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Three applications of duality are mentioned: mathematical, computational, and eco-
nomic. One of the earliest attempts to produce a dual of an integer programme with
economic interpretations was by Gomory & Baumol in 1960. This is described
together with its economic properties and some refinements and corrections. A
more recent integer programming dual due to Chvatal, whose main use to date
has been computational, is then described. It is shown that this can be given an
economic interpretation as a generalization of Gomory & Baumol’s dual which
rectifies some of the deficiencies of the latter. The computational problems of
calculating Chvatal’s dual are remarked on.

1. Introduction

A major achievement of Steven Vajda was to explain the implications of linear
programming (LP) duality in a wide variety of seemingly unrelated contexts, e.g..
combinatorics and graph theory, flows in networks, game theory, and economics.
Among his many books which discuss this, it is worth mentioning Mathematical
programming [14]. Perhaps most surprising is its application to certain problems in
combinatorics, e.g. Menger's theorem and the Konig-Egervary theorem, both of
which are described in Ref. 14, since these problems belong to the realm of discrete
mathematics and superficially appear to have nothing to do with the continuous
mathematics of LP. Of course, where these problems are cast in an LP form, the
optimal solutions are integral, which results in the relevance of LP.

For more general problems, however, this will not be the case, and the solution of
the LP relaxation of an integer programming (IP) model will be fractional. A number
of attempts have been made to extend the concepts of LP Duality to IP. References
are given in Williams [18]. There it is suggested that there are three motives for doing
this. Firstly the duality theory of LP is mathematically aesthetic and possesses a
symmetry: the dual of the dual gives the original model. It has not been possible to
recapture this property in any IP duals, to the author’s knowledge. Secondly duality
is computationally valuable. The fact that, if an LP problem is solvable, the optimal
objective value of the dual equals that of the primal provides a tight bound on the
objective value of the original model. IP duals usually fail to produce a tight bound
(there is a ‘duality gap’) but the bounds produced reduce the combinatorial search.
In the case of Chvatal’s dual, the duality gap is closed. Thirdly LP duality is
economically valuable for the pricing of resources. It is well known that the dual
solution of an LP problem enables one to obtain shadow prices for the resources
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representing their marginal value. We will concentrate on this last aspect in relation
to IP. A survey is given by Williams [15] and applications given in Williams {16].

The earliest attempt to construct an I[P dual which could be used for pricing was
by Gomory & Baumol (a2 mathematician and an economist) in Ref. 11. While it is
impossible (not surprisingly) to recapture all the properties of the LP dual in their
system, their approach does have considerable merits. It can also be refined. We
briefly describe the economic properties of LP duality in Section 2. We discuss the
Gomory-Baumol dual in Section 3, by means of a numerical example, and remark
on its properties and defects. Standard results on LP duality will be assumed. From a
computational point of view, perhaps the most satisfactory general IP dual is due to
Chvatal [7] (which closes the duality gap). If viewed economically, this dual can be
seen as a natural extension of the Gomory—Baumol dual. It illustrates the difficulties
inherent in any system of pricing in IP. Chvatal’s dual is described in Section 4. It is
shown how, if simplified, it reduces to the Gomory—Baumol dual.

Both the IP duals discussed in this paper only apply to pure IP. Probably of more
economic importance is mixed IP. This frequently arises when fixed, as well as
variable, costs are involved in a problem. The definition of a satisfactory dual
with useful economic interpretations is even more difficult. It is, however, wrong
to dismiss peremptorily the concept of duality here. As Appa [1] points out, for a
number of mixed IP models, if we ultimately fix the values of the IP variables, the
resultant IP model will, by virtue of its dual, have structural properties which are
general. Therefore LP duality still gives us valuable information. Bender’s decom-
position [4] is an algorithmic approach to solving IP models by successive fixing of
the integer variables and then making use of the dual solution of the resultant LP
problem.

2. The economic properties of LP duality
In order to illustrate this paper, we will consider the following model.

®1) Maximize 12x, + 4x; + 3x;
subject to  2x; + 3x; <7 (1)
X, +4x; <8 (2
;- + x3<5 €)
X1, X , x320 (4)
X, , X , Xx;integer. (%)

Here x, x;,x3 will be thought of as the quantities to be made of three products
subject to three resources modelled by (1), (2), and (3). The objective is to maximize
profit. If we ignore the integrality conditions (5), we obtain the LP relaxation. This
has the optimal solution

x1=13, x=1}, x3=0, profit=24}. (6)
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This model has a well defined (and unique) dual. The optimal dual values associated
with constraints (1), (2), (3) are respectively 13,0,34.

