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Abstract

Environmental data is often spatially correlated and sometimes include below detection limit observations (i.e.,

censored values reported as less than a level of detection). Existing work mainly concentrates on parameter esti-

mation using Gibbs sampling, and work conducted from a frequentist perspective in spatial censored models are

elusive. In this paper, we propose an exact estimation procedure to obtain the maximum likelihood estimates of the

fixed effects and variance components, using a stochastic approximation of the EM (SAEM) algorithm (Delyon

et al., 1999). This approach permits estimation of the parameters of spatial linear models when censoring is present

in an easy and fast way. As a by-product, predictions of unobservable values of the response variable are possible.

Motivated by this algorithm, we develop local influence measures on the basis of the conditional expectation of

the complete-data log-likelihood function which eliminates the complexity associated with the approach of Cook

(1977, 1986) for spatial censored models. Some useful perturbation schemes are discussed. The newly developed

methodology is illustrated using data from a dioxin contaminated site in Missouri. In addition, a simulation study

is presented, which explores the accuracy of the proposed measures in detecting influential observations under

different perturbation schemes.

Key words: Censored data, Geostatistical data, SAEM Algorithm, Influential observations, Limit of detection

(LOD).

1. Introduction

Spatial data are common in ecology, environmental health, mining, hydrology and epidemiology, where sam-

pling units are geographical areas or spatially located individuals. Analysis of spatial data is challenged by the

spatial correlation among the observations such as the conditional autoregressive (CAR) structure or the Matèrn

correlation structure. An additional complication is that spatial data are subjected to upper or lower detection

limits below and above which they are not quantifiable. For example, environmental (spatial) monitoring of dif-

ferent variables often involves left-censored observations falling below the minimum limit of detection (LOD) of

the instruments used to quantify them. The proportion of censored data in these studies may not be small and so

the use of crude/ad hoc methods, such as substituting a threshold value or some arbitrary point like a mid-point

between zero and cut-off for detection, might lead to biased estimates of fixed effects and variance components

(De Oliveira, 2005; Fridley & Dixon, 2007).
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As an alternative to crude imputation methods Militino & Ugarte (1999) develop an EM algorithm for maxi-

mum likelihood (ML) estimation in censored spatial data, however this approach suffers from several drawbacks

that restrict its applicability. For instance, De Oliveira (2005) notes that this ML approach does not provide a

means to estimate the correlation structure in the data and hence assume it is known. In addition, when estimat-

ing variables at non-sampled locations the observed and imputed data are not differentiated, thus underestimating

the predictive uncertainty. Due to the complexity of the likelihood-based methods, that involves computationally

intractable integrals, De Oliveira (2005) and Fridley & Dixon (2007) adopt a Bayesian approach to inference and

prediction for spatially correlated censored observations. In both papers data augmentation and Markov chain

Monte Carlo (MCMC) algorithms are utilized. In this paper, we first propose a stochastic versions of the EM al-

gorithm for ML estimation, the so-called SAEM algorithm proposed by Delyon et al. (1999). Then, the diagnostic

measures for assessing the local influence in spatial censored linear (SCL) models are developed and presented.

In the framework of spatial models, Jank (2006) showed that the computational effort of SAEM is much smaller

and reach the convergence in just a fraction of the simulation size when compared to Monte Carlo EM (MCEM)

algorithm. This is due to the memory effect contained in the SAEM method, in which the previous simulations are

considered in the computation of the posterior ones.

The study of influence analysis is an important and key step in data analysis subsequent to parameter estimation.

This can be carried out by conducting an influence analysis for detecting influential observations. There are two

primary approaches for detecting influential observations. The first approach is the case-deletion approach (Cook,

1977) and it is an intuitively appealing method (see also Cook and Weisberg, 1982). Deletion diagnostics such

as Cook’s distance or the likelihood distance have been applied to many statistical models. The second approach,

which is a general statistical technique used to assess the stability of the estimation outputs with respect to the

model inputs, is the local influence approach of Cook (1986). Following the pioneering work of Cook (1986), this

method has received considerable attention recently in the statistical literature of spatial models; see, for example,

Assumpção et al. (2014) and De Bastiani et al. (2014).

Although several diagnostic studies on spatial models have appeared in the literature, to the best of our knowl-

edge, no study seems to have been made on influence diagnostics for cesored spatial data and certainly not on the

local influence analysis. The main difficulty is due to the fact that the observed log-likelihood function of censored

spatial models involves intractable integrals (for instance, the pdfs of truncated multinormal distributions), ren-

dering the direct application of Cook’s approach (Cook, 1986) to this model to be very difficult if not impossible,

since the measures involve the first and second partial derivatives of this function. Zhu & Lee (2001) developed an

approach for performing local influence analysis for general statistical models with missing data, and it is based

on the Q-displacement function that is closely related to the conditional expectation of the complete-data log-

likelihood in the E-step of the EM algorithm. This approach produces results very similar to those obtained from

Cook’s method. Moreover, the case-deletion can be studied by Q-displacement function following the approach of

Zhu et al. (2001). So, we develop here methods to obtain case-deletion measures and local influence measures by

using the method of Zhu et al. (2001) (see also Lee & Xu, 2004; Zhu & Lee, 2001) in the context of SCL models.

The rest of the paper is organized as follows. Section 2 gives a brief description of the spatial linear model,

including an outline of the SAEM algorithm. Section 3 proposes the SCL model and shows how to get the ML

estimates through the SAEM algorithm. In Section 4, we provide a brief sketch of the local influence approach

for models with incomplete data, and also develop a methodology pertinent to the SCL model. Three different

perturbation schemes are considered. The methodology is illustrated in Section 5 with the analysis of a data set

from a dioxin contaminated site in Missouri and by empirical studies in Section 6. Section 7 concludes with a short
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discussion of issues raised by our study and some possible directions for a future research.

2. Preliminaries

2.1. The Spatial linear model

As in De Bastiani et al. (2014), we consider a Gaussian stochastic process {Z(s), s ∈ D}, where D is a subset

of Rd , the d-dimensional Euclidean space. It supposes that data Z(s1), ..., Z(sn) of this process are observed at

known sites (locations) si, for i = 1, . . . , n, where si is a d-dimensional vector of spatial site coordinates, and

generated from the model,

Z(si) = µ(si) + ϵ(si), (1)

where both the deterministic term µ(si) and the stochastic term ϵ(si) may depend on the spatial location at which

Z(si) is observed. We assume that the stochastic errors have zero mean, E{ϵ(si)} = 0, and that variation between

spatial points is determined by a covariance function C(si, sj) = Cov{ϵ(si), ϵ(sj)}. Suppose that for some known

functions of si, x1(si), . . . , xp(si), the mean of the stochastic process is

µ(si) =

p∑
j=1

xj(si)βj , (2)

where β1, . . . , βp are unknown parameters to be estimated. In addition, each family of covariance functions

C(si, sj), is fully specified by a q-dimensional parameter vector ϕ = (ϕ1, . . . , ϕq)
⊤. We use the following

notations: Z(si) = Zi, Z = (Z1, . . . , Zn)
⊤, xij = xj(si), x⊤

i = (xi1, . . . , xip), X as the n × p matrix with

ith row x⊤
i , β = (β1, . . . , βp)

