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Abstract

Augmented Lagrangian algorithms are very popular and successful
methods for solving constrained optimization problems. Recently, the
global convergence analysis of these methods has been dramatically im-
proved by using the notion of sequential optimality conditions. Such con-
ditions are necessary for optimality, regardless of the fulfillment of any
constraint qualifications, and provide theoretical tools to justify stopping
criteria of several numerical optimization methods. Here, we introduce
a new sequential optimality condition stronger than the previous stated
in the literature. We show that a well-established safeguarded Powell-
Hestenes-Rockafellar (PHR) augmented Lagrangian algorithm generates
points that satisfy the new condition under a Lojasiewicz-type assump-
tion, improving and unifying all the previous convergence results. Fur-
thermore, we introduce a new primal-dual augmented Lagrangian method
capable of achieving such points without the Lojasiewicz hypothesis. We
then propose a hybrid method in which the new strategy acts to help
the safeguarded PHR method when it tends to fail. We show by pre-
liminary numerical tests that all the problems already successfully solved
by the safeguarded PHR method remain unchanged, while others where
the PHR method failed, are now solved with an acceptable additional
computational cost.
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1 Introduction

In this work, we deal with constrained optimization problems of the form

minimize f(x) subject to h(x) = 0, g(x) ≤ 0, (NLP)

where the functions f : Rn → R, h : Rn → Rm and g : Rn → Rp are continuously
differentiable functions.

Numerical methods for solving (NLP) are often iterative, and include stop-
ping criteria that indicate when the current iterate is close to a solution. In
practice, several optimization algorithms test the approximate fulfillment of the
Karush-Kuhn-Tucker (KKT) conditions. Such practice is theoretically justified
by the fact that every local minimizer of (NLP) is a limit point of certain se-
quences satisfying approximately the KKT conditions with tolerances going to
zero [3, 5, 12, 28]. It is worth noting that such approximations are possible even
at local minimizers where KKT fails. Thus, in addition to encompassing natu-
ral numerical approximations, such a strategy allows us to describe degenerate
minimizers. This idea leads to the notion of sequential optimality condition
which we discuss in detail in this work.

The KKT conditions may be approximated in different ways. One of the
most popular is to require that, for some sequences {xk} → x∗, {λk} ⊂ Rm,
{µk} ⊂ Rp+ and {εk} → 0, we have

‖∇L(xk, λk, µk)‖ ≤ εk and |min{−gj(xk), µkj }| ≤ εk, ∀j, ∀k, (1)

where L stands for the Lagrangian function. Condition (1) is known as ap-
proximate KKT (AKKT) [5, 17]. Such condition was useful to analyze the
global convergence of several methods for solving (NLP), see [3, 7] and refer-
ences therein. However, for some situations, (1) may lead to accept spurious
candidates as a possible solution: consider the problem

minimize (x1 − 1)2 + (x2 − 1)2 subject to x1 ≥ 0, x2 ≥ 0, x1x2 ≤ 0. (2)

Here, the only minimizers are (1, 0) and (0, 1), but any feasible point of (2) is
the limit of a sequence {xk} satisfying (1), see [3]. Thus, in theory, numerical
methods for solving (2) that use stopping criteria based on (1) may accept any
feasible point as a solution. As inexactness is a natural (perhaps inevitable)
issue in the numerical world, the way that we approximate stationarity becomes
an important question in the study of the theoretical convergence of practical
methods for solving (NLP). In particular, this issue is treated very recently in [8]
for a class of problems that includes (2).

Such observations lead to the search for sequential optimality conditions
that are stronger than (1), to avoid spurious points as much as possible. As (1),
As (1), we do not require any constraint qualification (CQ), that is, such con-
ditions are truly necessary for optimality. Also, they imply KKT conditions
under weaker CQs, and usually provide stopping criteria for different methods.
This property makes the sequential optimality conditions a useful tool for the
improvement of global convergence analysis of several NLP methods, including
augmented Lagrangian, sequential quadratic programming, interior-point and
inexact-restoration methods. See [6, 7, 10, 11, 28]. Furthermore, such concepts
have been extended beyond standard nonlinear programming as mathematical
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programs with complementary constraints [8, 29], semidefinite programming [9],
nonsmooth optimization [25] and multiobjective optimization [20].

Among the sequential optimality conditions for NLP, we mention the posi-
tive approximate KKT (PAKKT) [3] and the complementary approximate KKT
(CAKKT) [12] (see Definition 1). Both conditions improve the convergence anal-
ysis of augmented Lagrangian (AL) methods and, since they are independent to
each other, they capture different features of the minimizers. Using the PAKKT
condition, it was proved that accumulation points generated by the safeguarded
Powell-Hestenes-Rockafellar (PHR) augmented Lagrangian method are KKT
under the quasinormality CQ, see [3]. On the other hand, it was proved that
this method ensures CAKKT sequences under an additional hypothesis, namely,
that the quadratic measure of infeasibility associated with (NLP) satisfies a gen-
eralized Lojasiewicz (GL) inequality at the limit point [12] (see Section 3 for
the definition).

In this work we show that besides the safeguarded PHR AL method reaches
PAKKT and CAKKT points, the associated sequences have superior properties.
We start with a curious fact: there are situations where x∗ is both PAKKT and
CAKKT point, but there is no sequence that carries both properties simultane-
ously; on the other hand, the sequences generated by the algorithm ensure these
two qualities. In other words, the algorithm reaches points with superior prop-
erties than those guaranteed by previous results. To unify these convergence
results under the framework of sequential optimality conditions, we define a
new one that we call positive complementary approximate KKT (PCAKKT),
see Definition 2. Of course, PCAKKT is independent of algorithms, and poten-
tially can be used to prove convergence for other optimization methods. Fur-
thermore, motivated by the PCAKKT condition, we propose a new primal-dual
augmented Lagrangian method, one that employs a new augmented Lagrangian
function, defined below, in their subproblems.

Given ρ, ν > 0, λ̄ ∈ Rm and µ̄ ∈ Rp+, the proposed primal-dual augmented
Lagrangian function is

Lρ,ν,λ̄,µ̄(x, λa, µa) := f(x) +
ρ
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where λa ∈ Rm, µa ∈ Rp+, and ‖ ·‖ stands for the Euclidean norm. Here, λa and
µa can be interpreted as estimates of the Lagrange multiplier vectors for the
constraints h(x) = 0 and g(x) ≤ 0, respectively. The vectors λ̄ and µ̄ play the
role of safeguarded multipliers as in the safeguarded PHR AL method. At each
iteration, we solve approximately the problem of minimizing Lρ,ν,λ̄,µ̄(x, λa, µa)
subject to µa ≥ 0 (this justifies the name “primal-dual”). Observe that the
term in the right side of (3a) corresponds to the PHR augmented Lagrangian
function used in many successfully numerical methods as Lancelot [19] and
Algencan [2, 17]. In turn, the terms (3a)–(3b) correspond to the stabilized
primal-dual augmented Lagrangian function presented in [24] for equality con-
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straints used to develop a sequential quadratic programming (SQP) method [22].
For more details of this primal-dual augmented Lagrangian function, see [22, 24].
Finally, we consider the additional term (3c), which aims to control the fulfill-
ment of the complementary condition. To the best of our knowledge, it is new
in the literature.

The proposed method employs rules to control the growth of parameters ρ
and ν in (3). The idea is to increase ρ (respectively ν) only if the feasibility
(respectively complementarity) is not improved between consecutive iterations.
Thus, when everything “goes well”, we can expect to reduce the numerical insta-
bilities associated with a large parameter. This type of rule is used successfully
in the Algencan package [17]. We show that the new primal-dual method is ca-
pable of recovering PCAKKT points in the case that only one of ρ or ν remains
bounded. In particular, the term (3c) is treated separately from the others,
and there is, at least theoretically, the possibility to reach PCAKKT (and so
CAKKT) points without additional assumptions on the problem, even when ρ
tends to infinity. We recall that to obtain CAKKT points, the safeguarded PHR
AL method need the validity of GL inequality, already mentioned.

Preliminary numerical tests were performed. Although the proposed method
has good theoretical convergence results, their subproblems are more challenging
than those of PHR AL: they involve minimization in both primal and dual
variables. Furthermore, state-of-the-art solvers such as Algencan are effective
on a wide variety of problems. However, as expected, they occasionally fail.
Thus, hybrid strategies that try to overcome the difficulties encountered by
traditional algorithms are reasonable. For instance, in [14], the authors proposed
a hybrid second-order AL algorithm to solve a class of degenerate problems. This
algorithm employs second-order information only when first order stationarity
tends to fail, which leads to better results in some cases. In this sense, we
propose a hybridization of the safeguarded AL PHR with the proposed primal-
dual method. Our preliminary tests indicate that the hybrid strategy leads to an
improvement in convergence for some cases, while previously successfully solved
problems are maintained. Although the overall additional computational cost
with primal-dual iterations is not prohibitive, we believe that a specialized and
optimized implementation can perform much better. In fact, we solve primal-
dual subproblems using the standard inner solver of Algencan package, called
Gencan [15], which is an active-set algorithm with spectral gradients, and it is
optimized to handle the PHR augmented Lagrangian function, not (3).

1.1 Contributions and organization of the paper

We summarize our main contributions in the three topics below, covered in
separate sections throughout the paper:

� In Section 2, we present our new PCAKKT sequential optimality condition
motivated by the fact that common PAKKT and CAKKT sequences are
stronger than requiring these properties at limit points only. The relations
of PCAKKT with other conditions from the literature are presented, as
well as the least stringent CQ that ensures that a PCAKKT point is
KKT. We will show that this new CQ, called PCAKKT-regular, is strictly
implied by all other known CQs from the literature associated with the
convergence of algorithms;
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� In Section 3, we prove that the well-studied safeguarded PHR augmented
Lagrangian method reaches PCAKKT points under a mild hypothesis
known from the literature. Thus, we improve previous results regarding
this method;

� In Section 4, we present a new primal-dual augmented Lagrangian method
that employs (3). In particular, we show that the sequences generated by
this method are PCAKKT under very mild assumptions. In this sense,
the new method has stronger convergence properties than others from the
literature. Section 5 is devoted to numerical experience. We describe
the hybrid strategy in detail, discussing how we can use the primal-dual
iterations to improve the well established PHR AL method. We report
instances where such improvements have been observed.

Finally, Section 6 presents our conclusions and possibilities for future work.

1.2 Notation and terminology

Our notation is standard in optimization and variational analysis. The symbols
‖ · ‖ and ‖ · ‖∞ stand for the Euclidean and sup norms, respectively. We set
β+ := max{0, β} (β ∈ R) and z+ = ((z1)+, . . . , (zn)+) (z ∈ Rn). If y, z ∈ Rn
then y ∗ z = (y1z1, . . . , ynzn) ∈ Rn is the Hadamard product between y and z.
The orthogonal projection of z ∈ Rn onto the closed convex set C is denoted by
PC(z). The symbol β ↓ 0 means that β ≥ 0 and β → 0, while β ↓ 0+ stands for
β > 0 and β → 0. The Lagrangian function associated with (NLP) is

L(x, λ, µ) := f(x) + h(x)Tλ+ g(x)Tµ,

where λ ∈ Rm and µ ∈ Rp+ are the dual variables. The set of indexes of active
inequality constraints is denoted by Ig(x) = {j ∈ {1, . . . , p} | gj(x) = 0}. Given
a function q, ∇zq is its gradient with respect to z.

