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Abstract

One of the factors that add to the complexity of the cutting stock problem is the large number of the cutting patterns
that may be encountered. When the cutting stock problem is expressed as an integer-programming problem, the large
number of cutting patterns involved generally makes computation infeasible. However, if the linear programming
formulation of the cutting stock problem is free of integer variables, then the e!ect of the number of cutting patterns will
be mitigated. An auxiliary problem arises from the formulation where the columns of the linear programming constraint
matrix need to be determined. In this work, a simple pattern generating procedure is developed for solving the auxiliary
problem. It is based on an ad hoc solution method described in literature for the knapsack problem. A search tree is used
to develop the pattern generation method. Examples are given to illustrate the procedure and its applications. � 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

The cutting stock problem (CSP) is a business
problem that arises in many industries such as
textile, leather, paper, wood, glass and sheet metal.
In all these industries, cutting of shapes from
a piece of stock material is a recurring activity that
requires proper scheduling so that the overall ma-
terial needed by all cuts is minimized, i.e. minimum
trim loss.

Di!erent variants of CSP are available. An im-
portant variant of the CSP is the one-dimensional
CSP. A collection of one-dimensional stock mater-
ial objects (e.g. wooden rods, paper reels, iron slabs,
etc) of a given length is divided into smaller pieces
of desired lengths in order to satisfy speci"c cus-
tomer demands. The objective of the CSP is to

minimize the total amount of stock material or,
equivalently, to minimize the trim loss.

Another variant of CSP is the two-dimensional
CSP. In this variant, a set of order pieces is cut from
a large supply of rectangular stock sheets of "xed size
in a way that minimizes the total cost, such as the
total number of stock sheets used. The two-dimen-
sional CSP can be further classi"ed into cutting of
regular or irregular shapes, and the regular shapes
can take guillotine or non-guillotine cut style [1].

In general, the CSP with all its extensions and
variants has been classi"ed as NP-hard [2]. Many
researchers have applied linear programming (LP)
models to CSPs [3}7]. The CSP is essentially an
integer programming problem; however, a two-
stage approach involving an LP relaxation of the
CSP at the "rst stage followed by a rounding-up
procedure at the second stage can be applied for
many variants of the CSP [8]. This approach is
frequently used for solving CSPs by applying the
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column generation method of Gilmore and
Gomory [9] and an appropriate rounding of the
solution of the continuous relaxation problem [10].

An auxiliary problem arises from the LP formu-
lation where the columns of the LP constraint
matrix need to be determined. The columns of the
LP constraint matrix represent all the cut patterns
(i.e. the di!erent ways of cutting the material) that
can be produced from the available stock material.
Columns may be generated in two ways: in advance
or on-line. Advance column generation is used
when all of the feasible patterns are being generated
for small to medium problems. It is also used only
when a representative subset is being generated for
a large problem. The on-line pattern generation is
used for solving large integer problems by using
a column generation technique similar to that of
the classic one-dimensional CSP [8].

For the one-dimensional CSP, Gilmore and
Gomory [9,11] used an impressive column genera-
tion technique built into the frame of the simplex
method. The next column in each simplex pivot
step is generated when needed by solving the asso-
ciated auxiliary problem (knapsack problem) using
the shadow prices as the coe$cients of the objective
function. In the sequential heuristic procedure
adopted by Haessler [12,13], cutting patterns are
generated and used sequentially until all the re-
quirements are met. The procedure limits the
number of pattern changes by adding restrictions
to the cutting patterns such that they have certain
characteristics.

Christo"des and Whitlock [14] designed for their
n-stage solution approach of the constrained CSP an
enumerative procedure to generate the cutting pat-
terns (columns) without any duplication due to sym-
metry or cut ordering. Goulimis [15] approach to
the one-dimensional CSP starts with the generation
of all feasible cutting patterns, usually making pro-
vision for such constraints as the minimum size of
the trim, the number of cuts in a pattern and the
number of di!erent lengths in a pattern.

Beside the column generation methods discussed
above, further approaches have been considered in
the literature. Among them are the approaches of
Johnson et al. [8], Arbel et al. [16], Yanasse et al.
[17], Savsar and Cogun [18], Chauny et al. [19],
and Ferreira et al. [20].

One of the factors that add to the complexity of
the CSP is the large number of cutting patterns that
may be encountered. When the CSP is expressed as
an integer-programming problem, the large num-
ber of cutting patterns involved generally makes
computation infeasible. However, if the LP formu-
lation of the CSP is free of integer variables, then
the e!ect of the number of cutting patterns will be
mitigated.

Within this work context, a simple heuristic is
developed that generates in advance all the feasible
cutting patterns.