⊤, ϵi = ϵ(si), and ϵ = (ϵ1, . . . , ϵn)
⊤, with i = 1, . . . , n and j = 1, . . . , p. Thus,

µ(si) = x⊤
i β and then Zi = x⊤

i β + ϵi, i = 1, . . . , n. Equivalent, in matrix notation, we have the spatial linear

model

Z = Xβ + ϵ, (3)

where E{ϵ} = 0 and the scale matrix of ϵ, is Σ = [C(si, sj)] = τ2In + σ2R(ρ). We assume that Σ is non

singular and that X has a full rank. τ2 can be viewed as a measurement error variance or a nugget effect, σ2 is

defined as sill, R = R(ρ) = [rij ], is an n× n symmetric matrix with diagonal elements rii = 1, for i = 1, . . . , n

and ρ is a function of the range of the model. In general R depends on the Euclidean distance dij = ||si − sj ||
between the points si and sj . This parametric form occurs for several isotropic processes, for instance, the Matérn

family of correlation functions R is defined by

R(ρ) = R(ρ, dij) =


1

2κ−1Γ(κ)

(
dij
ρ

)κ

Kκ(dij/ρ), dij > 0,

1, dij = 0,

where ρ > 0; Kκ(u) = 1
2

∫∞
0

xκ−1e−
1
2u(x+x−1)dx is the modified Bessel function of the third kind of order κ;

(see, Gradshtejn & Ryzhik, 1965), with κ > 0 fixed. The Gaussian covariance function is a special case when

κ → ∞ and its correlation function is given by

R(ρ) = R(ρ, dij) =

 exp

{
−
(
dij
ρ

)2
}
, dij > 0,

1, dij = 0.
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The exponential covariance is also a special case of Matérn Family, which corresponds to κ = 1/2 and can be

written more simply as

R(ρ) = R(ρ, dij) =

 exp

{
−
(
dij
ρ

)}
, dij > 0,

1, dij = 0.

In classical geostatistics, the spherical family is also widely used. This has correlation function given by

R(ρ) = R(ρ, dij) =

 1− 3

2
(dij/ρ) +

1

2
(dij/ρ)

3, 0 ≤ dij ≤ ρ,

0, dij > ρ.

where ρ > 0 is a single parameter with the dimensions of distance. One qualitative difference between this

and the Matérn family is that it has a finite range i.e., R(ρ) = 0 for sufficiently large dij , namely dij > ρ. The

spherical family lacks flexibility by comparison with the two-parameter Matérn class. Also, R(ρ) is only once

differentiable at dij = ρ, which causes technical difficulties with maximum likelihood estimation.

2.2. The EM and SAEM algorithms

In models with missing and censored data, the EM algorithm (Dempster et al., 1977) has established itself as

the most popular tool for obtaining the ML estimates of model parameters. Let define zcom = (zm, zobs), where

zm denotes the missing data and zobs the observed data, this iterative algorithm maximizes the complete log-

likelihood function ℓc(θ; zcom) at each step, converging quickly to a stationary point of the observed likelihood

(ℓ(θ; zobs)) under mild regularity conditions (Wu, 1983; Vaida, 2005). The EM algorithm proceeds in two simple

steps:

E-Step: Replace the observed likelihood by the complete likelihood and compute its conditional expectation

Q(θ|θ̂
(k)

) = E

{
ℓc(θ; zcom)|θ̂

(k)
, zobs

}
, where θ̂

(k)
is the estimate of θ at the k-th iteration;

M-Step: Maximize Q(θ|θ̂
(k)

) with respect to θ to obtain θ̂
(k+1)

.

However, in some applications of the EM algorithm, the E-step cannot be obtained analytically and has to be

calculated using simulations. Wei & Tanner (1990) proposed the Monte Carlo EM (MCEM) algorithm in which

the E-step is replaced by a Monte Carlo approximation based on a large number of independent simulations of the

missing data. This simple solution is infact computationally expensive, given the need to generate a large number

of independent simulations of the missing data for a good approximation. Thus, in order to reduce the amount of

required simulations compared to the MCEM algorithm, the SAEM algorithm proposed by Delyon et al. (1999)

replaces the E-step of the EM algorithm by a stochastic approximation procedure, while the Maximization step

remains unchanged. Besides having good theoretical properties, the SAEM estimates the population parameters

accurately, converging to the global maxima of the ML estimates under quite general conditions (Allassonnière

et al., 2010; Delyon et al., 1999; Kuhn & Lavielle, 2004). At each iteration, the SAEM algorithm successively

simulates missing data with the conditional distribution, and updates the unknown parameters of the model. Thus,

at iteration k, the SAEM proceeds as follows:

E-Step:

• Simulation: Draw (q(ℓ,k)), ℓ = 1, . . . ,m from the conditional distribution f(q|θ(k−1), zi).

• Stochastic Approximation: Update the Q(θ|θ̂(k)) function as

Q(θ|θ̂
(k)

) ≈ Q(θ|θ̂
(k−1)

) + δk

[
1

m

m∑
ℓ=1

ℓc(θ ; zobs,q
(ℓ,k))|θ̂

(k)
, zobs−Q(θ|θ̂

(k−1)
)

]
. (4)
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M-Step:

• Maximization: Update θ̂
(k)

as θ̂
(k+1)

= argmax
θ

Q(θ|θ̂
(k)

),

where δk is a smoothness parameter (Kuhn & Lavielle, 2004), i.e., a decreasing sequence of positive numbers

such that
∑∞

k=1 δk = ∞ and
∑∞

k=1 δ
2
k < ∞. Note that, for the SAEM algorithm, the E-Step coincides with

the MCEM algorithm, however a small number of simulations m (suggested to be m ≤ 20) is necessary. This

is possible because unlike the traditional EM algorithm and its variants, the SAEM algorithm uses not only the

current simulation of the missing data at the iteration k denoted by (q(ℓ,k)), ℓ = 1, . . . ,m but some or all previous

simulations, where this ‘memory’ property is set by the smoothing parameter δk.

Note, in Equation (4), if the smoothing parameter δk is equal to 1 for all k, the SAEM algorithm will have

‘no memory’, and will be equivalent to the MCEM algorithm. The SAEM with no memory will converge quickly

(convergence in distribution) to a solution neighborhood, however the algorithm with memory will converge slowly

(almost sure convergence) to the ML solution. We suggested the following choice of the smoothing parameter:

δk =

1, for 1 ≤ k ≤ cW,

1
k−cW , for cW + 1 ≤ k ≤ W,

where W is the maximum number of iterations, and c a cut point (0 ≤ c ≤ 1) which determines the percentage

of initial iterations with no memory. For example, if c = 0, the algorithm will have memory for all iterations,

and hence will converge slowly to the ML estimates. If c = 1, the algorithm will have no memory, and so will

converge quickly to a solution neighborhood. For the first case, W would need to be large in order to achieve

the ML estimates. For the second, the algorithm will output a Markov Chain where after applying a burn in and

thining, the mean of the chain observations can be a reasonable estimate.