Economically this illustrates a number of general properties. These properties are
described by Koopmans [12] in his Nobel lecture as conditions for optimal value
production.

(LP1) Every process (product) in use makes a zero profit. For example, pro-
ducts 1 and 3 have imputed costs of 2x 1} +3x3}=12and 3 x 1{+1x0=4
respectively, exactly balancing their unit profit contributions. This property is a
result of the orthogonality relationship between primal and dual solutions.

(LP2) No process (product) makes a positive profit. For example, product 3 has an
inputed cost of 4 x 0 + 1 x 3} = 3§ which exceeds the unit profit contribution. This
property is a result of the dual ( > ) constraint associated with product 3.

(LP3) Every good (resource) used below the limit of its availability has a zero price. It
can be seen that resources (1) and (3) are used to their limit, but that only 1 %units of
(2) are used. The dual value associated with (2) is 0. It is known by economists as a
‘free good’. If its supply is increased, no further profit results. Again this propertyis a
result of the orthogonality relationship. If a resource has a positive price, the con-
straint is satisfied as an equality (no slack).

(LP4) No good (resource) has a negative price. It can be seen that the optimal dual
values are non-negative. This is a result of the non-negativity conditions on the
vanables in the dual model.

(LP5) The optimal value of the outputs equals the optimal value of the input. The
total imputed values of the resources is 7 x 1§+ 8 x 0+ 5 x 3} =24} which
equals the maximum profit attainable. This is the main result of the duality theorem
of LP.

Remark. 1f the model has a unique solution, then the dual solution can be used to
obtain the primal solution by virtue of properties LP1 and LP3. We ignore products
not produced and zero-valued goods, leaving & uniquely solvable set of equa-
tions. (]

(LP6) In the absence of degeneracy, the dual values represent the effects of marginal
changes in resource levels. For example, changing resource 1 from 7 to 7+ A
increases profit by $ A.

(LP7) In a model with n variables, at most n constraints will have positive dual values.
It is convenient in this context to include the non-negativity constraints (4) in the
form —x; < 0; they will be valued by their reduced costs. This result is attributed to
Carathéodory [6]. In the absence of degeneracy, exactly n constraints will have
positive valuations. These constraints can be shown to be binding in the sense
that, if any one of them is removed, the optimal solution will change. If degeneracy
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is present, there will still be n binding constraints, but with flexibility over the choice
of which n. In the example, with 3 variables, constraints (1) and (3) have positive
valuations together with —x; < 0 which is valued at . It can be shown that adjusting
the RHS coefficient on any of these constraints results in a change in the optimal
solution.

3. Gomory & Baumol’s dual

In contrast to the optimal (real) solution (6) of the LP relaxation of model P1, the
optimal integer solution is

x =1, x; =1, x; =1, profit = 19. (N

Gomory & Baumol seek a set of prices on the constraints which would be compatible
with solution (7) and preserve as many of the properties 1 to 7 as possible.

It is easy to see that it will be impossible to preserve property 5 by a system of
prices alone, since (by definition) the optimal LP dual values are those which mini-
mize the total imputed value of the resources which will be equal to the optimal LP
objective value. For the example, the minimum imputed valuation cannot therefore
be less than 24 g, i.e. we cannot reduce it to the optimal value of 19 of the outputs;
thus there is a duality gap.

Gomory’s [10] algorithm for IP generates cutting planes which cut off fractional
solutions and ultimately leads to an LP problem, with extra constraints, yielding the
optimal IP solution. Gomory & Baumol initially suggest valuing these extra con-
straints as well leading to an LP problem with all the desirable properties. They point
out, however, that these extra constraints are artificial and usually cannot be given a
sensible economic interpretation. Therefore the dual values of each of the artificial
constraints are ‘imputed back’ to the original constraints. Each of the new con-
straints arises, in Gomory’s algorithm, from a linear combination of the original
constraints (together with an integer rounding). For example, if a new constraint has
a dual value of 7 and this constraint arises from multiples A, ,..., A, of the original
constraint values 7\ ,..., TA,,, then these values will be imputed back to the original
constraints respectively (together with dual values arising from other new constraints
and direct dual values on the original constraints).