2. The problem

Cutting pattern generation of the following CSP
is investigated. Paper rolls or metallic coils of stan-
dard width w

�
(k"1, 2, h) are slit to n sizes with

width and length speci"cations of w
�

and l
�

(i"1, 2, n), respectively. There is no limit on the
lengths of the standard rolls (coils) since, for practi-
cal purpose, limited-length rolls can be connected
together to yield the required lengths.

It is required to determine the production sched-
ule (cutting patterns) that minimizes the total waste
(trim losses) while satisfying the given demand. This
CSP can be formulated as follows:
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where a
���

is the number of units of width w
�
being

cut according to the jth pattern from the kth roll
(i"1, 2, n; j"1, 2,m

�
; k"1, 2, h), x

��
is the

length of kth roll being cut according to the jth
pattern, c

��
is the cut loss of the kth roll being cut

according to the jth pattern, s
�
is the surplus length

being produced of the roll with width w
�
, and m

�
is

the number of cut patterns that can be produced
from the kth roll.

To gain some appreciation of the dimension
of the cutting pattern generation problem, the
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Fig. 1. General layout of the search tree.

possible combinations are considered regardless of
the feasibility issue. To enumerate all possible com-
binations requires at least 2�!1 di!erent combina-
tions of the required widths (where n is the number
of required widths), i.e. for six required widths, at
least 63 combinations are involved (Ref. [16]).

2.1. Generation of feasible cutting patterns

The generation of the feasible cutting patterns is
achieved through a search tree. The levels of the
tree represent the required widths that are arranged
in a non-increasing order with the largest size at the
"rst level whereas the smallest size occupying the
highest level of the tree. The starting node of level
I shows the standard width of the kth roll (w�

�
) that

is used to generate the patterns. Thus, a separate
search tree is used to generate patterns associated
with each standard width. The branches of level i of
a search tree show the product of the number of
units of required width i that is cut according to the
jth pattern times the required width w

�
, (i.e. a

���
w
�
).

This product represents the total width that is cut

from roll k to satisfy the required width w
�
. The

starting node of level i represents the remaining
width after satisfying the cuttings speci"ed by the
previous i!1 branches. The end terminal nodes at
the highest level of the tree show the cut losses
resulting from the di!erent cut patterns.

The search tree is constructed by traversing "rst
from bottom root to top and then from left to right.
The construction starts at the root ("rst level of the
tree), and continues to move upward in the tree by
adding additional sizes to the combinations already
speci"ed by the previous branches. While travers-
ing along a speci"c path on the search tree, the
feasibility of that path is maintained by ensuring
a non-negative end terminal node which implies
adequate material to satisfy the requirements of the
path. The path from the root of the tree to an end
terminal node represents a feasible cutting pattern
whose components a

���
indicate widths which are

combined together and the number of units of each
width.

As illustrated in Fig. 1, each node at any level has
as many branches as the maximum number of units
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that can be cut from the remaining width shown in
that node, i.e. a

���
determined by expression (7)

which will be shown later, plus an additional
branch. The left-most branch shows the total
width assigned to a

���
, whereas the subsequent

branches from left to right show the total widths
that are assigned to a

���
!1, a

���
!2, 2, 2, 1,

respectively. The additional branch, placed at
the right most of the branch group, shows the
possibility of not choosing the width associated to
that level in that particular combination. The path
from the root of the tree to a terminal node repres-
ents a feasible cutting pattern (i.e. a column of
matrix [a

���
]).

3. Algorithmic approach

Let w
�
'w

�
'w

�
'2'w

�
. For each roll k,

a matrix [a
���

] of n�m
�
elements should be deter-

mined. The "rst element is given by

a
���

"SmallestInt�
w�

�
w
�
�. (4)

The second element in the "rst column is

a
���
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�
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���
w
�

w
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The ith element in the "rst column is
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!
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�
���
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���w
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Generally, any element in the matrix is given by

a
���

"SmallestInt��w�
�
!
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���

w
���w

��. (7)

Dantzig [21] uses a formula similar to that of
expression (7) in his ad hoc solution method to the
knapsack problem formulation.

Having determined the elements of the matrix
[a

���
], i.e. the cut patterns, the cut losses associated

with these cut patterns can be determined by

c
��

"w�
�
!

�
�
���

a
���

w
�
. (8)

To determine the matrix [a
���

] of the kth roll (k"1
for standard width w�

�
, 2 for standard width

w �
�
,2, h for standard width w �

�
), the following

branch and bound algorithm is used.