A number between 0 and 1 (0 < c < 1) will assure an initial convergence in distribution to a solution neigh-

borhood for the first cW iterations and an almost sure convergence for the rest of the iterations. Hence, this

combination will lead us to a fast algorithm with good estimates. To implement SAEM, the user must fix several

constants matching the number of total iterations W and the cut point c that defines the starting of the smoothing

step of the SAEM algorithm, however those parameters will vary depending on the model and the data. To de-

termine those constants, a graphical approach is recommended to monitor the convergence of the estimates for all

the parameters, and, if possible, to monitor the difference (relative difference) between two successive evaluations

of the log-likelihood ℓ(θ|zobs), given by ||ℓ(θ(k+1)|yobs) − ℓ(θ(k)|zobs)|| or ||ℓ(θ(k+1)|zobs)/ℓ(θ(k)|zobs) − 1||,
respectively.

3. The spatial linear model for censored responses

We will consider the Gaussian model with a linear specification for the spatial trend, which allows the inclusion

of a polynomial trend surface or, more generally, spatially referenced covariates. From (3), the spatial linear model

is defined by

Z = Xβ + ϵ, (5)

where X and β are as defined in (3) and ϵ ∼ Nn(0,Σ). Moreover, we assume that the response Zi is not fully

observed for all i, i = 1, . . . , n. Let the observed data for the ith area be (Vi, Ci), where Vi represents the vector
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of uncensored reading or censoring level, and Ci is the vector of censoring indicators such that

Zi ≤ Vi if Ci = 1,

Zi = Vi if Ci = 0. (6)

Note that since the observed response Zi, i = 1, . . . , n, is defined over the real line, extensions to right censored

data are straightforward. In fact, the right censored problem can be represented by a left censored problem by

simultaneously transforming the response Zi and censoring level Vi to −Zi and −Vi. The model defined in (5)-

(6), will be called spatial censored linear (SCL) model.

3.1. The log-likelihood function

Classical inference on the parameter vector θ = (β⊤,α⊤)⊤, with α = (τ2, σ2, ρ)⊤, is based on the marginal

distribution of Z. For complete data, we have marginally that Z ∼ Nn(Xβ,Σ), where Σ = τ2In + σ2R(ρ). For

responses with censoring pattern as in (6), we have Z ∼ TNn(Xβ,Σ;A), where TNn(.;A) denotes the truncated

normal distribution on the interval A, where A = A1 × . . . × An, with Ai being the interval (−∞,∞) if Ci = 0

and the interval (−∞, Vi] if Ci = 1. For computing the likelihood function associated with model (5)-(6), the first

step is to treat separately the observed and censored components of Zi.

Let Zo be the no-vector of observed outcomes and Zc be the nc-vector of censored observations with (n =

no + nc) such that Ci = 0 for all elements in Zo, and 1 for all elements in Zc. After reordering, Z, V, X, and Σ

can be partitioned as follows:

Z = vec(Zo,Zc), V = vec(Vo,Vc), X⊤ = (Xo,Xc) and Σ =

(
Σoo Σoc

Σco Σcc

)
,

where vec(.) denotes the function which stacks vectors or matrices of the same number of columns. Then, we

have Zo ∼ Nno(Xoβ,Σoo), Zc|Zo ∼ Nnc(µ,S), where µ = Xcβ + Σco(Σoo)−1(Zo − Xoβ) and S =

Σcc − Σco(Σoo)−1Σoc. Now, let Φn(u;a,A) and ϕn(u;a,A) be the cdf (left tail) and pdf, respectively, of

Nn(a,A) computed at vector u. From Vaida & Liu (2009) and Matos et al. (2013), the likelihood function (using

conditional probability arguments) is given by

L(θ) = f(Z|θ) = P (V|C,θ) = P (Zc ≤ Vc|Zo = Vo,θ)P (Zo = Vo|θ),

= P (Zc ≤ Vc|Zo,θ)f(Zo|θ)

= ϕno(Zo;Xoβ,Σoo)Φnc(Vc;µ,S), (7)

which can be evaluated without much computational burden through the routine mvtnorm() available in R (see,

Genz et al., 2008; R Development Core Team, 2015).

Straightforwardly, the log-likelihood function for the observed data is given by ℓ(θ|z) = log(L(θ)). The

log-likelihood function for the observed data is used to compute different model selection criteria, such as:

AIC = 2m− 2 ℓmax and BIC = mlog n− 2 ℓmax,

where m is the number of model parameters and ℓmax is the maximized log-likelihood value.

3.2. The SAEM algorithm

In this section, we propose the SAEM algorithm by considering Z as missing data to update (M-step) all

the parameters involved in the model. First, we parameterise to ν2 = τ2/σ2 and write Σ = σ2Ψ, with Ψ =
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ν2In + R(ρ). Now, let Z = (Z1, . . . , Zn)
⊤, V = (V1, . . . , Vn) and C = (C1, . . . , Cn), and that we observe

(Vi, Ci) for the ith subject. In their estimation procedure, V and C are treated as hypothetical missing data, and

augmented with the observed data set Zc = (C⊤,V⊤,Z⊤)⊤ . Hence, the complete-data log-likelihood function

is given by

ℓc(θ|Zc) ∝ −1

2

[
log(|Ψ|) + n log (σ2) +

1

σ2
(Z−Xβ)⊤Ψ−1(Z−Xβ)

]
+ c, (8)

with c being a constant independent of the parameter vector θ. Given the current estimate θ = θ̂
(k)

, the E-step

calculates the conditional expectation of the complete data log-likelihood function given by

Q(θ|θ̂
(k)

) = E[ℓc(θ|Zc)|V,C, θ̂
(k)

] = −1

2

[
log(Ψ) + n log (σ2) +

1

σ2
Â(k)

]
,

where Â(k) = tr

(
ẐZ⊤

(k)

Ψ−1

)
− 2Ẑ(k)⊤Ψ−1Xβ + β⊤X⊤Ψ−1Xβ.

It is clear that the E-step reduces only to the computation of

ẐZ⊤
(k)

= E{ZZ⊤|V,C, θ̂
(k)

} and Ẑ(k) = E{Z|V,C, θ̂
(k)

}, (9)

In the traditional EM algorithm, we should now evaluate the conditional expectations. As there are no closed

form for them, we have to introduce two intermediate steps, the simulation and approximation steps. In the

simulation, we generate samples from the conditional distributions through the Gibbs sampler algorithm, according

to the following scheme:

Step E-1 (Sampling). Sample Zc from a truncated normal distribution of the form TNnc(µ,S;Ac), with

Ac = {Zc = (Zc
1, . . . , Z

c
nc)⊤|Zc

1 ≤ V c
1 , . . . , Z

c
nc ≤ V c

nc}, µ = Xcβ + Σco(Σoo)−1(Zo − Xoβ) and

S = Σcc −Σco(Σoo)−1Σoc.

Thus, the new observation Z(k,l) = (Z
(k,l)
i1 , . . . , Z

(k,l)
inc , Znc

i+1, . . . , Zn) is a sample generated for the nc

censored cases and the observed values (uncensored cases), for l = 1, . . . ,M.