For a given set-valued mapping K : Rs ⇒ Rn, the sequential Painlevé-
Kuratowski outer/upper limit of K(z) as z → z∗ [30] is defined as the set

lim sup
z→z∗

K(z) = {y∗ ∈ Rn | ∃(zk, yk)→ (z∗, y∗) with yk ∈ K(zk), ∀k ∈ N}.

2 A new sequential optimality condition

In this section we define the proposed sequential optimality condition, called
Positive Complementary Approximate KKT (PCAKKT) condition. As every
reasonable sequential condition, (i) it is necessary for optimality independently
of the fulfillment of any CQ; (ii) it implies optimality conditions of the form
“KKT or not-CQ” for some CQs; and (iii) there are numerical methods for
solving (NLP) that generate sequences of iterates whose accumulation points
satisfy it. In this section, we show that the PCAKKT condition fulfills (i) and
(ii). Sections 3 and 4 are devoted to treat the third property.

2.1 The new optimality condition and its relation to other
ones from the literature

Here, we show that PCAKKT is an optimality condition and derive some im-
portant properties. First we recall the definitions of some useful sequential
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AKKT PAKKT CAKKT
KKT

min

Figure 1: Known sequential optimality conditions from literature. Some min-
imizers are not KKT, but they all satisfy any sequential optimality condition.
AKKT is the least stringent, while the more stringent conditions PAKKT and
CAKKT are independent of each other.

optimality conditions from the literature. They differ, essentially, in how com-
plementarity is approximated.

Definition 1. Let x∗ be a feasible point for (NLP). Suppose that there are
sequences {xk} ⊂ Rn, {λk} ⊂ Rm and {µk} ⊂ Rp+ such that

lim
k
xk = x∗ and lim

k
‖∇xL(xk, λk, µk)‖ = 0. (4)

We say that {xk} is

(i) [5] an Approximate KKT (AKKT) sequence if, additionally to (4),

lim
k
‖min{−g(xk), µk}‖ = 0. (5)

In this case, the limit x∗ is an AKKT point;

(ii) [12] a Complementary Approximate KKT (CAKKT) sequence if, addi-
tionally to (4), we have

lim
k
ck = 0 where ck :=

m∑
i=1

|λki hi(xk)|+
p∑
j=1

|µkj gj(xk)|, ∀k. (6)

In this case, x∗ is a CAKKT point;

(iii) [3] a Positive Approximate KKT (PAKKT) sequence if, additionally
to (4), condition (5) holds and

λki hi(x
k) > 0 if lim

k

|λki |
δk

> 0, µkj gj(x
k) > 0 if lim

k

µkj
δk

> 0, (7)

where δk := ‖(1, λk, µk)‖∞. In this case, x∗ is a PAKKT point.

Clearly, condition (6) implies (5), and thus CAKKT implies AKKT. It is
clear that PAKKT also implies AKKT, but it is known that CAKKT and
PAKKT are independent of each other [3]. All these implications, illustrated in
Figure 1, are strict.

An interesting issue is the following: Suppose that x∗ is simultaneously
CAKKT and PAKKT point. This means that there is a CAKKT sequence
converging to x∗ and a PAKKT sequence also converging to x∗. The question
is whether there is a common sequence that characterizes x∗ as CAKKT and
PAKKT point. Contrary to what we might expect, it is not true in general.
Curiously, it is possible that a point x∗ is characterized by two distinct sequences
{x̃k} and {x̄k}, one CAKKT and other PAKKT, without the existence of a
common sequence. Example 1 illustrates this situation.
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Example 1. Let us consider the problem

minimize
(x1 − 1)2

2
+

(x2 + 1)2

2
subject to x3

1x
3
2 ≤ 0, x2 ≤ 0, ex1 sin2 x2 ≤ 0.

The gradient of the Lagrangian function is

∇xL(x, µ) =

[
x1 − 1
x2 + 1

]
+ µ1

[
3x2

1x
3
2

3x3
1x

2
2

]
+ µ2

[
0
1

]
+ µ3

[
ex1 sin2 x2

2ex1 sinx2 cosx2

]
. (8)

Clearly, x∗ = (0, 0) is not a local minimizer and the KKT conditions fail at
x∗. On the other hand, it is easy to verify that x∗ is a CAKKT point with
the sequences defined by x̃k := (−1/k, 1/k), µ̃k := (k5/3, 0, 0) for all k ≥ 1.
Furthermore, x∗ is a PAKKT point by taking the sequences

x̄k := (1/k, −1/k) , µ̄k := (0, −1 + 2[tan(1/k)]−1, [e1/k sin2(1/k)]−1).

In fact, we have µ̄k3(ex̄
k
1 sin2 x̄k2) > 0, ∀k ∈ N, and limk µ̄

k
2/‖(1, µ̄k)‖∞ = 0.

Note that the nature of these two sequences is distinct: the CAKKT se-
quence is not PAKKT since µ̃k1 is the unique multiplier that tends to infinity
and µ̃k1(x̃k1)3(x̃k2)3 < 0 for all k ∈ N. We will show that this behaviour occurs
for any CAKKT sequence. That is, a CAKKT sequence can never be PAKKT.

Let {xk} be a CAKKT sequence with associated multiplier sequence {µk}.
Related to the third constraint, we have limk µ

k
3(ex

k
1 sin2 xk2) = 0. Now, from (8)

and limk∇xL(xk, µk) = 0, it follows that limk 3µk1(xk1)2(xk2)3 = 1. Thus, we can
suppose without loss of generality that xk2 > 0, ∀k. Moreover, as limk x

k = x∗ =
(0, 0), we have

µk1 →∞ and 0 < µk1(xk2)2 →∞. (9)

We continue by proving that limk µ
k
3/µ

k
1 = 0 and limk µ

k
2/µ

k
1 = 0. For the

first limit, we divide the first row of (8) by µk1(xk2)2 and take the limit. Thus,
using (9) and limk∇xL(xk, µk) = 0, we obtain

xk1 − 1

µk1(xk2)2
+ 3(xk1)2xk2 −

µk3
µk1
ex

k
1

(
sinxk2
xk2

)2

→ 0.

Since limk x
k = (0, 0), we conclude that limk µ

k
3/µ

k
1 = 0. Analogously, dividing

the second row of (8) by µk1 , taking the limit and using (9), we obtain

xk2 + 1

µk1
+ 3(xk1)3(xk2)2 +

µk2
µk1

+ 2
µk3
µk1
ex

k
1 sinxk2 cosxk2 → 0.

So, as limk µ
k
3/µ

k
1 = 0 and limk x

k = 0, we get limk µ
k
2/µ

k
1 = 0.

Thus, since limk µ
k
2/µ

k
1 = limk µ

k
3/µ

k
1 = 0, condition (7) of the PAKKT def-

inition does not take into account the multipliers {µk2} and {µk3}. Furthermore,
we have ‖(1, µk)‖∞ = µk1 for all k sufficiently large, giving limk µ

k
1/‖(1, µk)‖∞ =

1. To see that {xk} is not a PAKKT sequence, note that µk1(xk1)3(xk2)2 < 0 for
all k large enough, because otherwise, conditions µk ≥ 0 and xk2 > 0, ∀k, would
imply that the second row of (8) would be greater than 1 for all k large enough,
contradicting limk∇xL(xk, µk) = 0.
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The difference between considering points and sequences when dealing with
PAKKT and CAKKT conditions, as illustrated by Example 1, motivates us
to define a new sequential optimality condition. This new condition consists
exactly in the existence of a sequence {xk} converging to x∗ which is simulta-
neously CAKKT and PAKKT.

Definition 2. We say that a feasible point x∗ for (NLP) is a Positive Comple-
mentary Approximate KKT (PCAKKT) point if there are sequences {xk} ⊂ Rn,
{λk} ⊂ Rm and {µk} ⊂ Rp+ such that (4), (6) and (7) hold. In this case, {xk}
is called a PCAKKT sequence.

From Definition 2, it is obvious that every PCAKKT point is a CAKKT
one. Furthermore, it is also a PAKKT point since (6) implies (5). We stress
that these implications are strict (see Figure 2). In particular, the origin in
Example 1 is not a PCAKKT point. That is, the PCAKKT condition is more
than the fulfillment of the CAKKT and PAKKT conditions simultaneously.

The next theorem says that PCAKKT is a legitimate necessary optimality
condition. It can be proved using the external penalty theory, as in [12, The-
orem 3.3] and [3, Theorem 2.2]. The adaptation of these results to our case is
straightforward and therefore we omit it.

Theorem 1. PCAKKT is a necessary optimality condition for (NLP), that is,
every local minimizer of (NLP) is a PCAKKT point.

It is known that a KKT point is PAKKT [3, Lemma 2.6]. Moreover, a
KKT point x∗ with multiplier vector (λ∗, µ∗) is trivially CAKKT taking the
constant sequences {xk := x∗} and {(λk, µk) := (λ∗, µ∗)}. Next we show that,
as expected, every KKT point is PCAKKT.

Theorem 2. Every KKT point x∗ of (NLP) is PCAKKT.

Proof. We will show that there is a PCAKKT sequence associated with x∗. By
the proof of [3, Lemma 2.6], we can find a PAKKT sequence {xk} converging
to x∗ such that the corresponding sequence of multipliers is bounded. The
boundedness of the multipliers implies that {xk} is also a CAKKT sequence
with the same sequence of multipliers. Thus, x∗ is a PCAKKT point.

It is worth mentioning that PCAKKT sequences, since they are simultane-
ously a PAKKT and CAKKT sequence, inherit all good properties of the these
conditions. For instance, we may highlight two of them already presented in
the literature:

� PCAKKT sequences have bounded dual sequences under the quasinor-
mality CQ [3, Theorem 4.7];

� PCAKKT sequences are sufficient for global optimality in convex problems
[12, Theorem 4.2].

Another known sequential optimality condition is the approximate gradient
projection (AGP) condition introduced in [28], which is useful in the convergence
analysis of inexact restoration algorithms [13, 21, 27].
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PCAKKT PAKKT+CAKKT

PAKKT+AGP

CAKKT

AGPPAKKT

AKKT

Figure 2: Landscape of sequential optimality conditions for constrained opti-
mization. An arrow indicate a strict implication between two conditions.

Definition 3. We say that a feasible x∗ for (NLP) is an AGP point if there is
a sequence {xk} ⊂ Rn converging to x∗ such that

PΩ(xk)(−∇f(xk))→ 0,

where PΩ(xk) is the orthogonal projection onto

Ω(xk) :=

{
d ∈ Rn

∣∣∣ ∇hi(xk)T d = 0, i = 1, . . . ,m
min{0, gj(xk)}+∇gj(xk)T d ≤ 0, j ∈ Ig(x∗)

}
.

In this case, {xk} is called an AGP sequence.

Inspired by Example 1, we can establish the relationship between PCAKKT
and “PAKKT + AGP” (saying that a point is simultaneously PAKKT and
AGP makes sense because these conditions are independent to each other [3]).
Indeed, as CAKKT implies AGP [12], Example 1 also shows that PCAKKT is
stronger than “PAKKT+AGP”. Figure 2 summarizes all the relations discussed
here.

We finish this subsection with an alternative definition of the AGP condition,
which will be useful for future discussions, especially for the convergence analysis
of our primal-dual augmented Lagrangian method presented in Section 4. A
similar statement was obtained in [4] for inequality constraints only.