1. Arrange the required width w
�
(i"1, 2, 2, n) in

non-increasing order.
2. Apply expression (7) to "ll the "rst column

(j"1) of the matrix.
3. Apply expression (8) to "nd the cut loss resulting

from cut pattern 1.
4. Set the level index (row index) i to n!1.
5. Check the current node (cell) of level i, i.e. node

(i, j). If the node has a value equal zero (i.e.
a
���

"0), then proceed to Step 7. Otherwise, gen-
erate a new column j"j#1 with the following
elements:
� a

���
"a

�����
(z"1, 2, i!1) elements to "ll

the nodes that precede the current node i, j.
� a

���
"a

�����
!1 element to "ll the current

node i, j.
� Fill the remaining nodes of the new column j,

i.e. a
�����

, a
�����

,2, a
���

, using expression (7).
6. Apply expression (8) to "nd the cut loss resulting

from cut pattern j. Go to Step 4.
7. Decrement i, i.e. i"i!1. If i'0, then repeat

Step 5. Otherwise, stop.

The steps of this algorithm are #owcharted as
shown in Fig. 2. The CSP may be constrained by
placing bounds on the trim losses. A lower bound
may be speci"ed when both sides of the rolls are
trimmed to cut o! the irregularities. Similarly, the
management may also specify an upper bound on
the trim losses. Such bounds reduce the number of
patterns included in the LP model.

4. Illustrative example

To illustrate how the algorithm works, let us
consider the following simple example. The Alumi-
num Rolling Mill Company (ARMCO) received
four orders for aluminum coils with the following
speci"cations:

Order number (i): 1 2 3 4

Required width w
�
(cm): 50 40 30 20

Required length l
�
(cm): 4000 5000 10 000 6000
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Fig. 2. Pattern generating algorithm #owchart.

Aluminum coils are produced by ARMCO in
two standard widths: 130 and 100 cm that are slit to
the sizes speci"ed by the orders.

This problem has the form described earlier, and
can be formulated by the model of expressions (1)}(3).
The matrices [a

���
] (k"1 for 130 cm and k"2 for

100 cm) are prepared using the tree of Fig. 3.
Fig. 3 shows the search tree diagram that de-

scribes the di!erent patterns produced from the
130 cm width roll (i.e. w�

�
"130 cm). The tree dia-

gram is constructed from bottom root to top and
from left to right. The branches of level I show the
multiples of the largest required width (i.e. w

�
"50)

that can be produced from the 130 cm width,
whereas the branches of level II show the multiples

of the next largest required width (i.e. w
�
"40), and

so we branch along the tree as the required width
decreases.

Starting with the left branch of level I, 2 units of
width 50 is the maximum number of units that can be
produced from the 130-width roll. The three branches
of level I show respectively, from left to right 2, 1, and
0 units that can be cut from the 130-width roll. The
terminal nodes of level IV show the cut losses result-
ing from the di!erent cut patterns.

The elements of each column in Table 1 are
corresponding to a sequence of connected branches
in Fig. 3. For example, moving from top to bottom
along the branches connecting the starting node of
level I and the "rst terminal node at the bottom
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Fig. 3. Example search tree.

Table 1
Cutting patterns for 130 cm standard roll

Required
width

Cutting patterns (columns)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

50 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 2 1 1 0 0 0 3 2 2 1 1 1 1 0 0 0 0 0
30 1 0 0 1 0 2 1 0 0 1 0 3 2 1 0 4 3 2 1 0
20 0 1 0 0 2 1 2 4 0 1 2 0 1 3 4 0 2 3 5 6
Cut loss 0 10 0 10 0 0 10 0 10 0 10 0 10 0 10 10 0 10 0 10

level, i.e. level IV, one can identify the elements of
column 1. Similarly, the elements of column j can
be identi"ed from the branches connecting the
starting node of level I to the terminal node j of the
last level.

Applying the algorithm to the example problem,
the elements of the matrix a

���
, i.e. for the 130 cm

roll, are established in the following manner.
Step 1: Descending order of the required width:

50, 40, 30, 20.
Step 2: Elements of "rst column (j"1):

� a
���

"SmallestInt[(130!0)/50]"2,

� a
���

"SmallestInt[(130!2�50)/40]"0,

� a
���

"SmallestInt[(130!2�50!0�40)/
30]"1,

� a
���

"SmallestInt[(130!2�50!0�40

!1�30)/20]"0.

Step 3: Cut loss of pattern 1, C
��

"130!(2�
50#0�40#1�30#0�20)"0

Step 4: Set the level index i (row index)"
4!1"3

Step 5: Since the current node of level III (i.e. a
���

)
is greater than zero, a new column j"j#1"2 is
introduced with the following elements:
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� a
���

"a
���

"2 (elements of the nodes preceding

the current node),
� a

���
"a

���
"0,

� a
���

"a
���

!1"1!1"0

(element to "ll the current node i, j),

� a
���

"SmallestInt[(130!2�50

!0�40!0�30)/20]

"1 (element of the remaining node).

Step 6: Cut loss of pattern 2C
��

"130!(2�
50!0� 40!0�30!1�20)"10

Go back to Step 4.
Step 4: Set the level index i"n!1"3.
Step 5: Since the current node of level III (i.e.

a
���

), is equal to zero, the algorithm branches to
Step 7.