Gomory & Baumol remark on the lack of uniqueness of this approach, depending
as it does on the alternative cutting planes which might be generated. This concern
seems unwarranted, since less arbitrariness may be obtained by replacing the original
constraints by the facet-defining constraints for the convex hull of feasible integer
solutions. Then the linear expression in each of the facet-defining constraints can be
expressed as a non-negative linear combination of the linear expressions in the
original constraints. Although there could still be alternative representations, this
is no more serious than degeneracy which arises to produce alternative LP dual
solutions.

In order to illustrate this version of Gomory & Baumol’s dual on the example P1,
we give its convex-hull representation by means of facet-defining constraints.
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P2) Maximize 12x; + 4x, + 3%
subject to X1+ x3+ x3<3 (8)
x+ x; <2 9
X +2x; <4 (10)
X <1 (11)
—x) <0 (12)
—X; <0 (13)
—x3 <0 (14)

Solving P2 as an LP problem produces the solution (7) with dual values of 3, 1, 0, 8,
0, 0, and 0 respectively on (8) to (14).

It is worth pointing out that Gomory & Baumol make the assertion that these dual
values ‘will themselves be integer’ as is the case here. This is, in fact, false in general.
The following model defines a convex hull of integer points, but the optimal dual
values for the constraints are §, §, 1, 0, 0, and 0 respectively.

Maximize Xy + X3 + x3

subject to x; +x; <2
X+ %352

x; +x32

—X; <0

—X2 <0

—x3 50.

Circumstances in which the dual, as well as the primal, solution to an IP model is
integer are discussed by Giles & Pulleyblank [9].

Since the facet-defining constraints (8), (9), and (11) have positive dual values, we
impute these back to the original constraints. There are a number of ways of
representing the linear expression in a facet constraint, such as (8), as a non-negative
combination of the original constraints. The representation used in Gomory &
Baumol’s method becomes apparent when the Chvatal dual is explained in Section
4. For our purposes here, we observe that the expression x; + x, + x; can be repre-
sented as

L(2x1 +3x)) + (%2 + 4x3) + 3 (31 + x3) + 3 (—x3).

Therefore the dual value of 3 on (8) is imputed back as 3x §=23to (1),3xi=210
(2), 3 x §=1to (3) and 3 x } =1 to the non-negativity condition —x; < 0. Similarly
the expression x; + x, can be represented as

1(@2x1 4 3x;) + §(3x1 + x3) + §(—x3).
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Therefore the dual value of 1 on (9) is imputed back as 1, §, § respectively to (1), (3),
and —x; < 0. Finally the expression x; can be represented as

13x1 4+ x3) + 3 (—x3).

Therefore the dual value of 8 on (1 1) is imputed back as § and 3 §to (3)and —x; < 0.
The resultant prices are therefore 3 +§ = 1§ for (1),  for (2), %-{— § +§ 34 for (3),
and 1 +$+§ 35 for —x; < 0.

These prices exhibit a number of properties which are general and are remarked on
by Gomory & Baumol. We give them an IP1 etc. to indicate the correspondence, or
otherwise, with the LP properties in Section 2.

(AP1) Every process (product) in use makes a zero profit. It can be checked that
products 1 to 2 have imputed costs equal to their unit profits but that, in relation
to product 3, the price of 3 on —x; < 0 subtracts from the imputed cost to balance
the unit profit contribution of 3 exactly. Gomory & Baumol suggest interpreting
such a price as a subsidy to the product to compensate for its enforced integrality.

(IP2) No process ( product) makes a positive profit. This is the case in the example by
virtue of IP1, since all products are made at zero profit. If any were not made, then
they could have a negative imputed profit.

(IP3) If a good (resource) has a zero price, it is a free good and can be increased
arbitrarily without affecting the optimal solution. This property is a weakening of
LP3.

Remark. In the example, all resources are underused in the optimal integer solution,
but all have positive prices. This is not unreasonable since resources may not be used
up completely by virtue of the ‘lumpy’ nature of the input requirements. If, however,
a resource has a zero price (not illustrated by this example) then we can be sure it is
non-binding in the sense that its removal will not affect the optimal solution. The
converse is not, however, the case. It is possible for a resource to be given a positive
valuation, yet still represent a free good in the sense that increasing its availability
without limit (or removing it) will not affect the optimal solution. This is not a
serious defect, since it also arises in LP when a solution is degenerate. When this
happens in LP, we have alternate dual values which give two-valued shadow prices
(this is discussed in Williams [17]). The upper shadow price on a free good would
then be zero. A similar remedy can be applied to Gomory & Baumol’s prices. Some
authors, e.g. Alcaly & Klevorick [2], however, make a considerable issue of this
‘defect’.