Theorem 3. Let x∗ be a feasible point of (NLP). Then, the AGP condition
holds at x∗ iff there exist sequences {xk} ⊂ Rn, {λk} ⊂ Rm and {µk} ⊂ Rp+
such that (4), (5) hold, and limk µ

k
j min{0, gj(xk)} = 0 for all j ∈ Ig(x∗).

Proof. Assume that there are sequences {xk} ⊂ Rn, {λk} ⊂ Rm and {µk} ⊂ Rp+
such that (4) and (5) hold and limk µj min{0, gj(xk)} = 0, j ∈ Ig(x∗). Define
dk := PΩ(xk)(−∇f(xk)), which is the unique solution of

minimize
1

2
‖ − ∇f(xk)− d‖2 subject to d ∈ Ω(xk). (10)

Since 0 ∈ Ω(xk), we have ‖∇f(xk) + dk‖2 ≤ ‖∇f(xk)‖2, which implies ‖dk‖2 ≤
−2∇f(xk)T dk. On the other hand, multiplying the expression

∇xL(xk, λk, µk) = ∇f(xk) +∇h(xk)λk +∇g(xk)µk

by dk we obtain, since dk ∈ Ω(xk) and µkj = 0, j 6∈ Ig(x∗),

‖dk‖2 ≤ −2(dk)T∇f(xk) ≤ −2(dk)T∇xL(xk, λk, µk)−2
∑

j∈Ig(x∗)

µkj min{0, gj(xk)}
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for all k large enough. Taking the limit we have dk → 0, and thus AGP condition
holds at x∗. The converse follows from the KKT conditions for the problem (10)
at dk (note that KKT conditions hold since dk is a minimizer and Ω(xk) is
defined by linear constraints).

2.2 Strength of the new sequential optimality condition

In this subsection, we are interested in the sufficient assumptions that ensure
that a PCAKKT point is actually a KKT one for every smooth problem (NLP).
We refer to the least stringent of such assumptions by strict constraint qualifi-
cation (SCQ). Note that, in view of Theorem 1, the SCQ associated with the
sequential optimality condition PCAKKT is a constraint qualification. Inspired
by the SCQs for AKKT, CAKKT and PAKKT, namely, AKKT-regular (also
known as Cone Continuity Property – CCP) [10, 11], CAKKT-regular [11] and
PAKKT-regular [3] respectively, we provide in the sequel the SCQ associated
to PCAKKT, that we will call PCAKKT-regular.

First, note that the KKT conditions hold at the feasible point x∗ if, and
only if, −∇f(x∗) ∈ K(x∗), where K(x) is the convex closed cone defined as

K(x) := {R(x, λ, µ) | (λ, µ) ∈ Rm × Rp+, µj = 0 for j 6∈ Ig(x∗) }

(x∗ will be clear in the context), where

R(x, λ, µ) :=

m∑
i=1

λi∇hi(x) +

p∑
j=1

µj∇gj(x).

Now, we turn our attention to the SCQ for PCAKKT. Fixed x∗, we define for
given x ∈ Rn, α, β, σ ≥ 0, the set

KPC(x, α, β, σ) := {R(x, λ, µ) | (λ, µ) ∈M(x, α, β, σ) },

where M(x, α, β, σ) is the set of all (λ, µ) ∈ Rm × Rp+ such that µj = 0 for all
j 6∈ Ig(x∗) and

λihi(x) ≥ α if |λi| > β‖(1, λ, µ)‖∞, (11a)

µjgj(x) ≥ α if µj > β‖(1, λ, µ)‖∞ and j ∈ Ig(x∗), (11b)
m∑
i=1

|λihi(x)|+
∑

j∈Ig(x∗)

|µjgj(x)| ≤ σ. (11c)

The set KPC mimics the shape of multipliers in the PCAKKT definition, and
it is not difficult to see that KPC(x∗, 0, 0, 0) = K(x∗). To define our PCAKKT-
regular condition, consider the set

lim sup
x→x∗, α↓0+, β↓0, σ↓0

KPC(x, α, β, σ) =

{
ω ∈ Rn

∣∣∣ ∃(xk, ωk)→ (x∗, ω), αk ↓ 0+, βk ↓ 0, σk ↓ 0
with ωk ∈ KPC(xk, αk, βk, σk),∀k ∈ N

}
.

Definition 4. A feasible point x∗ for (NLP) satisfies the PCAKKT-regular
condition if

lim sup
x→x∗, α↓0+, β↓0, σ↓0

KPC(x, α, β, σ) ⊂ KPC(x∗, 0, 0, 0).
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g1(x) ≤ 0

g2(x) ≤ 0

x̄k

xk
x∗

x̃k

K(x∗)

Figure 3: Geometric interpretation of PCAKKT-regularity. Consider the
point x∗ = (0, 0) and the constrained set given by the functions g1(x) =
(x1−2)2+(x2+6)2−40 ≤ 0 and g2(x) = (x1+2)2+(x2+6)2−40 ≤ 0. Three dif-
ferent sequences converge to x∗ = (0, 0): {xk}, which violates the first constraint
and satisfy the second; {x̃k}, which violates both; and {x̄k}, which satisfies both.
K(·), KP (·, α, β) and KC(·, σ) are represented, respectively, by the regions filled
with lines, by the regions delimited by strong dashed lines, and by the shaded ar-
eas (here β = 0 for simplicity); we have KPC(·, α, β, σ) ⊂ KP (·, α, β)∩KC(·, σ).
All of these sets converge to the limit cone K(x∗): K takes into account both
gradients ∇g1(x∗) and ∇g2(x∗), those of the active constraints at x∗; KP con-
siders only those gradients associated with violated constraints at intermediate
points of the sequences (∇g1 for {xk}; ∇g1 and ∇g2 for {x̃k}; and none for
{x̄k}); and KC is “truncated” in a fashion that depends on the magnitude of σ
and how close the constraints are to zero. The set KPC encompasses these two
properties.

PCAKKT-regularity is inspired by the related conditions CAKKT-
regular [11] and PAKKT-regular [3]. Each of them consists in an outer
semicontinuity-like condition at x∗, just like that of Definition 4, of the sets

KC(x, σ) := {R(x, λ, µ) | (11c), µj = 0 for j 6∈ Ig(x∗)} and

KP (x, α, β) := {R(x, λ, µ) | (11a), (11b), µj = 0 for j 6∈ Ig(x∗)},

respectively. See [3, 11] for details. Note thatKC(x∗, 0) = KP (x∗, 0, 0) = K(x∗)
and KPC(x, α, β, σ) ⊂ KP (x, α, β)∩KC(x, σ). Figure 3 gives a geometric view
of these conditions.

Next we prove that PCAKKT-regular is the weakest SCQ for PCAKKT, in
the sense that it is for PCAKKT just as Guignard’s CQ is for KKT.

Theorem 4. Every PCAKKT point that satisfies PCAKKT-regularity is KKT.
Reciprocally, if a PCAKKT point x∗ is also KKT, for every smooth objective
function f, then x∗ satisfies the PCAKKT-regularity condition.

Proof. Let x∗ be a PCAKKT point of (NLP) with the corresponding sequences
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{xk} ⊂ Rn, {λk} ⊂ Rm and {µk} ⊂ Rp+. Assume that µkj = 0, ∀j /∈ Ig(x∗).
Thus, in view of (4), we have limk(∇f(xk)+ωk) = 0 where ωk := R(xk, λk, µk).
Let us show that ωk ∈ KPC(xk, αk, βk, σk) for some αk, βk, σk ≥ 0 converging to
zero. Define δk := ‖(1, λk, µk)‖∞, for k ∈ N, and the sets I+ := {i ∈ {1, . . . ,m} |
limk |λki |/δk > 0}, J+ := {j ∈ {1, . . . , p} | limk µ

k
j /δk > 0} (these sets are well-

defined and independent of k, after taking a subsequence if necessary). For all
k, define

αk := min
{

1/k , min
i∈I+
{λki hi(xk)} , min

j∈J+
{µkj gj(xk)}

}
, (12)

βk := max
{

1/k , max
i/∈I+
|λki |/δk , max

j /∈J+
µkj /δk

}
and σk := ck, (13)

where ck is as in (6). From conditions (6) and (7), we have αk ↓ 0+ and σk ↓ 0.
Furthermore, by the definitions of I+ and J+, we have βk ↓ 0. Given k ∈ N,
consider an index i such that |λki | > βkδk. Since δk > 0, from (13) we obtain
|λki |/δk > βk ≥ maxt/∈I+ |λkt |/δk and thus i ∈ I+. Using (12), we conclude

that λki hi(x
k) ≥ αk, which means that (11a) is satisfied for these sequences.

Analogously we show that such sequences also satisfy (11b). Since (11c) is
immediate, we conclude that ωk ∈ KPC(xk, αk, βk, σk). Therefore, using the
hypothesis that x∗ is PCAKKT-regular, we obtain

−∇f(x∗) = lim
k
ωk ∈ lim sup

x→x∗, α↓0+, β↓0, σ↓0
KPC(x, α, β, σ) ⊂ KPC(x∗, 0, 0, 0).

But, since KPC(x∗, 0, 0, 0) = K(x∗), we conclude that x∗ is a KKT point.
Conversely, let x∗ be a feasible point such that whenever x∗ is PCAKKT

point for some objective function then the KKT conditions hold at x∗. Here,
we will show that PCAKKT-regularity holds at x∗. For this purpose, take ω ∈
lim supx→x∗, α↓0+, β↓0, σ↓0K

PC(x, α, β, σ). Then, there exist sequences xk → x∗,

ωk → ω, αk ↓ 0+, βk ↓ 0 and σk ↓ 0 such that ωk ∈ KPC(xk, αk, βk, σk). In
turn, there are sequences {λk} ⊂ Rm and {µkj } ⊂ R+, j ∈ Ig(x

∗), such that

ωk = R(xk, λk, µk) and (11a)–(11c) hold. Define µkj = 0 for all j /∈ Ig(x∗) and

k ∈ N, and take f(x) = −ωTx. We claim that x∗ is a PCAKKT point for this
f . Indeed, we have immediately (4). Moreover, (6) follows from (11c) and the
fact that µkj = 0 for j /∈ Ig(x∗). Finally, if limk |λki |/δk > 0, we have |λki | > βkδk
for all k sufficiently large. So, by (11a), we conclude that λki hi(x

k) ≥ αk > 0.
The same reasoning shows that µki gi(x

k) > 0 if limk µ
k
i /δk > 0. Therefore (7)

holds, and x∗ is PCAKKT. We then conclude that x∗ is a KKT point and thus
ω = −∇f(x∗) ∈ K(x∗) = KPC(x∗, 0, 0, 0), which implies that the PCAKKT-
regular condition holds at x∗.

By Theorems 1 and 4, it follows that every local minimizer of (NLP) that is
PCAKKT-regular is actually a KKT point, that is, we have the following result.

Corollary 1. The PCAKKT-regular condition is a constraint qualification.

By [11, Theorem 2], CAKKT-regularity holds at x∗ iff for every continuously
differentiable objective function for which x∗ is CAKKT, we have that the KKT
conditions hold at x∗. Since PCAKKT implies CAKKT, and using the char-
acterization given by Theorem 4, we conclude that CAKKT-regularity implies
PCAKKT-regularity. Using a similar reasoning and [3, Theorem 2.4], we also
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have that PAKKT-regularity implies PCAKKT-regularity. These implications
are strict, since the sequential optimality condition PCAKKT strictly implies
each of conditions CAKKT and PAKKT. See Figure 4.