Step E-2 (Stochastic Approximation). Since we have the sequence Z(k,l), at the k-th iteration, we replace

the conditional expectations in (9) by the following stochastic approximations:

ẐZ⊤
(k)

= ẐZ⊤
(k−1)

+ δk

[
1

M

M∑
l=1

Ẑ(k,l)Ẑ(k,l)⊤ − ẐZ⊤
(k−1)

]
, (10)

Ẑ(k) = Ẑ(k−1) + δk

[
1

M

M∑
l=1

Ẑ(k,l) − Ẑ(k−1)

]
. (11)

An advantage of SAEM is that, even though it performs a Monte Carlo E-step, it requires a small and fixed Monte

Carlo sample size, making it much faster than MCEM. Some authors claim that m ≤ 10 is large enough, but to

be more conservative, we chose m = 20. Then, the Monte Carlo sample is combined in a smooth way with the

previous step of the algorithm. The conditional maximization (CM) then conditionally maximizes Q(θ|θ̂
(k)

) with

respect to θ and obtains a new estimate θ̂
(k+1)

, as follows:
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Step CM

β̂
(k+1)

=

(
X⊤Ψ̂

−1(k)
X

)−1

X⊤Ψ̂
−1(k)

Ẑ(k), (12)

σ̂2
(k+1)

=
1

n

[
tr

(
ẐZ⊤

(k)

Ψ̂
−1(k)

)
− 2Ẑ⊤

(k)
Ψ̂−1(k)Xβ̂

(k+1)
+ β̂

⊤(k+1)
X⊤Ψ̂

−1(k)
Xβ̂

(k+1)
]
,(13)

(ν̂2, ρ̂)(k+1) = argmax
(ν2,ρ)∈R+×R+

(
−1

2
log(|Ψ|)− 1

2σ̂2
(k+1)

[
tr

(
ẐZ⊤

(k)

Ψ−1

)
−2Ẑ⊤

(k)
Ψ−1Xβ̂

(k+1)
+ β̂

⊤(k+1)
X⊤Ψ−1Xβ̂

(k+1)
])

. (14)

Note that τ̂2 can be recovered using that τ̂2(k+1) = ν̂2(k+1)σ̂2(k+1). The more efficient CM step (14) can be easily

accomplished by using, for instance, the optim routine in R software. This process is iterated until some distance

between two successive evaluations of the actual log-likelihood ℓ(θ|z) in Subsection 3.1, such as |ℓ(θ̂
(k+1)

) −
ℓ(θ̂

(k)
)| or |ℓ(θ̂

(k+1)
)/ℓ(θ̂

(k)
)− 1|, becomes small enough. The variance of the fixed effects in the SCL model is

then given by (Hughes, 1999)

V ar(β̂) =
(
X⊤Σ−1X−X⊤Σ−1V ar(Z|V,C)Σ−1X

)−1
. (15)

4. Diagnostic analysis

Influence diagnostics is widely used in statistical modeling to identify and evaluate aberrant and influential

points which may cause unwanted effects on estimation and goodness of fit. There are several tools to proceed

with influence diagnostics and here we used two approaches, case deletion, also known as global influence, and

local influence diagnostics. The case-deletion approach (Cook, 1977) is the most popular one for identifying

influential observations. To assess the impact of influential observations on parameter estimates some metrics have

been used for measuring the distance between θ̂[i] and θ̂, such as the likelihood distance and Cook’s distance. The

second approach is a general statistical technique used to assess the stability of the estimation outputs with respect

to the model inputs (Cook, 1986). By using the results of Zhu et al. (2001), we introduce here the case-deletion

measures and the local influence diagnostics for the censored data on the basis of Q-function (see, Zhu & Lee,

2001). We first present the Hessian matrix used by both diagnostics measures, after, we consider the case-deletion

measures and finally the perturbation schemes employed to obtain local influence measures.

The Hessian matrix

Following Zhu & Lee (2001), for obtaining the diagnostic measures for case-deletion diagnostics and for local

influence of a particular perturbation scheme, it is necessary to compute Q̈(θ|θ̂) = ∂2Q(θ|θ̂)/∂θ∂θ⊤, where

θ = (β⊤,α⊤)⊤, with α = (α1, α2, α3)
⊤ and α1 = σ2, α2 = τ2, α3 = ρ. Since

∂2Q(θ|θ̂)
∂β∂αk

= 0, k = 1, 2, 3,

after evaluating this derivative at θ = θ̂, the Hessian matrix ∂2Q(θ|θ̂)/∂θ∂θ⊤ is block-diagonal of the form

Q̈(θ|θ̂) = BlockDiag(Q̈11(β), Q̈22(α)), (16)
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where

Q̈11(β) =
∂2Q(θ|θ̂)
∂β∂β⊤ = −X⊤Σ−1X, (17)

Q̈22(α) =
∂2Q(θ|θ̂)
∂αk∂αl

= −1

2
tr
[
∂Σ−1

∂αl

∂Σ

∂αk

]
− 1

2
tr
[
(Σ−1 + ẐZ⊤)

∂

∂αl

(
∂Σ−1

∂αk

)]
, (18)

with

∂Σ−1

∂αk
= −Σ−1

(
∂Σ

∂αk

)
Σ−1,

∂2Σ−1

∂αk∂αl
= Σ−1

(
∂Σ−1

∂αl

)
Σ−1

(
∂Σ

∂αk

)
Σ−1 +Σ−1

(
∂Σ

∂αk

)
Σ−1

(
∂Σ−1

∂αl

)
Σ−1

−Σ−1

[
∂

∂αl

(
∂Σ

∂αk

)]
Σ−1,

for k, l = 1, 2, 3, where
∂Σ

∂α1
= R(ρ),

∂Σ

∂α2
= In,

∂Σ

∂α3
= σ2R′(ρ) and R′(ρ) and R′′(ρ) are the first and

second derivatives of R(·) with respect to ρ. For each covariance function considered in this work, R′(ρ) and

R′′(ρ) are given in Appendix.

4.1. Case-deletion measures

Case-deletion is a common approach for studying the effects of dropping the ith case from the data set. In the

following, a quantity with a subscript ”[i]” denotes the original quantity with the ith case deleted; for example,

Z[i], denotes the complete-data with the ith case deleted. The log-likelihood function of θ, based on the data with

the ith case deleted, is then denoted by ℓ(θ|Z[i]). Let θ̂[i] = (β̂
⊤
[i], α̂

⊤
[i])

⊤ with α̂ = (σ̂2, τ̂2, ρ̂)⊤, be the maximizer

of the function Q[i](θ|θ̂) = E{ℓ(θ|Z[i])|V,C, θ̂}, where θ̂ is the ML estimate of θ. To assess the influence of the

ith case on the ML estimate θ̂, we compare the difference between θ̂[i] and θ̂. If the deletion of a case seriously

influences the estimates, more attention should be paid to that case. Hence, if θ̂[i] is far from θ̂ in some sense,

then the ith case is regarded as influential.