Another consequence of the fact that positively priced constraints may not be
satisfied as equalities is the fact that a product may be made in the optimal solution,
yet its non-negativity constraint —x; < 0 receives a positive price. For the example,
x3 = 1 in the optimal solution, yet —x; < 0 has a positive price (subsidy). O

(IP4) No good (resource) has a negative price. This feature is preserved and apparent
in the example.
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(IP5) The optimal value of the outputs does not generally equal the optimal value
of the inputs. Tt has already been pointed out that there will be a duality gap, and
the prices will overvalue the resources. If, however, we restrict ourselves to only
those resources used, then we can reduce the duality gap. In the example, the used
qualities of the resources (1), (2), and (3) are respectively 5, 5, and 4 which give a
total valuation of

Sx1g+5x3+4xf=225%
for the used inputs.

(IP6) Marginal changes in the resource levels will not result in continuously changing
solutions. This arises from the ‘lumpy’ nature of the outputs. Therefore the prices
cannot be interpreted as the effect of marginal changes. From the discussion in
Section 4, however, it will become apparent that they represent average rates of
change in the profit above certain threshold resource levels, It is not possible to
recover the optimal solution so simply from the prices. Although negatively
valued products can be ignored together with zero-valued goods, the resultant
system is a set of inequalities, since it does not follow that positively priced resources
will be used to capacity.

(P7) In a model with n variables, at most 2" — 1 constraints will be binding (in the
sense of nonredundant) in the optimal solution. This was shown by a theorem of Bell
[3] and explains the result in the three-variable example where more than three of the
constraints are positively priced.

Gomory & Baumol also give the result that, if the same set of only n constraints are
binding for the IP optimal solution, then the resultant prices will be the same as for
the LP case. Obviously this does not apply to the example above. Therefore we adapt
that example for a different set of RHS coefficients.

P Maximize 12x; +4x; + 3x;3

subject to  2x; + 3x, <15 (19)
Xy +4x3; <26 (20)
3x, + x; <31 (21)
X, X, x35 0 (22)
x; , X3 , Xx3integer. (23)

The optimal solution of the LP relaxation is
x =74,  x=0, x3 = 64, profit = 1094, (24)

with dual values of 6, 3, 0 on (19), (20), (21) and a reduced cost of 144 on x; > 0. The
facet-defining constraints for the convex hull of feasible integer solutions are
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2%, + 3x, <15 (25)
x1+ x < 7 (26)
21 4+3x5+ x3520 (27)
X3 +3x3 <20 (28)

x3< 6 (29)

-x) <0 (30)
—X; <0 31
—x;< 0. (32)

Optimizing the objective with respect to these yields the integer solution
x =17, x; =0, x; =6, profit = 102, (33)

with positive dual values of 12, 3, and 8 on (26), (29), and (31).

The linear expression in (26) arises as half of (19) and half of —x; < 0. That on
(29) arises as a quarter of (20) and a quarter of —x, < 0. Imputing the dual values
back gives prices of 12 x3=6on (19), 3x{=3o0n (20), and 8 + 12x j+3 x} =
143 on —x, < 0. These are clearly the same as for the LP case.

In this example, product 2 is a ‘priced out’ by these values on the resources. Also
the value of the inputs used is equal to the imputed value of the total output. The IP
model P3 is therefore a particularly simple model whose solution can be deduced
fairly easily. It is sometimes referred to as an IP over a cone, since the only non-
redundant constraints are those associated with the cone of constraints which are
binding at the LP optimum.

4. The value function of an integer programme and Chvatal’s dual

In order to explain Chvatal’s dual it is convenient first to describe the value functions
and consistency testers of P1 and P2 for general coefficients. The value function is the
optimal objective value as a function of the RHS coefficients, and the consistency
tester is the condition for feasibility as a function of the RHS coefficients. These
concepts are explained in Blair & Jeroslow [5].