To complete the landscape of CQs known in the literature, we will show
that PCAKKT-regularity is stronger than the Abadie’s CQ. We say that the
Abadie’s CQ holds at a feasible x∗ if the tangent cone to the feasible set F
of (NLP) at x∗ given by

T (x∗) := {d ∈ Rn | there exist tk ↓ 0, dk → d with x∗ + tkdk ∈ F , k ∈ N},

coincides with its linearization cone

L(x∗) := {d ∈ Rn | ∇hi(x∗)T d = 0,∀i, ∇gj(x∗)T d ≤ 0, j ∈ Ig(x∗)}.

Theorem 5. PCAKKT-regularity implies Abadie’s CQ.

Proof. The statement can be obtained by similar arguments of the proof of [11,
Theorem 6], which uses [11, Lemma 2]. We note that the proof of this lemma
provides multipliers defined by λk = kh(xk) and µk = kg(xk)+ (they also appear
in [10, Lemma 4.3]). Thus, λk and µk have the same sign of their corresponding
constraints, and furthermore, µkj = 0 for all k large enough whenever j 6∈ Ig(x∗),
and ωk ∈ KPC(xk, αk, βk, σk) for the sequences αk ↓ 0+ and βk ↓ 0 defined
by (12) and (13). Note that we can suppose that αk > 0 for all k since it is
possible to extract a subsequence of {xk} so that λki = khi(x

k) 6= 0, ∀i ∈ I+
and µkj = kgj(x

k)+ > 0, ∀j ∈ J+.

The implication in Theorem 5 is strict, as the next example shows.

Example 2 (Abadie’s CQ does not imply PCAKKT-regularity). Consider the
point x∗ = (0, 0), and the inequality constraints of Example 4 of [3]

g1(x) = −x2
1 + x2, g2(x) = −x2

1 − x2, g3(x) = −x5
1 + x2,

g4(x) = −x5
1 − x2 and g5(x) = −x1.

It was shown in [3] that Abadie’s CQ holds at x∗, and that K(x∗) = R− × R.
To see that x∗ is not PCAKKT-regular, consider ω∗ := (1, 0) /∈ K(x∗). For
all k ≥ 1, define the sequences xk := (−1/k, 0), µk := (k/4, k/4, k3, k3, 0),
αk := 1/k2, βk := 1/k, σk :=

∑
j∈Ig(x∗) |µkj gj(xk)| = (1/2k) + (2/k2),

and ωk :=
∑5
j=1 µ

k
j∇gj(xk). Straightforward calculations show that ωk ∈

KPC(xk, σk, αk, βk) for all k; αk, βk, σk → 0 and ωk → ω∗. Thus, PCAKKT-
regularity fails at x∗.

Figure 4 shows some relations between several CQs in the literature. Note
the unifying role of the PCAKKT-regular condition. For other CQs considered
in the figure, see [11] and references therein. Since PCAKKT-regularity is less
stringent than P/CAKKT-regularity, we can use it to establish an algorithm
with better convergence properties than others from the literature, by proving
that such an algorithm generates PCAKKT points. We dedicate the rest of the
paper to the study of algorithms with this property.
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Abadie’s CQ

Figure 4: Relations between the several CQs in the literature. An arrow indicate
a logical strict implication between two CQs.

3 Convergence of the safeguarded PHR AL
method using PCAKKT

In recent years, the global convergence analysis of AL methods has been dra-
matically improving by the use of sequential optimality conditions and weak
CQs, see [1, 2, 3, 12, 17] and references therein. Here, we show that the new
sequential optimality condition can be useful in the global convergence of the
augmented Lagrangian method proposed in [2] (see Algorithm 1 below). As
done in [12], we use the following generalization of the Lojasiewicz inequality:
we say that a continuously differentiable function Φ : Rn → R satisfies the
generalized Lojasiewicz (GL) inequality at x∗ if there is an open neighbourhood
B(x∗) and a continuous function ϕ : B(x∗)→ R such that limx→x∗ ϕ(x) = 0 and,
for all x ∈ B(x∗), |Φ(x)− Φ(x∗)| ≤ ϕ(x)‖∇Φ(x)‖. This condition roughly says
that, in the case of ∇Φ(x∗) = 0, the functional value Φ(x) approaches Φ(x∗)
faster than its gradient vanishes when x converges to x∗. It is worth mentioning
that the GL condition is a generalization of the Lojasiewicz inequality, which
corresponds to choosing ϕ(x) = c|Φ(x)− Φ(x∗)|1−θ for certain constants c > 0
and θ ∈ (0, 1). For further discussion and examples, see [12, 18] and references
therein.

Now, we will proceed to analyze Algorithm 1 below for solving (NLP). It
makes use of the PHR augmented Lagrangian function

LPHR
ρ,λ̄,µ̄(x) := f(x) +

ρ

2

∥∥∥∥h(x) +
λ̄

ρ

∥∥∥∥2

+
ρ

2

∥∥∥∥(g(x) +
µ̄

ρ

)
+

∥∥∥∥2

. (14)

Theorem 6. Let x∗ be a feasible accumulation point of the sequence {xk}
generated by Algorithm 1. Suppose that the “measure of infeasibility”

Φ(x) := ‖h(x)‖2 + ‖g(x)+‖2

satisfies the GL inequality at x∗. Then, x∗ is a PCAKKT point, and therefore
a KKT one under the PCAKKT-regularity condition.
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Algorithm 1 (Safeguarded) PHR augmented Lagrangian method

Let λmin < λmax, µmax > 0, γ > 1, ρ1 > 0, τ ∈ (0, 1). Let {εk} ⊂ R+ be a
sequence of positive scalars with lim εk = 0. Choose λ̄1 ∈ [λmin, λmax]m and
µ̄1 ∈ [0, µmax]p. Initialize with k ← 1.

Step 1 (Solving the subproblems). Find an approximate minimizer xk of
LPHR
ρk,λ̄k,µ̄k(x), i.e., compute a point xk satisfying ‖∇xLPHR

ρk,λ̄k,µ̄k(xk)‖∞ ≤ εk.

Step 2 (Update the penalty parameter). Define

Vk := max{ ‖h(xk)‖∞ , ‖min{−g(xk), µ̄k/ρk}‖∞ }.

If k > 1 and Vk ≤ τVk−1, set ρk+1 := ρk. Otherwise, take ρk+1 ≥ γρk.

Step 3 (Estimate new projected multipliers). Choose λ̄k+1 ∈ [λmin, λmax]m,
µ̄k+1 ∈ [0, µmax]p, k ← k + 1 and go to Step 1.

Proof. The proof follows from the results in [3, 12]. Let {λk} and {µk} be the
associated dual sequences generated by Algorithm 1. When {(λk, µk)} has a
bounded subsequence, we may take a subsequence such that λk and µk converge
to λ and µ, respectively. Thus, x∗ is a KKT point, and hence x∗ is a PCAKKT
by Theorem 2.

Now, suppose that {(λk, µk)} does not have a bounded subsequence.
From [3, Theorem 4.1], there is a subsequence {xk}k∈K which is a PAKKT
sequence. Furthermore, by the proof of [12, Theorem 5.1], we can extract a
further subsequence of {(xk, λk, µk)}k∈K conforming the definition of CAKKT.
Thus, the final subsequence satisfies the requirements of the PCAKKT condi-
tion.

Remark. Algorithm 1 resembles the external penalty method when the penalty
parameter goes to infinity since its subproblems use the bounded multipliers es-
timates computed in Step 3. However, when we are able to choose the pro-
jected multipliers λ̄k+1 and µ̄k+1 as the real estimates given by gradient of (14),
λ̄k + ρkh(xk) and [µ̄k + ρkg(xk)]+, respectively; Algorithm 1 behaves like the
classical augmented Lagrangian algorithm. Therefore, to avoid truncating the
multipliers, in practice, it is common to project the multiplier estimates into
a large bounded set. For instance, the projected multipliers can be taken as
λ̄k+1 = P[λmin,λmax]m(λ̄k + ρkh(xk)) and µ̄k+1 = P[0,µmax]p([µ̄k + ρkgj(x

k)]+),
where λmin = −1030 and λmax = µmax = 1030. Thus, from the practical point
of view, safeguards are not a limitation, on the contrary, they can be beneficial
[26]. It is worth noting that this strategy and parameters for updating projected
multipliers in Step 3 are used in our tests. See Section 5 for details. We leave the
projected multipliers in Step 3 of Algorithm 1 free because the theory presented
here covers any choice.

Theorem 6 provides the strongest result about the global convergence of the
AL method that we are aware of. Furthermore, Example 1 says that Theorem 6
implies more than the mere fulfillment of the PAKKT and CAKKT conditions
simultaneously. Thus, Theorem 6 improves and unifies the convergence results
of [3] and [12], under the GL assumption. Anyway, PCAKKT unifies two
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branches of the sequential optimality conditions concerning the convergence
of Algorithm 1, one related to the approximate fulfillment of the (enhanced)
Fritz-John condition (i.e., PAKKT), and the other related to the approximate
fulfillment of the KKT conditions (CAKKT). See Figure 2.

The fulfillment of the GL inequality of the infeasibility measure Φ(x) is a
very general property and it is satisfied for a broad family of mappings which
encompass analytic and semi-algebraic functions, see [18] and references therein.
Besides the applicability of the assumptions and due to the possibility of the
(P)CAKKT condition avoids undesirable non-minimizers, it is natural to ask for
general-purpose methods for solving (NLP) with such convergence properties
without imposing the GL inequality. Following this line of research, an inter-
esting new method with good properties is presented in [23]. The method con-
sists of the minimization of a shifted primal-dual penalty-barrier merit function,
and their subproblems are solving by an interesting modification of Newton’s
method. The convergence analysis is done by means of a sequential optimality
condition, that the authors also called complementary AKKT (CAKKT). How-
ever, although the proposed optimality condition is inspired by the CAKKT
definition originally presented in [12] (see Definition 1), it is weaker than that.
Indeed, to fit the formulation to the barrier method considered, the authors con-
sider the problem (NLP) with only inequality constraints, which, after inserting
slack variables, takes the form

minimizex,s f(x) subject to g(x) = s, s ≤ 0.

Therefore, they define their sequential optimality condition using this problem
in the following way: a feasible point (x∗, s∗) satisfies the CAKKT condition (in
the sense of [23, Definition 4.1]) if there are sequences {xk} ⊂ Rn, {sk} ⊂ Rp,
{µk} ⊂ Rp and {zk} ⊂ Rp+ such that xk → x∗, sk → s∗ = g(x∗),

∇f(xk) +∇g(xk)µk → 0, µk − zk → 0 and zkj s
k
j → 0, ∀j ∈ Ig(x∗). (15)

In the sequel, we show that not only (15) is weaker than the original CAKKT
condition (Definition 1) for problem (NLP) with inequality constraints only, but
it is actually strictly weaker than the less stringent AGP condition (Definition 3).
See Figure 2.

Indeed, if x∗ is an AGP point for (NLP) with only inequality constraints,
by Theorem 3 there exist sequences {xk} ⊂ Rn, {µk} ⊂ Rp+ such that xk → x∗,
limk∇xL(xk, µk) = 0 and limk µ

k
j min{0, gj(xk)} = 0. Then, (15) holds by

choosing zk := µk ≥ 0 and sk := min{0, g(xk)}. That is, AGP implies (15).
Secondly, this implication is strict, as the next example shows.

Example 3. Consider the bidimensional problem

minimize
1

2
(x2 − 2)2 subject to − x1 ≤ 0, x1x2 ≤ 0.