Case-deletion measures can be developed for assessing influential observations, such as the generalized Cook

distance and the likelihood distance (Zhu & Lee, 2001). The generalized Cook distance is defined as

GDi(θ̂) = (θ̂[i] − θ̂)⊤{−Q̈(θ̂|θ̂)}(θ̂[i] − θ̂), i = 1, . . . , n. (19)

where Q̈(θ̂|θ̂) = ∂2Q(θ|θ̂)
∂θ∂θ⊤

∣∣
θ=θ̂

is the Hessian matrix. Using the fact that the Hessian matrix is block-diagonal,

GDi(θ̂) can be decomposed into two parts that correspond to the generalized Cook distance for the parameter

subsets β and α which are denoted, respectively, by GDi(β) and GDi(α), as follows:

GDi = GDi(β̂) +GDi(α̂),

where

GDi(β̂) = (β̂[i] − β̂)⊤{−Q̈11(β̂)}(β̂[i] − β̂) and GDi(α̂) = (α̂[i] − α̂)⊤{−Q̈22(α̂)}(α̂[i] − α̂).

and Q̈11(β̂) and Q̈22(α̂) are as defined in (16).
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Another measure for the influence of the ith case is the likelihood displacement QDi, which is similar to the

likelihood distance LDi (Cook & Weisberg, 1982) and is defined by

QDi = 2{Q(θ̂|θ̂)−Q(θ̂[i]|θ̂)}. (20)

4.2. Local influence

In this subsection, we derive the normal curvature of the local influence (Cook, 1986) for some common

perturbation schemes either in the model or in the data. We will consider the response perturbation scheme, the

explanatory variable perturbation and the matrix scale perturbation for this purpose.

Consider a perturbation vector ω = (ω1, ..., ωg)
⊤ varying in an open region Ω ⊂ Rg. Let ℓc(θ,ω|yc) be the

complete-data log-likelihood to the perturbed model. We assume that there is a ω0 in Ω such that ℓc(θ,ω0|yc) =

ℓc(θ|yc) for all θ. Let θ̂(ω) denote the maximum of the function Q(θ,ω|θ̂) = E[ℓc(θ,ω|yc)|V,C, θ̂]. The

influence graph is then defined as δ(ω) = (ω⊤, fQ(ω))⊤, where fQ(ω) is the Q-displacement function defined as

fQ(ω) = 2
[
Q
(
θ̂|θ̂
)
−Q

(
θ̂(ω)|θ̂

)]
.

Following the approach of Cook (1986) and Zhu & Lee (2001), the normal curvature CfQ,d of δ(ω) at ω0 in

the direction of some unit vector d can be used to summarize the local behavior of the Q-displacement function. It

can be shown that

CfQ,d = −2d⊤Q̈ωod and − Q̈ω0 = ∆⊤
ω0

{
−Q̈(θ̂|θ̂)

}−1

∆ω0 ,

where Q̈(θ̂|θ̂) = ∂2Q(θ|θ̂)
∂θ∂θ⊤ |

θ=θ̂
and ∆ω =

∂2Q(θ,ω|θ̂)
∂θ∂ω⊤ |

θ=θ̂(ω)
.

Following the same procedure as in Cook (1986), the quantity −Q̈ω0 is useful for detecting influential obser-

vations. From the spectral decomposition of a symmetric matrix −2Q̈ω0 =
∑g

k=1 ζkεkε
⊤
k , where {(ζk, εk), k =

1, . . . , g} are eigenvalue–eigenvector pairs of −2Q̈ω0 with ζ1 ≥ . . . ≥ ζr > ζr+1 = . . . = 0 and orthonor-

mal eigenvectors {εk, k = 1, . . . , g}, Zhu & Lee (2001) proposed to inspect all eigenvectors corresponding to

nonzero eigenvalues for capturing more information. Following the work of Zhu & Lee (2001), we consider

the following aggregated contribution vector of all eigenvectors that correspond to nonzero eigenvalues. Let

ζ̃k = ζk/(ζ1 + . . . + ζr), ε
2
k = (ε2k1, . . . , ε

2
kg)

⊤ and M(0) =
∑r

k=1 ζ̃kε
2
k. The lth component of M(0),

M(0)l, is equal to
∑r

k=1 ζ̃kε
2
kl. The assessment of influential cases is based on the visual inspection of the

{M(0)l, l = 1, . . . , g} plotted against the index l. The lth case may be regarded as influential if M(0)l is larger

than the benchmark value.

The inconvenience in the use of the normal curvature is in deciding about the influence of the observations,

since CfQ,d(θ) may assume any value and it is not invariant under a uniform change of scale. Based on the work of

Poon & Poon (1999) in using a conformal normal curvature, Zhu & Lee (2001) considered the following conformal

normal curvature BfQ,d(θ) = CfQ,d(θ)/tr[−2Q̈ω0 ], whose computation is quite simple and also has the property

that 0 ≤ BfQ,d(θ) ≤ 1. Let dl be a basic perturbation vector with lth entry as 1 and all other entries as 0. Zhu &

Lee (2001) then showed that for all l, M(0)l = BfQ,dl
. We can, therefore, obtain M(0)l via BfQ,dl

.

So far, there is no general rule to judge how large is the influence of a specific case in the data. Let M(0) and

SM(0) denote, respectively, the mean and standard error of {M(0)l : l = 1, . . . , g}, where M(0) = 1/g. Poon &

Poon (1999) proposed to use 2M(0) as a benchmark for M(0). But, we may use different functions of M(0). For

instance, Zhu & Lee (2001) proposed to use M(0) + 2SM(0) as a benchmark to take into account the variance of
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{M(0)l : l = 1, . . . , g} as well. According to Lee & Xu (2004), the exact choice of the function of M(0) as the

benchmark is subjective. Lee & Xu (2004) also proposed to use M(0)+c∗SM(0), where c∗ is a selected constant,

and depending on the specific application, c∗ may be chosen suitably.

4.3. Perturbation scheme

In this section, we will evaluate the ∆ matrix under the following perturbation scheme for SCL models. Pertur-

bation of response variables is made on the response values, which may indicate observations with large influence

on their own predicted values (in our case, the response variables are V′s); Scale perturbation is made on the scale

matrix Σ = τ2In + σ2R(ρ), which may reveal individuals that are most influential on the scale structure and

consequently on the α estimate and finally perturbation of explanatory variables.

Let θ = (β⊤,α⊤)⊤, where α = (σ2, τ2, ρ)⊤. Given that, the matrix Q̈(θ̂) is block-diagonal with blocks

Q̈11(β̂) and Q̈22(α̂), then we have, for any unit vector d,

CfQ,d = C1,d(β̂) + C2,d(α̂),

where

C1,d(β̂) = 2d⊤∆⊤
1ω0

(−Q̈11)
−1∆1ω0d and C2,d(α̂) = 2d⊤∆⊤

2ω0
(−Q̈22)

−1∆2ω0d,

with ∆1ω0 = ∆β and ∆2ω0 = ∆α. Furthermore, ∆β =
∂2Q(θ,ω|θ̂)
∂β∂ω⊤ |ω0 , ∆α = (∆⊤

α1,∆
⊤
α2,∆

⊤
α3)

⊤, with

∆αk =
∂2Q(θ,ω|θ̂)
∂αk∂ω⊤ |ω0 for k = 1, 2, 3 and Q̈11 and Q̈22 as in (16).

Response perturbation

A perturbation of the response variables Vi, i = 1, . . . , n, can be introduced by replacing Vi by Vi(ω) = Vi+ωi.