We consider the general model (with variable RHS coefficients) in the form

(P1) Maximize 12x; +4x; + 3x3

subject to  2x; 4+ 3x, <bh (34)
X; +4x; < by (35)

ix, + x3<b; (36)

—x < b, (37

-X; < bs (38)

—x3 < bg (39)

X, , X3 , X3 integer. (40)
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In order to avoid the unnecessary complexity of an extra rounding operation, we will
assume the coefficients b; are integer. The value function of the LP relaxation is

mm{%(lel + 28b3 + b6)) %(3171 + 6b3 + bs),

(41)
$(24b, + 3b, + 59bs), (4b + 4by + 17bg)}.
The coefficients in the above terms correspond to the vertices of the dual polytope.
The consistency tester is

mm{b] + 2b4 + 3b5, bz + b5 + 4b6, b3 + 3b4 + b6} = 0. (42)

The coefficients in these terms correspond to the extreme rays of the dual polytope.

It can be checked that, for the LP relaxation of P4, setting b, =7, b, =8, b3 =5,
and b, = bs = bg = 0 gives consistency and an optimal objective value of 24 g This
arises from the first term in (41). The coefficients of by, b3, and b are the dual values
of (1), (3), and the reduced cost of x; respectively. For the LP relaxation of P4,
setting b, = 15,5, = 26, b3 = 31,b, = bs = bg = 0 gives consistency and an optimal
objective value of 1094. This arises from the third term in (41). The coefficients of b,
and b, in this term are the dual values, and the coefficient of bs is the reduced cost of
x,. Clearly the optimal objective value for the three-variable model depends (by a
theorem usually attributed to Carathéodory [6]) on three of the constraints which are
therefore binding. Which three are given by the minimum term in (41).

For an IP model, the form of the value function and consistency tester is more
complex. The analogous expressions for (41) and (42) are Gomory functions. These
consist of the minimum of a (finite) set of Chvdtal functions. Chvétal functions
consist of non-negative linear combinations of the arguments together with (for a
maximization) the integer round-down operation (denoted by |¢|). In practice the
expressions are very complex, and there may be a very large number of them. We
therefore only partially illustrate the value function and consistency tester for P4
using some of the component Chvatal functions. There is no significance in those
which have been chosen for this illustrative purpose. We emphasize again that pro-
ducing all the Chvatal functions is prohibitive in both space and time. The value
function takes the form

min{ I_é (12b1 + 28b3 + bG)J) L% (3b1 + 6b3 + bS)J’
12(3 (b1 + bs)] + 3[3 (b, + bs)| + 8bs,4b, + 4by + 17bs,
1§ (3b1 + b3 + b6) | + 85 (b3 + bg)] + 314 (by + 314 (3by + b3 + bg) ] + |4 (b3 + b)) ],
2} (#3)

and the consistency tester (in this case) is the same as (42).

For a specific set of values of b,, the term in (43) giving the minimum value is the
Chvatal dual solution. Notice that it is a function of those b; which correspond to
binding constraints. The way in which the optimal objective value changes with
changes in the RHS values b (within certain ranges) is defined by this (discontinuous)
function. If the integer round-down operators are deleted, then a Chvatal function
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becomes a linear expression with non-negative multipliers on the b,. These multi-
pliers are the Gomory-Baumol prices.

For example, in P1, where b, = 7, b, =8, by =5, and by = bs = bg, the optimal
objective value arises from the fifth term in (43) demonstrating that (34), (35), (36),
and (39) are all binding constraints with respective multipliers of 15,3,3§, and 33.
The Chvatal function, however, goes further than the Gomory-Baumol prices. By
means of the |¢] operators it closes the duality gap.

For the example P3, where b = 15, by = 26, b3 = 31, and by = b5 = bg = 0, the
optimal objective value arises from the third term of (43), demonstrating that only
the three constraints (34), (35), and (38) are binding, with respective prices of 6, %,
and 143 If the |»| operators are removed from this term, it ‘collapses’ into the third
term in (41), so demonstrating why the Gomory—-Baumol prices, in this case, are the
same as the LP dual values.

The first four terms in (43) all reduce to the first four terms in (41) when the |e|
operators are removed. These correspond to all the dual vertices of the LP relaxation
of P4, It is relatively easy to construct the corresponding Chvatal functions in (43)
corresponding to these terms, as is done in Williams [20]. The set of n constraints
which are binding at the LP solution to an n-variable model forms a cone. It is also
shown in [20] that the value function for an IP function over this cone of constraints
is the corresponding Chvatal function (not a Gomory function).

To calculate the ‘non-cone’ terms in the value function (such as the fifth term in
(43)) is much more difficult.