We affirm that x∗ = (0, 1) is not an AGP point. Otherwise, by Theorem 3,
there would be sequences {xk} ⊂ R2 and {µk} ⊂ R2

+ such that xk → (0, 1),
µk1 min{0,−xk1} → 0, µk2 min{0, xk1xk2} → 0 and

∇xL(xk, µk) =

[
0

xk2 − 2

]
+ µk1

[
−1

0

]
+ µk2

[
xk2
xk1

]
→ 0. (16)
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In this case, as xk2 → 1, we have µk2x
k
1 → 1, which in turn implies µk2x

k
1x

k
2 → 1

and xk1 > 0 for all k large enough. Now, multiplying the first row of (16) by xk1
and taking the limit, we get µk1x

k
1 → 1, which contradicts µk1 min{0,−xk1} → 0.

To prove that (15) holds at x∗, consider the sequences x̄k := (−1/k, 1),
z̄k := µ̄k := (k, k) ≥ 0, s̄k := (1/k2, 1/k2). Clearly, x̄k → x∗ = (0, 1) and
s̄k → s∗ = (0, 0). Finally, it is straightforward to verify that, for each k,
∇xL(x̄k, µ̄k) = 0, µ̄k − z̄k = 0 and z̄kj s̄

k
j = 1/k → 0,∀j.

Supported by the PCAKKT condition, we propose in the next section a new
method based on the augmented Lagrangian function (3).

4 A new shifted primal-dual method

In this section, we present our new augmented Lagrangian method and its
convergence properties. We consider the penalty-like augmented Lagrangian
function (3) that carries the complementarity, bringing it to the minimization
phase of the algorithm. Deriving (3), we obtain

∇xLρ,ν,λ̄,µ̄(x, λa, µa) = ∇f(x) +∇h(x)λ+∇g(x)µ; (17)

∇λaLρ,ν,λ̄,µ̄(x, λa, µa) = ν[λa ∗ h(x)] ∗ h(x)−
[
h(x) +

λ̄− λa

ρ

]
;

∇µaLρ,ν,λ̄,µ̄(x, λa, µa) = ν[µa ∗ g(x)]+ ∗ g(x)−
[
g(x) +

µ̄− µa

ρ

]
+

+
µa

ρ
.

where the associated Lagrange multipliers in (17) are given by

λ = [ρh(x) + λ̄] + [ρh(x) + λ̄− λa] + ν[λa ∗ h(x)] ∗ λa,
µ = [ρg(x) + µ̄]+ + [ρg(x) + µ̄− µa]+ + ν[µa ∗ g(x)]+ ∗ µa ≥ 0.

We present our method in Algorithm 2. The kth iteration consists of
finding an approximate solution (x, λa, µa) for the problem of minimizing
Lρk,νk,λ̄k,µ̄k(x, λa, µa) subject to µa ≥ 0. It is straightforward to verify that
the KKT conditions can be written using the so-called projected gradient GP ,
given by

GkP (x, λa, µa) := PΩ

(
(x, λa, µa)−∇Lρk,νk,λ̄k,µ̄k(x, µa)

)
− (x, λa, µa),

where PΩ(z) is the orthogonal projection of z onto Ω := Rn×Rm×Rp+. Indeed,
the KKT conditions can be written as GkP (x, λa, µa) = 0, that is,

‖∇xLρk,νk,λ̄k,µ̄k(x, λa, µa)‖∞ = 0, ‖∇λaLρk,νk,λ̄k,µ̄k(x, λa, µa)‖∞ = 0 and∥∥∥[µa −∇µaLρk,νk,λ̄k,µ̄k(x, λa, µa)
]
+
− µa

∥∥∥
∞

= 0.

Let us highlight some aspects of Algorithm 2:

� Differently from other augmented Lagrangian methods (for instance, that
of Section 3), in Step 1 we compute a primal-dual pair instead of only
xk. On the other hand, the (bounded) estimate multipliers used in safe-
guarded methods are present. Although there is no guarantee that {λa,k}
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Algorithm 2 Primal-dual augmented Lagrangian method

Let λmin < λmax, µmax > 0, γ > 1, τ, a, θ ∈ (0, 1), {Mk} ⊂ R+ be a bounded
sequence and {εk} ⊂ R+ be a sequence such that limk→∞ εk = 0.

Take λ̂1 ∈ [λmin, λmax]m, µ̂1 ∈ [0, µmax]p, τ1 > 0, ρ1 > 0, ν1 > 1, ζmax1 ∈ (0, 1).

Initialize with k ← 1, λ̄1 := λ̂1/ν1 and µ̄1 := µ̂1/ν1.

Step 1 (Solving the subproblems). Find an approximate minimizer
(xk, λa,k, µa,k) of Lρk,νk,λ̄k,µ̄k(·), satisfying µa,k ≥ 0 and

‖∇xLρk,νk,λ̄k,µ̄k(xk, λa,k, µa,k)‖∞ ≤ εk, (18a)

‖∇λaLρk,νk,λ̄k,µ̄k(xk, λa,k, µa,k)‖∞ ≤
Mk

ρkνk
, (18b)∥∥∥[µa,k −∇µaLρk,νk,λ̄k,µ̄k(xk, λa,k, µa,k)

]
+
− µa,k

∥∥∥
∞
≤ Mk

ρkνk
. (18c)

Step 2 (Update penalty parameters). Define

Vk := max{ ‖h(xk)‖∞ , ‖min{−g(xk), µ̄k/ρk}‖∞ },
Ck := max{ ‖λa,k ∗ h(xk)‖∞ , ‖[µa,k ∗ g(xk)]+‖∞ }, and

ζk := max{ Vk , Ck }.

If k > 1 and ζk ≤ min{a/νk, ζmaxk } then set (ρk+1, νk+1) := (ρk, νk), choose
ζmaxk+1 ≤ θζmaxk and go to Step 3. Otherwise, set ζmaxk+1 := ζmaxk and

(i) if Vk ≤ τVk−1, set ρk+1 := ρk. Otherwise, choose ρk+1 ≥ γρk;

(ii) if Ck ≤ τCk−1, set νk+1 := νk. Otherwise, choose νk+1 ≥ νk + a.

Step 3 (Estimate new projected multipliers). Choose λ̂k+1 ∈ [λmin, λmax]m and

µ̂k+1 ∈ [0, µmax]p. Set λ̄k+1 := λ̂k+1/νk+1, µ̄k+1 := µ̂k+1/νk+1. Take k ← k+ 1
and go to Step 1.

or {µa,k} are bounded, the regularization terms in Lρ,ν,λ̄,µ̄(·), as well
as (18b) and (18c), tend to control the growth of these sequences. We also
observe that requirements similar to (18b) and (18c) were used in [22]
in the context of stabilized SQP methods. In this sense, Algorithm 2
combines these two different strategies;

� Condition (18) can be theoretically achieved by any box-constrained min-
imization algorithm, since Ω = Rn × Rm × Rp+ is a box (of course, even
if x is in a box, the resulting constraints, after adding µa,k ≥ 0, are still
a box). One of them is the active-set strategy with spectral gradients
known as Gencan [15]. Gencan is used in the PHR AL method Al-
gencan [2, 17], which has a mature and robust implementation provided
by the TANGO project (www.ime.usp.br/~egbirgin/tango). We use
Gencan/Algencan codes in our implementations and numerical tests
(Section 5);

� We update the parameters ρ and ν according to the behaviour of the feasi-
bility and the complementarity measures given by Vk and Ck respectively.
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Each parameter is increased to emphasize the respective measure in the
subsequent iteration. Note that the increment rule for ρ is more aggressive
than that for ν. That reflects a preference for feasibility over complemen-
tarity in the algorithm. It is worth noting that Vk and the update rule for
ρ are the same as the PHR AL method (see Algorithm 1). Furthermore,
ν remains unchanged if the complementarity measure Ck has sufficiently
decreased. In this sense, Algorithm 2 tries to mimic the behaviour of the
PHR augmented Lagrangian method when the CAKKT-like complemen-
tarity measure decrease adequately;

� The term ζk can be interpreted as a measure of the feasibility and the
fulfillment of the complementary term. Furthermore, if in some iteration
we have ‖∇xLρk,νk,λ̄k,µ̄k(xk, λa,k, µa,k)‖∞ = 0 and ζk = 0, then xk is a
KKT point for (NLP);

� In theory, the choice of λ̂k+1 and µ̂k+1 in Step 3 is free. However, following
Remark 3, a practical choice is to project the multipliers estimates given
by the gradient of the augmented Lagrangian function (3), obtained after
solving (18), onto the boxes [λmin, λmax]m and [0, µmax]p. We use this
strategy in our numerical tests (Section 5).

4.1 Global convergence analysis

In this subsection, we present the convergence results for Algorithm 2. To es-
tablish convergence to PCAKKT points, we deal separately with the generation
of PAKKT and CAKKT sequences. Thus, once we have established these two
results, we can state our main convergence result.

By (17) and (18a), the Lagrange multipliers computed by Algorithm 2 are

λk = [ρkh(xk) + λ̄k] + [ρkh(xk) + λ̄k − λa,k] + νk[λa,k ∗ h(xk)] ∗ λa,k, (19a)

µk = [ρkg(xk) + µ̄k]+ + [ρkg(xk) + µ̄k − µa,k]+ + νk[µa,k ∗ g(xk)]+ ∗ µa,k,
(19b)

where (xk, λa,k, µa,k) is the current iterate. From now on, λk and µk will always
refer to (19). Also, for the sake of simplicity, we proceed supposing that

Assumption A: x∗ is an accumulation point of the sequence {xk} generated
by Algorithm 2. In this case, we assume that limk∈K x

k = x∗, where K ⊂ N.

4.1.1 Auxiliary results

For simplicity, during this subsection we will write hki := hi(x
k) and gkj :=

gj(x
k). Given j ∈ Ig(x∗), we split K into the following disjoint subsets:

K1 = {k ∈ K | ρkgkj + µ̄kj − µ
a,k
j < 0, gkj < 0}; (20a)

K2 = {k ∈ K | ρkgkj + µ̄kj − µ
a,k
j ≥ 0, gkj < 0}; (20b)

K3 = {k ∈ K | ρkgkj + µ̄kj − µ
a,k
j < 0, gkj ≥ 0}; (20c)

K4 = {k ∈ K | ρkgkj + µ̄kj − µ
a,k
j ≥ 0, gkj ≥ 0}. (20d)
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These subsets will be useful for subsequent analysis.
The next result says that the estimate (19b) for the Lagrange multiplier vec-

tor associated with inequality constraints has a null component whenever the
correspondent constraint is inactive at the limit point x∗. That is, in this case
Algorithm 2 computes correctly the final multiplier (if it exists), and the comple-
mentarity related to inactive constraints is satisfied exactly. The same property
is verified in the PHR augmented Lagrangian method (Algorithm 1) [17, The-
orem 4.1].

Lemma 1. If gj(x
∗) < 0 then µkj = 0 for all k ∈ K sufficiently large (here, x∗

is not necessarily feasible).

Proof. If {ρk} is unbounded then, by the boundedness of {µ̄k}, ρkgkj + µ̄kj ≤ 0

for all k ∈ K large enough; for these k’s, we have µkj = 0 since µa,kj ≥ 0 and

gkj ≤ 0. If {ρk} is bounded then, by Step 2, limk Vk = 0 and thus limk∈K µ̄
k = 0.