Now, substituting Vi(ωi) into (6), we can write the perturbed model as

yi(ωi) ≤ Vi(ωi) if Ci = 1,

yi(ωi) = Vi(ωi) if Ci = 0,

where y(ω) = y − ω. Hence, the perturbed Q-function Q(θ|θ̂,ω) is as in Subsection 2.2, with ŷ and ŷy⊤ being

replaced by ŷω = ŷ−ω and ŷωy⊤
ω = ŷy⊤− ŷω⊤−ωŷ⊤+ωω⊤, respectively. Under this perturbation scheme,

the vector ω0, representing no perturbation, is given by ω0 = 0 and ∆ω0 has the following elements:

∆β = X⊤Σ−1 and ∆αk
= −Ẑ⊤(In − 2P)⊤

∂Σ−1

∂αk
, k = 1, 2, 3, (21)

where Ẑ = (Ẑ1, . . . , Ẑn)
⊤, P = X(X⊤Σ−1X)−1X⊤Σ−1 and

∂Σ−1

∂αk
is as defined in (17).

Scale matrix perturbation

In order to study the effects of perturbation over the scale matrix, we consider the scheme perturbation of the

form Σ(ω) = D(ω)Σ, where D(ω) is an n × n diagonal matrix with value ωi on ith diagonal element. Under

this scheme, the non-perturbed model is obtained when ωi = 1 for i = 1, . . . , n. Considering this perturbation

scheme, ∆ω0
is a (p+ 3)× n matrix and has components given by:

∆βi = −X⊤Σ−1d(i)(In −P)Z
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and ∆α = [∆αki
], where

∆αki
= −1

2

{
tr
[
ẐZ⊤Σ−1 ∂Σ

∂αk
Σ−1d(i)

]
− Ẑ⊤Σ−1P

∂Σ

∂αk
Σ−1d(i)(2In −P)Ẑ

}
,

for k = 1, 2, 3 and i = 1, . . . , n, where d(i) is a n×n matrix with ith diagonal element equal to one and the others

equal to zero,
∂Σ−1

∂αk
and P are as defined in (17) and (21), respectively.

Explanatory variable perturbation

Similar to response variable perturbation, to evaluate influential points on the explanatory variable, we replaced

X by X(ω) = X+W on the perturbed Q-function, with W = ω1⊤ where ω = (ω1, . . . , ωn)
⊤ and 1 is a p× 1

vector of ones, then W is a n× p matrix. Thus, taking ω = 0, the ∆ω0 has the following elements:

∆βi = Ẑ⊤(In − 2P)⊤Σ−1Wi

and ∆α = [∆αki
], where

∆αki
= Ẑ⊤(In − 2P)⊤

∂Σ−1

∂αk
W

(1)
i (X⊤Σ−1X)−1X⊤Σ−1Ẑ,

for k = 1, 2, 3 and i = 1, . . . , n, where W
(1)
i is a n× p matrix with the ith row equal to one and the others equal

to zero,
∂Σ−1

∂αk
and P are as defined in (17) and (21), respectively.

5. Application: Missouri Dioxin Contamination Site

5.1. Description of data

In order to exemplify the developed methodology showed on this work, we considered a dataset reported in

Zirschky & Harris (1986) with 127 observations distributed in an area of 3600m × 65m on the shoulders of a

country road located on Missouri. The observations correspond to a level of contamination by dioxin (2,3,7,8-

tetrachlorodibenzo-p-dioxin or TCDD) on sampled points around the road. The spatial directions are the X-

direction (measured in 1/100 feet), representing direction parallel to the road, and the Y-direction (measured

in feet), representing the direction perpendicular to or away from the road. The road is located at the Y coordinate

of 30. The shoulder of the road was divided into long transects in the X direction, most 200 feet, in which eight

samples were taken. The eight samples were aggregated together to give one measurement per transect. For il-

lustration purposes, we will treat the values reported as coming from one sampled location, with the X coordinate

indicating the start of the transect (see Figure 1(left panel)). Forty-three percent of the observations (55 sites) were

censored, falling below some LOD. The level of detections range from 0.10 to 0.79 mg/kg.

5.2. Model specification and results

To illustrate our methods, we propose to fit the model

log{Zi} = µ+ ϵi,

with different covariance function for the stochastic errors ϵi, i = 1, . . . , 127. This application is based on left

censoring, and the SAEM algorithm for censored data was implemented as explained in Subsection 3.2, we choose

a Monte Carlo sample size of m = 20, a number maximum of iterations W = 150 and a cut point c = 0.2. These

12



Table 1: Missouri data. ML estimates under different covariance functions

Spherical Exponential Matérn (κ = 0.75) Matérn (κ = 1.00)
µ̂ -1.4137 -2.0122 -1.8044 -1.7030
σ̂2 3.7597 4.8016 4.4306 4.1682
ρ̂ 0.2 14.0557 8.4704 6.0301
τ̂2 3.4526 0.2445 0.3751 0.4276

loglik -216.2290 -143.8896 -144.0814 -144.5400
AIC 440.4580 295.7793 296.1627 297.0800
BIC 451.8348 307.1560 307.5395 308.4567

computational procedures were implemented using the R software (R Core Team, 2015). The results of the ML

estimates, using the spherical, exponential and Matérn (with κ = 0.75, 1.00) covariance functions are presented

in Table 1. Notice that, although the spherical covariance function is broadly used in classical geostatics, this

structure does not present a good fit, showing the worst value for the log-likelihood and information criteria.

The Gaussian and exponential covariance functions are special cases of the Matérn family of covariance func-

tions. In Figure 1 (right panel) we show the values of the log-likelihood using the Matérn covariance after applying

the SAEM algorithm fixing κ at values 0.1, 0.2, 0.3, · · · , 2.0. Thus, we choose κ = 0.5, which maximizes the

profile log-likelihood and corresponding to the exponential covariance function. In the following we proceed with

diagnostics analysis using the exponential covariance function (or Matérn (κ = 0.5)). Because we currently fo-

cus on exploring influence diagnostics, details on the estimation and interpretation of the parameter estimates are

omitted for brevity.
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Figure 1: Missouri data. (left) Proportional TCDD observed on each location. ◦ represents an observed value and
• represents a censored value. (right) Plot of the profile log-likelihood versus κ using the Matérn family.
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Local influence

Now we focus on the local influence analysis for the Missouri data, based on M(0), with interest focussing on

θ. We consider the following perturbation schemes: response perturbation, explanatory variables perturbation and

scale matrix perturbation. We use the criterion M(0)i > M(0)+3SM(0), i = 1, . . . , 127, to discriminate whether

an observation is influential or not.

Figure 2 shows the index plot of M(0) under the three perturbation schemes. We find that subjects #40, #42,

#45, #47 and #48 appears as influential under response perturbation an explanatory variable schemes. Since we

do not have explanatory variable, the influential points showed by this scheme can be viewed as influential points

in the expected average of the variable response µ. For perturbation on Σ, we find that observations #40 and #45

appears as influential, which may indicate a more significant impact on its neighbors than the others points.

It is important to stress that one of the points indicated as influential, the observation (#40), is the maximum

value of dioxin observed and it is located on the boarder of the road, where the dioxin was dumped, then it is

expected to be an influential point. The others points are located in a perpendicular line (see Figure 4) to the road

that contains the observation #40 and considering the response and explanatory perturbations, which compare the

observed data in relation its neighborhood, this may represent the direction where the dioxin was spread.