5. Conclusions

Although Chvatal’s dual has been developed largely for computational reasons and
to provide a unifying treatment of cutting planes, we argue that it does have a useful
economic interpretation. This is best illustrated through the value-function represen-
tation. This illustrates how the optimal objective value changes in a discontinuous
way with the RHS coefficients.

A number of qualitative results can be shown as a result of the form of the value
function for an IP problem. It can be shown (e.g. Rhodes & Willliams [13]) that, for
sufficiently large values of the b, the optimal objective value of the IP problem will
arise from a Chvital term in the Gomory function corresponding to the cone of
constraints which are binding at the LP optimum. Hence, for sufficiently large b;, the
Gomory-Baumol prices will become the prices of the LP relaxation. What is more,
the average rate of change of the objective value beyond these b; will be given by
these prices. This result is well known (e.g. Garfinkel & Nemhauser [8]). The optimal
objective value is also ultimately uniformly shift-periodic with respect to each of the
RHS coefficients; i.e. it will alter in a cyclic manner.

REFERENCES

1. APPa, G., 1997. Using the primal-dual relationship in mixed integer programming. /M A
Journal of Mathematics Applied in Business and Industry 8 (3).

0TOZ ‘ST Jaquwiadas uo seuidwe) ap fenpeisy apepisiaAiun 1e 610" speuInolpiojxo’uewew WwoJj papeojumod


http://imaman.oxfordjournals.org/

10.

11.
12.
13.
14.
15.
16.

17.
18.

15.
20.

INTEGER PROGRAMMING AND PRICING REVISITED 213

. ALcaLy, R. E., & KLEVORICK, A. K., 1966. A note on the dual prices of integer

programs. Econometrica 34, 206-14.

. BELL, D. E,, 1977. A theorem concerning the integer lattice. Studies in Applied

Mathematics 56, 187-8.

. BENDERS, J. F., 1962. Partitioning procedures for solving mixed-variables programming

problems. Numerische Mathematik 4, 238-52.

. BLamg, C. E., & JerosLow, R. G., 1982. The value function of an integer program.

Mathematical Programming 23, 237-73.

. CARATHEODORY, C., 1911. Uber den Variabilititsbereich der Fourierschen Konstanten

von positiven harmonischen Funktionen. Rendiconto del Circolo Matematico di Palermo
32, 193-217.

. CHVATAL, V., 1973. Edmonds polytypes and a hierarchy of combinatorial problems.

Discrete Mathematics 4, 305-37.

. GARFINKEL, R. S., & NEMHAUSER, G. C., 1972. Integer programming. Wiley, New York.
. GiLes, F.R., & PULLEYBLANK, W. R, 1979. Total dual integrality and integer polyhedra.

Linear algebra and its applications. Vol. 25, pp. 191-6.

GoMory, R. E., 1963. An algorithm for integer solutions to linear programs. In: Recent
advances in mathematical programming (G. L. Graves and P. Wolfe, Eds). McGraw-Hill,
New York.

GoMory, R.E., & BaumoL, W.J., 1960. Integer programming and pricing. Econometrica
28, 521-50.

Koormans, T. C., 1976. Concepts of optimality and their uses. Mathematical
Programming 11, 212-28.

Ruopes, F., & WiLLL1IAMS, H. P., 1995. Discrete subadditive functions as Gomory
functions. Mathematical Proceedings of the Cambridge Philosophical Society 117, 559-74.
VAIDA, S., 1961. Mathematical programming. Addison-Wesley.

WILLLIAMS, H. P., 1979. The economic interpretation of duality for practical mixed
integer programming problems. In: Survey: mathematical programming (A. Prékopa,
Ed.). North-Holland, Amsterdam.

WiLLIAMS, H. P., 1981. Reallocating the cost of dependent decisions. Applied Economics
13, 89-96.

WiLLIAMS, H. P., 1993. Model building in mathematical programming. Wiley, Chichester.
WiLLIaMS, H. P., 1996. Duality in mathematics and linear and integer programming.
Journal of Optimisation Theory and Applications, 90, 257-78.

WiLLiAMS, H. P., 1996. Constructing the value function for an integer programme over
the case. Computational Optimisation and Appplications, 6, 15-26.

WoLsey, L. A., 1981. Integer programming duality: price functions and sensitivity
analysis. Mathematical Programming 20, 173-195.

0TOZ ‘ST Jaquwiadas uo seuidwe) ap fenpeisy apepisiaAiun 1e 610" speuInolpiojxo’uewew WwoJj papeojumod


http://imaman.oxfordjournals.org/