As gkj ≤ gj(x∗)/2 < 0 for all k large, (19b) implies that µkj = 0 for these indexes
k.

The first convergence result by means of a sequential optimality condition
is stated in Lemma 3 below. As the safeguarded PHR augmented Lagrangian
method (Algorithm 1), see [3], our new algorithm generates PAKKT sequences
whenever the multipliers estimates are unbounded. In view of Example 1, it
is important to guarantee PAKKT sequences in order to state the convergence
to PCAKKT points, our main objective. The case where multipliers estimates
form a bounded sequence (or at least have a bounded subsequence) is trivial,
since in this case x∗ is actually a KKT point, and thus PAKKT [3, Lemma 2.6].
So, this case is left to the main and more general result involving the PCAKKT
condition.

Before we relate Algorithm 2 to PAKKT sequences, we need the following
auxiliary technical result.

Lemma 2. For all k and i = 1, . . . ,m, and j = 1, . . . , p, we have

(a)
∣∣∣λa,ki − λ̄k

i +ρkh
k
i

1+νkρk(hk
i )2

∣∣∣ ≤ Mk

νk(1+νkρk(hk
i )2)

;

(b)
∣∣∣[µa,kj +

(
gkj +

µ̄k
j−µ

a,k
j

ρk

)
+
− µa,k

j

ρk
− νkµa,kj (gkj )2

+

]
+
− µa,kj

∣∣∣ ≤ Mk

ρkνk
;

(c) {νkλa,ki hki }k∈K and {νkµa,kg [gkj ]+}k∈K are bounded.

Proof. Items a and b follow directly from (18b) and (18c). To prove item c, we
multiply item a by νk|hki |, obtaining∣∣∣∣νkλa,ki |hki | − νkλ̄

k
i |hki |+ νkρkh

k
i |hki |

1 + νkρk(hki )2

∣∣∣∣ ≤ Mk|hki |
1 + νkρk(hki )2

. (21)

From the boundedness of {Mk}, the right hand side of the above inequality

remains bounded. Also, from the fact that νkλ̄
k
i = λ̂ki remains on a compact

set, {νkλ̄ki |hki |}k∈K is bounded. Using (21) and triangle inequality, we have

νk|λa,ki hki | ≤
νkλ̄

k
i |hki |

1 + νkρk(hki )2
+

νkρk(hki )2

1 + νkρk(hki )2
+

Mk|hki |
1 + νkρk(hki )2

.
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From the last expression, we see that {νkλa,ki hki }k∈K is a bounded sequence.
Now we treat item c for the inequality case. If j 6∈ Ig(x∗), the result is trivial.
Suppose that j ∈ Ig(x∗) and split the set K into disjoint sets as in (20). By
the definition of K1 and K2, the sequence {νkµa,kg [gkj ]+ = 0}k∈K1∪K2 is trivially
bounded. For all k ∈ K3, item b takes the form

∣∣∣[µa,kj −
µa,kj
ρk
− νkµa,kj gj(xk)2

]
+
− µa,kj

∣∣∣ ≤ Mk

ρkνk
.

If the expression between brackets are non-positive then µa,kj ≤Mk/[ρkνk]; and

if it is positive then µa,kj ≤Mk/[νk(1 + νkρk(gkj )2)]. Multiplying both previous

inequalities by νkg
k
j ≥ 0, we have that {νkµa,kj gkj }k∈K3 is bounded. Finally,

if k ∈ K4, we multiply item b by ρk/(1 + νkρk(gkj )2) to obtain an analogous
expression to item a. We then proceed as the equality case, multiplying it by
νkg

k
j ≥ 0 and passing the limit over K4. This concludes the proof.

Lemma 3. Suppose that x∗ is feasible, and that the sequence of Lagrange
multipliers estimates {(λk, µk)}k∈K is unbounded. Then {xk}k∈K admits a
PAKKT subsequence.

Proof. By Step 2, condition (4) of the definition of PAKKT is naturally satisfied.
Since the sequence {δk := ‖(1, λk, µk)‖∞}k∈K is unbounded, we may assume,
after taking a subsequence if necessary, that δk →∞ and the bounded sequences
{λk/δk}k∈K and {µk/δk}k∈K converge.

Let us consider the case where limk∈K |λki |/δk > 0 for a given index i. From
Lemma 2, δk →∞ and the boundedness of {Mk}, we obtain

lim
k∈K

[
λa,ki
δk
− ρkh

k
i

δk(1 + νkρk(hki )2)

]
= 0. (22)

Then, by (19a), (22) and the boundedness of {λ̄k},

0 6= lim
k∈K

λki
δk

= lim
k∈K

hki
δk

[
ρk + 2νkρ

2
k(hki )2

1 + νkρk(hki )2
+ νk(λa,k)2

]
.

The expression between the brackets are positive for all k ∈ K. Thus, λki and
hki have the same sign. That is, λki h

k
i > 0 for all k ∈ K, as required by the

PAKKT definition (see Definition 1).
Now, suppose that limk∈K µ

k
j /δk > 0, that is,

lim
k∈K

[
(ρkg

k
j + µ̄kj )+ + νk(µa,kj gkj )+µ

a,k
j + (ρkg

k
j + µ̄kj − µ

a,k
j )+

]
/δk > 0.

Thus, at least one of the three terms in the above sum is bounded below by
a positive scalar for all k ∈ K large enough. If that hold for any of the two
first terms, we trivially have gkj > 0 for all k ∈ K large enough (remember that

µa,kj ≥ 0 for all k). Suppose now that the mentioned property occurs for the
third term, that is,

(ρkg
k
j + µ̄kj − µ

a,k
j )+/δk ≥ c, ∀k ∈ K large enough, for some c > 0. (23)
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In this case, the set K2 ∪K4 is infinite (see (20)), which enable us to consider
from now on, taking a subsequence if necessary, all indexes k in this set. If
K4 is finite then k ∈ K2 for all k large enough, which implies the boundedness
of {[ρkgkj + µ̄kj − µ

a,k
j ]+}, contradicting (23) (recall that δk → ∞). We then

conclude that K4 is infinite, which in turn allow us to assume that k ∈ K4, ∀k.
Therefore, gkj ≥ 0, ∀k. If gkj = 0 for infinitely many indexes k, we would have

c ≤ ρkgkj + µ̄kj −µ
a,k
j = µ̄kj −µ

a,k
j , which implies the boundedness of {µa,kj }. But

this contradicts (23) since δk →∞. Thus, gkj > 0 for all k large enough.
Repeating the above argument for all indexes i and j, and taking successive

subsequences, we achieve a PAKKT subsequence as we want.

Now we turn our attention to the generation of CAKKT sequences by Algo-
rithm 2. The next auxiliary result states that Algorithm 2 asymptotically fulfils
the CAKKT-like complementarity on subsequences over K1 or K2.

Lemma 4. Assume that x∗ is feasible. Then limk∈K1∪K2 µ
k
j g
k
j = 0 for all

j ∈ Ig(x∗).

Proof. Consider the partition of K given by (20). In the sequel, we assume
implicit that each set K` is infinite whenever a limit is considered (otherwise
there is nothing to do). From (19b), recall that

µkj = [ρkg
k
j + µ̄kj ]+ + [ρkg

k
j + µ̄kj − µ

a,k
j ]+ + νk(µa,kj )2[gkj ]+.

Let us analyze the proper limit in each subset.

Subsequences over K1. As gkj < 0 for k ∈ K1, we have [ρkg
k
j + µ̄kj ]+ ≤ µ̄kj ,

and thus {[ρkgkj + µ̄kj ]+}k∈K1 is bounded. From limk∈K1 g
k
j = 0, we obtain

µkj g
k
j = [ρkg

k
j + µ̄kj ]+g

k
j →K1

0.

Subsequences over K2. As the above case, {[ρkgkj + µ̄kj ]+}k∈K2
is bounded.

From µa,kj ≥ 0 we have [ρkg
k
j + µ̄kj − µa,kj ]+ ≤ [ρkg

k
j + µ̄kj ]+. Thus, µkj g

k
j =

[ρkg
k
j + µ̄kj ]+g

k
j + [ρkg

k
j + µ̄kj − µ

a,k
j ]+g

k
j →K2

0.

Therefore we conclude that limk∈K1∪K2 µ
k
j g
k
j = 0.

Let us define the set

K :=

{
k ∈ K

∣∣∣ ζk ≤ min

{
a

νk
, ζmaxk

}}
. (24)

Note that K ⊂ K and, in view of Assumption A, x∗ is the unique limit point of
{xk}k∈K whenever K is infinite. The set K is related to the successful iterates
of Step 2 of Algorithm 2, for which both parameters ρ and ν remain unchanged.

In the following two lemmas, we analyze the generation of CAKKT sequences
by Algorithm 2.

Lemma 5. If K is infinite, then {xk}k∈K is a CAKKT sequence.

Proof. Since K is infinite, Step 2 of Algorithm 2 implies that limk ζ
max
k = 0 and

hence limk∈K Vk = limk∈K Ck = 0. Furthermore, from the definition of Vk, the
point x∗ is feasible for (NLP). To obtain the desired CAKKT sequence, firstly
observe that condition (4) is naturally satisfied with the approximate multipliers
λk and µk defined by (19). Then it remains to prove condition (6).
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We start by proving that limk∈K λ
k
i h

k
i = 0 for every i = 1, . . . ,m. Take

i ∈ {1, . . . ,m}. Then, we have |λa,khki | ≤ Ck →K 0, and from Ck ≤
ζk ≤ min{a/νk, ζmaxk }, we also have |νkλa,khki | ≤ νkCk ≤ a for all k ∈ K.

Thus limk∈K νk(λa,khki )2 = 0. From (21) and the fact that {νkλ̄ki = λ̂ki }
is in a compact set, we have lim supk∈K

νkρk(hk
i )2

1+νkρk(hk
i )2

≤ a < 1. Hence

{νkρk(hki )2}k∈K is bounded, which implies limk∈K ρk(hki )2 = 0. In summary,

we have limk∈K ρk(hki )2 = limk∈K λ
a,k
i hki = limk∈K νk(λa,ki hki )2 = 0, which,

by (19a), imply λki h
k
i →k∈K 0. That is, the approximate CAKKT-like comple-

mentary holds for equality constraints.

Now we proceed by showing that limk∈K µ
k
j g
k
j = 0 for all j = 1, . . . , p. Fix

an index j ∈ {1, . . . , p}. If gj(x
∗) < 0, then Lemma 1 ensures that µkj = 0 for

all k large enough, and limk∈K µ
k
j g
k
j = 0 trivially holds. Thus, assume that

gj(x
∗) = 0 and split the set K into the four disjoint sets K1, K2, K3 and K4

as (20). This induces the partition of K into the sets K` := K` ∩ K. In the
sequel, we suppose implicitly that each of these K` is infinite whenever a limit
is considered (otherwise there is nothing to do), and then we will prove that
limk∈K`

µkj g
k
j = 0, ` = 1, . . . , 4. From Lemma 4, limk∈K1∪K2

µkj g
k
j = 0, so we

only need to analyze the sequences over K3 and K4.
From (19b), recall that

µkj = [ρkg
k
j + µ̄kj ]+ + [ρkg

k
j + µ̄kj − µ

a,k
j ]+ + νk(µa,kj )2[gkj ]+.

