving implicit function approach or
Approximate-KKT approach would be needed, which is a subject of current research.
Note that, since augmented Lagrangian algorithms described in [4] and [9] generate an
AKKT sequence for SOCP (2) and SDP (14) problems, respectively, CQs introduced
in these notes are sufficient for showing global convergence to a KKT point without
assuming Robinson’s CQ.
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