0 20 40 60 80 120

0.
00

0.
04

0.
08

0.
12

Index

M
(0

)

40

42
45

47
48

0 20 40 60 80 120

0.
00

0.
04

0.
08

0.
12

Index

M
(0

)

40

45
47

48

0 20 40 60 80 120

0.
00

0.
04

0.
08

0.
12

Index

M
(0

)
40

45

Figure 2: Missouri data. Index plot of M(0) using exponential covariance function for the TCDD (left) Response
perturbation; (middle) exploratory variable perturbation and (right) scale matrix perturbation.

Global influence

In order to evaluate the effect on the ML estimates when some observations are deleted, we analyze the GDi(θ)

distance, which is depicted in Figure 3 (left panel). The plot reveals that once again cases (#40,#45,#47,#48)

are potentially influential on the parameter estimates. Figures 3 (panels middle and right) present the index plot of

GDi(β) and GDi(α), respectively. From these figures, we infer that the same observations are influential for β

and α.

5.3. The impact of the detected influential observations

The diagnostic analysis (global influence and local influence) indicated the five observations (#40,#42,#45,#47,

#48) as potentially influential. In order to reveal the impact of these five observations on the parameter estimates,
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Figure 3: Missouri data. Index plot of GDi (left), GD(β) (middle) and GD(α) (right) for the TCDD data using
exponential covariance function.

we refitted the model individually eliminating each of these five cases. In Table 2 we show the relative changes (in

percentage) of each parameter estimate, defined by

RCγ̂ =

∣∣∣∣ γ̂ − γ̂[i]

γ̂

∣∣∣∣ ,
where γ̂ = β̂, σ̂2, ρ̂ or τ̂2 and γ̂[i] denotes the ML estimate of γ̂ after the ith observation of Z is removed. Note

from this Table that significant changes are observed only for the nugget effect τ2, indicating the needed of special

attention on the estimation of the variance.

Table 2: Relative changes [RC (in %)] for the Missouri
data.

Dropped RCµ̂ RC
σ̂2 RCρ̂ RC

τ̂2

[#40] 1.7675 1.6641 2.8503 18.7987
[#42] 1.1246 0.5709 4.3562 15.9953
[#45] 0.1962 2.0432 5.0879 22.5714
[#47] 0.3180 0.7147 5.3426 24.7738
[#48] 1.0575 2.3936 2.3200 22.5531
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Figure 4: Missouri data. TCDD observed on each lo-
cation. ◦ represents an observed value, • represents
a censored value. The influential points (∗) are num-
bered.
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6. Simulation Studies

In order to examine the performance of the proposed methods, we present two simulation studies. We per-

formed the simulation with a left censored spatial linear model as defined in (5)-(6) with different covariance

structures. We set β⊤ = (β0, β1, β2) = (1, 3,−1), σ2 = 3, ρ = 3, τ2 = 2, and x⊤
i = (1, xi1, xi2), where

xi1 ∼ U(0, 1) and xi2 ∼ U(2, 5), for i = 1, . . . , 100.

6.1. First experiment

This study explores the accuracy of the proposed diagnostics measures in detecting a single outlier at different

levels of censoring (8%, 16%, 32%) and different covariance functions (exponential, Gaussian and Matérn(κ =

0.75). Here, we generated only one sample under three setting of covariance functions and the simulated samples

were perturbed by replacing the maximum value by zmax = zmax + 5sd(z). The atypical points corresponds to

the points #52, #53 and #30 under 8%, 16% and 32% of censoring, respectively.

Following the approach described in Section 4, Figure 5 depicts the index plots of M(0) for the response

perturbation, explanatory variable perturbation and scale perturbation, respectively, along with the Lee & Xu

(2004) benchmark computed for c = 3. For these perturbation schemes, we notice the influence of the observations

#52, #53 and #30, that is, the perturbed observations. This confirms the efficiency of the local influence measures

in detecting influential observations. For the others covariance functions the result were similar and they are not

presented here to save space.

Table 3: Simulation study 2: The values in the table denotes the % of correctly identifying the influential obser-
vations using response perturbation (y), explanatory variable perturbation (X) and scale matrix perturbation (Σ)
from 100 simulated datasets under the SCL model with exponential and Matérn correlation structures.

% of censoring

8% 16% 32%

y X Σ y X Σ y X Σ

Exponential
Pert. 2.5β1 90 71 86 71 75 71 66 65 72
Pert. 5β1 97 97 95 99 50 97 79 79 79
Pert. 7.5β1 99 99 99 99 88 99 68 68 68
Pert. 10β1 100 100 100 100 98 100 70 70 70

Matérn (κ = 0.75)
Pert. 2.5β1 90 94 93 72 75 73 66 16 68
Pert. 5β1 84 84 84 97 65 90 96 63 90
Pert. 7.5β1 88 88 88 99 91 97 98 81 94
Pert. 10β1 89 89 89 100 99 100 93 89 92

In Figure 6 we present the index plot of the global influence measures, GDi and QDi. As expected, once again

the perturbed points were detected as influential. Note however that the generalized Cook distance GDi detected

the point #51 as influential. This behavior is expected, since this point is a neighbor of the perturbed point #52.

6.2. Second Study

The second study is a Monte Carlo experiment, that shows the capacity of the methodology to detect atypical

points. Here, to generate an atypical point, we replaced β1 by 2.5β1, 5β1, 7.5β1 and 10β1 to generate the perturbed
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Figure 5: Simulation Study 1. Index plot of M(0) for (a) response perturbation; (b) explanatory variable pertur-
bation and (c) scale matrix perturbation, using Matérn Covariance function with 8% (left), 16% (middle) and 32%
(right) of censoring.
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Figure 6: Simulation Study 1. Index plot of (a) the generalized Cook distance, GDi and (b) likelihood displace-
ment, QDi, using Matérn Covariance function with 8% (left), 16% (middle) and 32% (right) of censoring levels.

observation #50 (z50). Since we have a benchmark to decide which point is influential or not, the diagnostic

measure M(0) were computed for 100 simulated datasets under three censoring proportions (8%, 16%, 32%) and

using exponential and Matérn (with κ = 0.75) covariance functions.

Table 3 shows the results of this experiment, in all cases the capacity to detect influential points is reasonable,

especially when the percentage of censoring is moderate or low. The explanatory variable perturbation appears to

be less sensitive to detect atypical observations, showing the worst percentage of detection in almost all cases.

7. Conclusions

This article proposes influence diagnostic tools for detecting influential observations in the context of spatial

censored linear models. It extends the recently published works by Assumpção et al. (2014) and De Bastiani et al.

(2014) which considers estimation and diagnostics of spatial linear models. Our proposed method relies on the Q

function, the conditional expectation of the logarithm of the complete-data likelihood, which facilitates the theoret-

ical development of the stochastic approximation of the EM algorithm (SAEM) to obtain the maximum likelihood
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estimates of model parameters and the development of diagnostic influence measures. Explicit expressions are

obtained for the Hessian matrix Q̈ and for the matrix ∆ under different perturbation schemes. A simulation study

compares the outlier detection accuracy under different censoring and perturbation schemes. For practical demon-

stration, the methodology is applied to a data from dioxin contaminated sites in Missouri and the proposed methods

are implemented using the R software (codes available upon request from the first author), providing practitioners

with a convenient tool for further applications in their domain.