So, as Ck ≤ min{a/νk, ζmaxk } for every k ∈ K,

µa,kj [gkj ]+ →K 0, |νkµa,kj [gkj ]+| ≤ a and νk(µa,kj [gkj ]+)2 →K 0. (25)

◦ Subsequences over K3. Multiplying the inequality ρkg
k
j + µ̄kj − µ

a,k
j < 0 by

gkj ≥ 0 and using the first limit in (25), we get limk∈K3
ρk(gkj )2 = 0 and therefore,

using the last limit in (25), µkj g
k
j = [ρkg

k
j + µ̄kj ]+g

k
j + νk(µa,kj )2[gkj ]2+ →k∈K3

0.

◦ Subsequences over K4. For every k ∈ K4, we have

µkj = [ρkg
k
j + µ̄kj ] + [ρkg

k
j + µ̄kj − µ

a,k
j ] + νk(µa,kj )2gkj .

Note this µkj has the same shape of the Lagrange multiplier estimate λki for
equality constraints, since all their terms are nonnegative (see (19)). Thus,
using similar arguments to the equality case, and having in mind item b of
Lemma 2, the result is valid for µkj and k ∈ K4.

Finally, we observe that all the arguments are valid for all k ∈ K sufficiently
large, and hence {xk}k∈K is a CAKKT sequence, concluding the proof.

Lemma 6. Suppose that x∗ is feasible and K is finite. If the nondecreasing
sequence {min{ρk, νk}} is bounded then {xk}k∈K is a CAKKT sequence.

Proof. It is sufficient to show that limk∈K λ
k
i h

k
i = 0, ∀i, and limk∈K µ

k
j g
k
j = 0,

∀j. We will only prove the statement for equality constraints; for inequalities
with j ∈ Ig(x∗) the proof is similar, and for those where j 6∈ Ig(x∗), the result
follows from Lemma 1.
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Take an index i ∈ {1, . . . ,m}. Let us recall that, from (19a),

λki h
k
i = 2ρk(hki )2 + 2λ̄ki h

k
i − λ

a,k
i hki + νk(λa,ki hki )2.

When K is finite, the sequence {ζmaxk } is updated only by a finite number
of steps, which implies ζmaxk = ζmax for all k sufficiently large. Now, if
{max{ρk, νk}} is bounded, say, by A > 0, then ζk > min{a/A, ζmax} > 0 for
every k large enough. On the other hand, the boundedness of {max{ρk, νk}}
and the Step 2 of Algorithm 2 imply that limk∈K Vk = limk∈K Ck = 0. Hence
limk∈K ζk = 0, which leads us to a contradiction. Thus, max{ρk, νk} → ∞.
With this, and in view of the hypotheses, it is enough to consider the following
two cases:

◦ {ρk} bounded and {νk} unbounded. Clearly, limk∈K ρk(hki )2 = 0. From

the boundedness of {νkλa,ki hki }k∈K (Lemma 2, item c), we conclude that

limk∈K λ
a,k
i hki = limk∈K νk(λa,ki hki )2 = 0. As a consequence, limk∈K λ

k
i h

k
i = 0.

◦ {ρk} unbounded and {νk} bounded. From Step 2 of Algorithm 2,

limk∈K λ
a,k
i hki = 0 and hence limk∈K νkλ

a,k
i hki = 0. Together with (21), we

get limk∈K νkρk(hki )2 = 0 and so limk∈K ρk(hki )2 = 0. Therefore, we have
limk∈K λ

k
i h

k
i = 0.

4.1.2 Main convergence results

Next we present the main convergence result for Algorithm 2.

Theorem 7. We have the following:

(a) If the set K defined in (24) is infinite then every accumulation point x∗ of
{xk}k∈K is a PCAKKT point. Thus, if additionally PCAKKT-regularity
holds at x∗, then x∗ is a KKT point of (NLP).

(b) If K is finite then every accumulation point of {xk}k∈K is

(b1) a PCAKKT point, whenever {min{ρk, νk}} is bounded. In this case,
x∗ is a KKT point if it conforms to the PCAKKT-regular condition;

(b2) at least a PAKKT and AGP point simultaneously, in the case that
{min{ρk, νk}} is unbounded.

Proof. First, note that if x∗ is feasible and the sequence of Lagrange multipliers
estimates {(λk, µk)}k∈K is bounded (or at least has a bounded subsequence),
then by Step 1 of Algorithm 2, the point x∗ satisfies the KKT conditions. Then
all items follows from Theorem 2 and the implications of Figure 2. Thus, suppose
then that {(λk, µk)}k∈K is an unbounded sequence.

Item a: Applying Lemma 5, we have that {xk}k∈K is a CAKKT sequence.
Then, applying Lemma 3 on such sequence we conclude that x∗ is PCAKKT.
The second statement follows from Theorem 4.

Item b1: Follows from Lemmas 3 and 6, and Theorem 4.

Item b2: By Lemma 3, we get that x∗ is a PAKKT point. To show that
x∗ is an AGP point, it is enough to show, in view of Theorem 3, that
limk∈K µ

k
j min{0, gj(xk)} = 0, j ∈ Ig(x

∗). This follows from Lemma 4, since

min{0, gj(xk)} = 0 for all k ∈ K3 ∪K4.

24



From Theorem 7, we see that Algorithm 2 can reach KKT points under the
PCAKKT-regular condition. This is a strong convergence result for an imple-
mentable algorithm obtained by means of a sequential optimality condition. As
other ones, the PCAKKT condition is independent of a specific algorithm, and
then it allows us to idealize other algorithms with the same convergence sta-
tus. We stress that Algorithm 2 and possibly others, whenever they generate
PCAKKT points, enjoy the good properties of the P/CAKKT sequences (such
as sufficiency for global optima under convexity and the boundedness of La-
grange multipliers under quasinormality – see the discussion after Theorem 2).
With respect to Theorem 7, the case (b2) is very pathological in the sense that it
occurs only when the first test in Step 2 fails for all k sufficiently large (K finite),
and both parameters ρ and ν go to infinity (min{ρk, νk} → ∞). Even in this
case, we are able to prove convergence to “PAKKT+AGP” points. Although
this is weaker than the PCAKKT concept (see Example 1), the accumulation
point x∗ is a KKT under one of the mild CQs PAKKT-regular, defined in [3] (see
discussion after Definition 4), or AGP-regular, defined in [11]. So, to the best of
our knowledge, Theorem 7 is the strongest result for an augmented Lagrangian
strategy.

Finally, we show that Algorithm 2 always reaches stationary points of the
infeasibility problem

min
x

Φ(x) = ‖h(x)‖2 + ‖g(x)+‖2. (26)

In this sense, x∗ is the point with “minimal infeasibility”. This is a desirable
property, specially when we deal with infeasible problems.

Theorem 8. The point x∗ is KKT for (26).

Proof. If x∗ is feasible for (NLP) there is nothing to do. Suppose that x∗ is not
feasible. In this case, K is finite and ρk →∞. From (18a) we obtain

∇f(xk)

ρk
+∇h(xk)

[
λk

ρk

]
+∇g(xk)

[
µk

ρk

]
→ 0. (27)

We will analyze the asymptotic behaviour of {λk/ρk}k∈K and {µk/ρk}k∈K .

Sequence {λk/ρk}k∈K . Take i ∈ {1, . . . ,m}. Dividing the expression in item a
of Lemma 2 by ρk, we get, for all k ∈ K,∣∣∣∣∣λa,kiρk − λ̄ki

ρk(1 + νkρkhi(xk)2)
− hi(x

k)

1 + νkρkhi(xk)2

∣∣∣∣∣ ≤ Mk

νkρk(1 + νkρkhi(xk)2)
.

From the boundedness of {Mk} and {λ̄ki }, and from ρk → ∞, the second term
within modulus and the right hand side of the inequality tend to zero. The third
term within the modulus also tends to zero independently if hi(x

k) vanishes or

not. Thus limk∈K λ
a,k
i /ρk = 0.

From Lemma 2, item c, {νkλa,ki |hi(xk)|}k∈K is a bounded sequence inde-
pendently if hi(x

k) vanishes or not. So, dividing (19a) by ρk and using the
boundedness of {λ̄ki }k∈K , we obtain

λki
ρk

= 2

[
hi(x

k) +
λ̄ki
ρk

]
− λa,ki

ρk
+
λa,ki
ρk

(νkλ
a,k
i hi(x

k))→K 2hi(x
∗).
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Sequence {µk/ρk}k∈K . We will show in an analogous way that limk∈K µ
k/ρk =

2[g(x∗)]+. Take j ∈ {1, . . . , p}. Dividing (19b) by ρk we obtain, for all k ∈ K,

µkj
ρk

=

[
gj(x

k) +
µ̄kj
ρk

]
+

+

[
gj(x

k) +
µ̄kj
ρk
−
µa,kj
ρk

]
+

+
µa,kj
ρk

νk(µa,kj gj(x
k))+. (28)

Now, split the set K into four disjoint sets K1, K2, K3 and K4 as (20). We
will show that for each of these subsets, limk∈K`

µkj /ρk = 2[gj(x
∗)]+ whenever

K` is an infinite subset of K, ` = 1, . . . , 4. Thus, without loss of generality, we
assume that each of these subsets is infinite.

Subsequence over K1. By (28) and the boundedness of {µ̄kj }, we have µkj /ρk =

[gj(x
k) + µ̄kj /ρk]+ →K1 [gj(x

∗)]+ = 0 = 2[gj(x
∗)]+.

Subsequence over K2. Here, {[ρkgj(xk) + µ̄kj − µ
a,k
j )]+}k∈K2

is bounded. Thus,

from (28) and the boundedness of {µ̄kj },

µkj
ρk

=

[
gj(x

k) +
µ̄kj
ρk

]
+

+
[ρkgj(x

k) + µ̄kj − µ
a,k
j )]+

ρk
→K2 0 = 2[gj(x

∗)]+.

Subsequence over K3. From Lemma 2, item c, {νkµa,kj gj(x
k)}k∈K3

is bounded

independently if gj(x
k) vanishes or not. Now, observe that taking the limit over

K3 in the inequality gj(x
k) + µ̄kj /ρk − µ

a,k
j /ρk ≤ 0, obtained from K3, we get

gj(x
∗) = 0. Thus, using (28) we have

µkj
ρk

=

[
gj(x

k) +
µ̄kj
ρk

]
+

+
µa,kj
ρk

(νkµ
a,k
j gj(x

k))→K3
0 = 2[gj(x

∗)]+.

Subsequence over K4. In this case, µkj /ρk has the same shape of λki /ρk. Thus we

conclude that limk∈K4 µ
k
j /ρk = 2[gj(x

∗)]+ in an analogous way that for equality
constraints (here, in fact, maybe gj(x

∗) 6= 0).
Finally, expression (27) together the previous cases imply ∇h(x∗)h(x∗) +

∇g(x∗)[g(x∗)]+ = 0, which says that x∗ is a KKT point of (26).

5 Numerical experience

The tests were run on an Intel(R) Xeon(R) Silver 4114 CPU 2.20GHz, under
the Ubuntu 18.04.4 operating system. We implemented Algorithm 2 in For-
tran 90, adapting the Algencan 3.1.1 package provided freely by the TANGO
project. We compiled all the code with GNU Fortran 7.5.0 using the “O3” flag.
Algencan 3.1.1 is an implementation of Algorithm 1 with some improvements
made over time (see [17] and references therein). One of these improvements
is an acceleration process which consists of switching to a Newtonian strategy
at the final (outer) steps of the minimization process. But as we consider AL
strategies, we have disabled this feature.