Step 7: the index i is decremented by 1, i.e.
i"i!1"2 which is greater than zero. Thus Step
5 is repeated.

Step 5: The current node of level II (i.e. a
���

) is
equal to zero, thus the algorithm branches again to
Step 7.

Step 7: The index i becomes i"1 which is greater
than zero. Step 5 is repeated.

Step 5: The current node of level I (i.e. a
���

) is
greater than zero, a new column j"j#1"3 is
introduced with the following elements.

No preceding element since the current node is
the "rst node in the column.

� a
���

"a
���

!1"1 (element to "ll the current
node).

� a
���

"SmallestInt[(130!1�50)/40]

"2 (elements of the remaining nodes).

� a
���

"SmallestInt[(130!1�50!2�40)/30]
"0.

� a
���

"SmallestInt[(130!1�50!2�40

!0�30)/20]"0.

Step 6: Cut loss of pattern 3C
��

"130!(1�
50#2�40#0�30#0�20)"0.

Go back to Step 4.
Step 4: Set the level of index i"n!1"3

Step 5: The current node of level III (i.e. a
���

) is
equal to zero, thus we proceed to Step 7.

Step 7: The index i"2 that is greater than zero.
Step 5 is repeated.

Step 5: The current node of level II (i.e. a
���

) is
greater than zero, thus a new column j"j#1"4
is introduced with the following elements:

� a
���

"a
���

"1 (elements of the nodes

preceding the current node).

� a
���

"a
���

!1"1 (elementto"ll thecurrent node).

� a
���

"SmallestInt[(130!1�50!1�40)/30]

"1.

� a
���

"SmallestInt[(130!1�50!1�40
!1�30)/20]

"0 (elements of the remaining nodes).

Step 6: Cut loss of pattern 4C
��

"130!(1�
50#1�40#1�30#0�20)"10.

Go back to Step 4.
The algorithm proceeds in the same manner to

produce all the cut patterns shown in Table 1 for
the 130 cm standard roll. The cut patterns of the
100 cm standard roll can be produced in a similar
manner.

5. Further examples and applications

Based on the branch and bound algorithm
described above, a special computer routine for
generating cutting patterns is developed. The
routine had been validated and used in determining
the cutting patterns of the corrugated box factory
model of Savsar and Cogun (Ref. [18]). Applying
the upper and lower limits of the trim losses
speci"ed in the case study (trim loss range of
25}150mm), 73 cutting patterns, typical to those
produced by direct enumeration and reported in
Ref. [18], were generated in a fraction of a second
using a Pentium II 450MHz (128 RAM).

An aluminium rolling mill plant of 100,000 tons
capacity located in the Arabian Gulf region pro-
duces a wide series of aluminium alloys through hot
and cold 4-high rolling mills, respectively. Alumi-
nium coils of 100, 120, and 150 cm width are
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produced by cold rolling. These coils are then send
to the "nishing department for slitting to the re-
quired width. In average, the mill works on 8}10
orders every week. Every time and other, there are
4}8 orders of di!erent width requirements of the
same series. The developed routine is currently be-
ing used by the plant to generate in advance all
feasible cutting patterns, which are usually ranging
between 20 and 150 patterns per coil. Having gen-
erated the cutting patterns, i.e. the entries of matrix
a
���

, the solution of the LP problem formulation of
expressions (1)}(3) is achieved within a fraction of
a second using standard LP package on a Pentium
II 450MHz (128 RAM) machine.

Although the pattern generation of the one-
dimensional CSP is addressed in this work, how-
ever, the simple procedure developed can be used
for the two- and three-dimensional CSPs by con-
sidering the area and volume of the required units,
respectively, rather than their width. Consequently,
the search tree will be modi"ed to represent the
dimensions of the problem. For example, each
branch in the search tree of the two-dimensional
problem will represent the total length and total
width required for a speci"c number of units to be
cut, and each intermediate node in the tree will
show the unassigned length and width of the stock.
In brief, the approach can be extended to generate
cutting patterns for the two- and three-dimensional
CSPs.

6. Conclusion

The CSP is frequently encountered in paper and
sheet metalworking industries where paper rolls
and metallic coils of standard width are slit to
satisfy speci"c size requirement. In such situations,
it's required to determine the production schedule
(cutting patterns) that minimizes the total waste.
The problem "ts a LP formulation. An auxiliary
problem arises from the LP formulation of the
CSP. The auxiliary problem is manifested by the
need to determine the columns of the LP constraint
matrix. The columns represent the di!erent cutting
patterns that can be produced from the available
stock material. A simple pattern generating proced-
ure is developed for solving this auxiliary problem.

The procedure is based on an ad hoc method of
solution described in the literature for the knapsack
problem. Examples are presented to demonstrate
the procedure and its applications.
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