Future extensions of the work include the use of scale mixtures of normal distributions to accommodate heavy-

tailed feature, or the development of some diagnostics and tests for the model. Bayesian influence diagnostics, in

the context of spatial censored linear models, can be treated via the Kullback–Leibler divergence, as proposed by

Cancho et al. (2011). Other extensions of the current work include, for example, diagnostics analysis in censored

spatial data with measurement errors (Li et al., 2009).
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Appendix: Derivatives for some covariance functions

In this appendix we obtain the first and second derivatives of Σ = τ2I + σ2R(ρ) with respect to ρ for the

exponential, Gaussian and Matérn covariance functions.

Exponential covariance function

R′(ρ) =


dij
ρ2

exp

{
−
(
dij
ρ

)}
, dij > 0,

0, dij = 0

and

R′′(ρ) =


dij(dij − 2ρ)

ρ4
exp

{
−
(
dij
ρ

)}
, dij > 0,

0, dij = 0.

Gaussian covariance function

R′(ρ) =


2d2ij
ρ3

exp

{
−
(
dij
ρ

)2
}
, dij > 0,

0, dij = 0

and

R′′(ρ) =


(4d4ij − 6d2ijρ

2)

ρ6
exp

{
−
(
dij
ρ

)2
}
, dij > 0,

0, dij = 0.
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Matérn covariance function

R′(ρ) =


1

2κρ2Γ(κ)

(
dij
ρ

)κ [
2κρKκ

(
dij
ρ

)
+ dij (AK)

]
, dij > 0,

0, dij = 0

and

R′′(ρ) =


21−κ

Γ(κ)

{
−

d2ij
4ρ6

(
dij
ρ

)κ−2 [
−d2ij (BK)

]
− 4ρ(κ+ 1)

[
dij (AK) + κρKk

(
dij
ρ

)]}
, dij > 0,

0, dij = 0,

where ρ > 0; Kκ(u) =
1
2

∫∞
0

xκ−1e−
1
2u(x+x−1)dx is the modified Bessel function of the third kind of order κ

(see, Gradshtejn & Ryzhik, 1965), with κ > 0 fixed and

AK = Kκ−1

(
dij

ρ

)
−Kκ+1

(
dij

ρ

)
; BK = Kκ−2

(
dij

ρ

)
− 2Kκ

(
dij

ρ

)
+Kκ+2

(
dij

ρ

)
.
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Allassonnière, S., Kuhn, E., Trouvé, A. et al. (2010). Construction of Bayesian deformable models via a stochastic

approximation algorithm: a Convergence study. Bernoulli, 16(3), 641–678.

Assumpção, R., Uribe-Opazo, M. & Galea, M. (2014). Analysis of local influence in geostatistics using student’s

t-distribution. Journal of Applied Statistics, 41(11), 2323–2341.

Cancho, V., Dey, D., Lachos, V. & Andrade, M. (2011). Bayesian nonlinear regression models with scale mixtures

of skew normal distributions: Estimation and case influence diagnostics. Computational Statistics & Data

Analysis, 55(1), 588–602.

Cook, R. (1977). Detection of influential observation in linear regression. Technometrics, 19, 15–18.

Cook, R. D. (1986). Assessment of local influence. Journal of the Royal Statistical Society, Series B,, 48, 133–169.

Cook, R. D. & Weisberg, S. (1982). Residuals and Influence in Regression. Chapman & Hall/CRC, Boca Raton,

FL.

De Bastiani, F., de Aquino Cysneiros, A. H. M., Uribe-Opazo, M. A. & Galea, M. (2014). Influence diagnostics

in elliptical spatial linear models. TEST , 24(2), 322–340.

De Oliveira, V. (2005). Bayesian inference and prediction of Gaussian random fields based on censored data.

Journal of Computational and Graphical Statistics, 14(1), 95–115.

Delyon, B., Lavielle, M. & Moulines, E. (1999). Convergence of a stochastic approximation version of the EM

algorithm. Annals of Statistics, 27(1), 94–128.

Dempster, A., Laird, N. & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society, Series B,, 39, 1–38.

20



Fridley, B. L. & Dixon, P. (2007). Data augmentation for a bayesian spatial model involving censored observations.

Environmetrics, 18, 107–123.

Genz, A., Bretz, F., Hothorn, T., Miwa, T., Mi, X., Leisch, F. & Scheipl, F. (2008). mvtnorm: Multivariate normal

and t distribution. R package version 0.9-2, URL http://CRAN. R-project. org/package= mvtnorm.

Gradshtejn, I. S. & Ryzhik, I. M. (1965). Table of integrals, series and products. Academic Press.

Hughes, J. (1999). Mixed effects models with censored data with application to HIV RNA levels. Biometrics, 55,

625–629.

Jank, W. (2006). Implementing and diagnosing the stochastic approximation EM algorithm. Journal of Computa-

tional and Graphical Statistics, 15(4), 803–829.

Kuhn, E. & Lavielle, M. (2004). Coupling a stochastic approximation version of EM with an MCMC procedure.

ESAIM: Probability and Statistics, 8, 115–131.

Lee, S. Y. & Xu, L. (2004). R influence analysis of nonlinear mixed-effects models. Computational Statistics &

Data Analysis, 45, 321–341.

Li, Y., Tang, H. & Lin, X. (2009). Spatial linear mixed models with covariate measurement errors. Statistica

Sinica, 19(3), 1077–1093.

Matos, L. A., Lachos, V. H., Balakrishnan, N. & Labra, F. V. (2013). Influence diagnostics in linear and nonlinear

mixed-effects models with censored data. Computational Statistics & Data Analysis, 57(1), 450–464.

Militino, A. F. & Ugarte, M. D. (1999). Analyzing censored spatial data. Mathematical Geology, 31(5), 551–561.

Poon, W. & Poon, Y. (1999). Conformal normal curvature and assessment of local influence. Journal of the Royal

Statistical Society, Series B (Statistical Methodology), 61, 51–61.

R Development Core Team (2015). R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Vaida, F. (2005). Parameter convergence for EM and MM algorithms. Statistica Sinica, 15(3), 831–840.

Vaida, F. & Liu, L. (2009). Fast implementation for normal mixed Effects models with censored response. Journal

of Computational and Graphical Statistics, 18, 797–817.

Wei, G. C. & Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data

augmentation algorithms. Journal of the American Statistical Association, 85(411), 699–704.

Wu, C. J. (1983). On the convergence properties of the EM algorithm. The Annals of Statistics, 11(1), 95–103.

Zhu, H. & Lee, S. (2001). Local influence for incomplete-data models. Journal of the Royal Statistical Society,

Series B (Statistical Methodology), 63, 111–126.

Zhu, H., Lee, S., Wei, B. & Zhou, J. (2001). Case-deletion measures for models with incomplete data. Biometrika,

88, 727–737.

Zirschky, J. H. & Harris, D. J. (1986). Geostatistical analysis of hazardous waste site data. Journal of Environ-

mental Engineering, 112(4), 770–784.

21