Our aim here is not to compare Algorithms 1 and 2 to each other. Instead, we
see Algorithm 2 as a complement to its classical counterpart, a strategy that tries
to overcome difficulties of Algorithm 1. We then consider a hybridization of the
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methods, based on Algorithm 1, where a primal-dual iteration of Algorithm 2
is applied when it is needed to force the fulfillment of the complementarity
condition. This is reasonable since (i) Algencan performs very well on a
variety of test-problems [2, 14, 16]; and (ii) the subproblems of Algorithm 2
are (probably) more difficult to handle numerically than those of Algorithm 1,
since they involve minimizing the augmented Lagrangian (3) in both primal
and dual variables. Thus, solving these subproblems efficiently maybe requires
specialized algorithms.

We adopt the next rules to switch to a primal-dual iteration of Algorithm 2:

1. A primal-dual iteration is applied if the stopping criterion of Algorithm 1
for success was fulfilled, but CAKKT complementarity seems to be not
satisfied. Specifically, we decide to apply a primal-dual iteration if

‖∇xLPHR
ρk,λ̄k,µ̄k(xk)‖∞ ≤ εopt, Vk ≤ εopt,

max{‖λk ∗ h(xk)‖∞, ‖µk ∗ g(xk)‖∞} >
√
εopt, (29)

where εopt is the Algencan’s tolerance for optimality. This criterion
aims to force CAKKT complementarity, since Algorithm 2 is, theoretically,
more likely to achieve it than Algorithm 1;

2. Analogously to the previous item, we switch to a primal-dual iteration
when a stationary point of the infeasibility (problem (26)) was achieved;

3. When a primal-dual iteration is performed and passes the first test of
Step 2, that is, when ζk ≤ min{a/νk, ζmaxk }, the next iteration is also
primal-dual. Therefore, we maintain the minimization on the primal and
dual variables whenever both penalty parameters ρ and ν remain un-
changed. Remember that, by item a of Theorem 7, such situation is
related to the convergence to PCAKKT points;

4. A primal-dual iteration is chosen when ρ ≥ 105. This criterion is applied
only once;

5. At every iteration, we compute the relative displacement of the primal

iterate ∆xk = ‖xk−1 − xk‖∞/max{1, ‖xk‖∞}. When ∆xk ≤ ε
1/4
k , we

consider that the primal iterate does not move substantially from iteration
k−1 to k. If this happens during consecutive iterations k, k+1, . . . , k+p,
we allow strategies 1 and 2 to be applied only once throughout these
iterations. On the other hand, the chance of applying these strategies

are renewed whenever ∆xk > ε
1/4
k . In particular, if ∆xk ≤ ε

1/4
k and the

iteration k is primal-dual, a new primal-dual iteration is prohibited at the
next iteration k+ 1. Thus we allow a primal-dual iteration only when the
method has progressed since the last use of Algorithm 2.

After a primal-dual iteration, we go back to PHR iterations of Algorithm 1 if
none of the above situations are verified. Furthermore, in a primal-dual iteration
we execute the test ii of Step 2 (of Algorithm 2) only if Vk ≤

√
εopt. That is,

the penalty parameter ν can only be increased after a “sufficient” fulfillment
of the (AKKT-type) complementarity min{−g(xk), µ̄k/ρk} ≈ 0. Note that this
expression is used in the PHR augmented Lagrangian method (Algorithm 1)
to attest approximate complementarity, which is enough, by Theorem 6, to
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ensures PCAKKT points under the GL inequality hypothesis. Thus, we can
expect CAKKT complementarity frequently. Then, our strategy aims to give
measure Vk a chance to achieve CAKKT points before to increment ν. The
reader may note that our convergence theory for Algorithm 2 remains valid
with this modification, specifically Lemma 5.

Another issue is how to initialize λa,k and µa,k ≥ 0 when a primal-dual it-
eration is set immediately after an iteration of Algorithm 1. In this case, we
compute λa,k and µa,k ≥ 0 so that (19) equals to their first terms ρkh(xk) + λ̄k

and [ρkg(xk) + λ̄k]+. The reason is that the PHR augmented Lagrangian func-
tion (14) gives these multipliers estimates, and then we try to take advantage
of the minimization process already done. If it is not possible to compute such
λa,ki and µa,kj ≥ 0, we set them as zero.

For Algorithm 2, we set a = 0.99, θ = 0.1, Mk ≡ 103, ν1 = 1.0 and
ζmax
1 = a/ν1. All other parameters are initialized as Algencan’s default values

(in particular, λmin = −1030 and λmax = µmax = 1030, see Remark 3). We
consider 241 constrained test problems from Hock & Schittkowski’ and Maros
& Meszaros’ libraries, both available from CUTEst. In 29 of them (12.03%), at
least one primal-dual iteration was employed. Of the total problems considered,
Algencan (Algorithm 1) did not declare convergence in 25 (10.37%), and the
hybrid strategy was capable of recovering optimality in 3 of them (12%), thus
declaring convergence. In all other problems, the hybrid strategy had the same
result of Algencan (primal-dual iterations never were applied or they were
not able to induce the success of the minimization process as a whole). Table 1
presents the problems with different result between the two strategies. Columns
“Problem”, “it”, “st”, “feas” and “cpl (29)” mean, respectively, the problem
name, final number of outer iterations (/number of primal-dual iterations),
status (0 = success; 1 = converges to stationary point of infeasibility; 2 = stops
with huge max{ρ, ν}; 3 = the maximum number of iterations was achieved), final
sup-norm violation of constraints and the final CAKKT-type complementarity
measure like in (29). The other columns “f”, “‖∇L‖”, “‖∇LPHR‖” and “Vk”
contain the final value of each quantity.

Hybrid strategy (Algorithm 1+Algorithm 2)

Problem st it f ‖∇L‖ feas Vk cpl (29)
HS56 0 7/1 -3,46e+00 4,89e-08 8,07e-07 1,22e-07 1,16e-06
QE226 0 29/1 2,13e+02 4,46e-12 2,31e-07 2,31e-07 2,04e-07
QSHARE1B 0 42/1 7,20e+05 1,49e-07 2,56e-09 9,09e-12 2,56e-11

Algencan (Algorithm 1)

Problem st it f ‖∇LPHR‖ feas Vk
HS56 2 27 -1,57e+00 3,62e+18 1,71e-02 2,73e-03
QE226 3 50 3,45e+02 4,14e+00 2,89e+01 2,60e-01
QSHARE1B 3 50 7,20e+05 4,55e-02 1,59e-05 1,83e-08

Table 1: Computational results. In the table, we present test problems where
Algencan fails and where iterations of Algorithm 2 recover optimality.

We highlight some observed aspects. First, few primal-dual iterations were
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required. In fact, we can expect this since, as we already mentioned, (i) the
overall behaviour of Algencan is good and, of course, (ii) we establish the
rules 1–5 above in order to apply a primal dual iteration only when Algencan
seems to fail or when it converges to a “poor” point. The second aspect is related
to the CAKKT-type complementarity achievement. We observe that, although
neither Algorithms 2 nor 1 explicitly requires this type of complementarity with
“real” multipliers estimates (see (19)), it was achieved frequently by the hybrid
strategy (in particular, in the problems of Table 1). It is interesting to observe
that a primal-dual iteration, even when applied in an intermediate stage of the
minimization process, reduces the CAKKT-like complementarity measure (29)
substantially.

Finally, we stress that our proposal, at least from the practical point of
view, can be viewed as a strategy to improve the effectiveness of augmented
Lagrangian methods, especially when the complementarity is considered impor-
tant. In fact, the quality of the primal solution obtained by Algencan is often
good. In this sense, an important issue is the amount of additional compu-
tational cost that the primal-dual iterations bring. In our tests, we limit the
number of inner-iterations (those performed by Gencan) in a primal-dual it-
eration to the maximum of necessary iterations for solving PHR subproblems
so far. We compare computational times of the hybrid strategy against the
standard Algencan in the following way: for each problem P , we take the
arithmetic means Thybrid(P ) and TAlgencan(P ) of the times, on the runs re-
quired to obtain a minimum of 10 seconds; we then take the geometric mean of
Thybrid(P )/TAlgencan(P ) over all problems. This provides a factor that globally
measures the execution time of the hybrid algorithm in relation to Algencan.
The average increase in computing time was only 3% of the hybrid strategy com-
pared to Algencan. That is, primal-dual iterations can be useful to improve
convergence without spending much more time. Nevertheless, as we already
mentioned in the introduction, we believe that this additional time can be re-
duced even more if a specialized inner-solver for Algorithm 2’ subproblems is
developed, instead of using Gencan purely. In fact, when we look only at the
problems in which primal-dual was used, the increase in time was about 25%.

6 Conclusions

Recent progress has been made on the convergence of the (safeguarded) Powell-
Hestenes-Rockafellar (PHR) augmented Lagrangian method (Algorithm 1) by
means of the so-called sequential optimality conditions: the positive approxi-
mate KKT (PAKKT) [3] and the complementary KKT (CAKKT) [12]. Each of
them describes a property of the sequences generated by the method. The first
deals with the sign between constraints and dual variables, a property related
to the enhanced Fritz-John optimality conditions; and the second deals with the
way that KKT complementarity is (sequentially) achieved. We proposed a new
sequential optimality condition that unify these characteristics, called positive
complementary approximate KKT (PCAKKT). By Example 1, the PCAKKT
condition is not the simple fulfillment of PAKKT and CAKKT conditions. Thus,
the PCAKKT condition really leads to an improvement in the convergence of
methods over all previous (first order) conditions. In particular, we showed that
the safeguarded PHR augmented Lagrangian method also generates PCAKKT
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points under a GL inequality (which is also used in [12]). As a consequence,
this method reaches KKT points under a new CQ, related to PCAKKT, called
PCAKKT-regularity. To the best of our knowledge, PCAKKT-regularity is the
strongest CQ associated with convergence of a practical method (see Figure 4).
A novel primal-dual augmented Lagrangian algorithm is also presented (Algo-
rithm 2). We showed that it achieves PCAKKT points under mild assumptions.
In particular, we provide strong convergence results, showing that in some sit-
uations the Lojasiewicz-type assumption is not necessary.

Computational tests were performed. We observed that the inner solver
Gencan presented difficulties in dealing with subproblems of Algorithm 2 when
compared with its behaviour on Algorithm 1’ subproblems. In our experience,
Gencan needs too many iterations to achieve a satisfactory optimality toler-
ance, and in many cases it was not able to reach it. In fact, the subproblems of
Algorithm 2 are more challenging than those of Algorithm 1. We believe that
a specialized solver, which exploits the structure derived from our primal-dual
augmented Lagrangian function (3), is necessary to implement a competitive
algorithm. Thus, a detailed investigation on how we can efficiently minimize
the function (3), perhaps using second-order information, may be addressed in
a future work. For instance, very recently Gill, Kungurtsev and Robinson [23]
propose a shifted primal-dual penalty-barrier method based on a primal-dual
augmented Lagrangian similar to (3), that also brings the multipliers estimates
λa and µa and complementarity terms to the minimization of the subprob-
lems. To solve the correspondent subproblems, the authors propose a Newtonian
strategy carefully adapted to their necessity. Anyway, the preliminary compu-
tational results presented in this paper suggest that the primal-dual augmented
Lagrangian (3) may be useful to improve the practical behaviour of the classical
variant. In this sense, besides establishing adequate solvers for inner problems,
rules for hybridizing the two strategies, such as those used in our tests, should
be investigated.
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