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Econometrica, Vol. 28, 3 (July 1960) 

INTEGER PROGRAMMING AND PRICING 

BY RALPH E. GOMORY AND WILLIAM J. BAUMOL 

In this article Gomory's method of solution of integer linear programming 
problems is described briefly (with an example of the method of solution). 
The bulk of the paper is devoted to a discussion of the dual prices and their 
relationship to the marginal yields of scarce indivisible resources and their 
efficient allocation. 

1. INTRODUCTION 

IT HAS been known for some time that a method of solution of the general 
linear programming problem in which the variables are required to take 
integer values would also permit the solution of a considerable variety 
of other problems many of which are not obviously related to it.1 For 
example, Markowitz and Manne [13] have shown that the difficult concave 
(nonlinear) programming problem (e.g., a cost minimization problem in 
which the total cost function is shaped like a hill) can, at least in principle, 
be approximated as an integer program which permits the determination of 
a global, and not just a local minimum. Nonconvex feasible regions can also, 
at least in principle, be handled by integer programming. Among the 
economic problems which are related to integer programming are the 
travelling salesman problem and problems in which fixed (inescapable) 
costs are present. A surprisingly wide range of problems including diophan- 
tine problems and the four color map problem2 can be given an integer 
programming formulation. Some of these applications will be described in 
greater detail in section five of this paper. 

Recently one of the authors of this article developed a method, which he 
calls the method of integer forms (MIF), for solving integer programming 
problems. In the next section the method of solution will be described in 
some detail. No proof that the algorithm arrives at the optimal integer 
solution in a finite number of steps will be described since it is rather 
lengthy and is being published elsewhere (see Gomory [6] and [7]. For an 
alternative approach see Land and Doig [12]). 

The bulk of the paper, however, will be devoted to a discussion of the 
pricing problem in the integer programming case, that is, in the case where, 

1 For an excellent survey of the applications of integer programming see Dantzig [3] 
2 Integer programming methods have not succeeded either in confirming or rejecting 

such conjectures as the four color hypothesis. Rather, the technique permits the solu- 
tion of individual problems when solutions exist. Thus, for any specific map, if there 
exists a solution to the four color map problem, integer programming can be used 
to find a solution, i.e., to assign four colors among the different territories in such a way 
that no two territories with the same color have a common boundary. 
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in economic terms, the inputs and outputs are "lumpy" (not perfectly 
divisible). We shall show that the MIF algorithm produces a dual problem 
whose solution also imputes shadow prices to the scarce inputs. These prices 
possess a number of the properties of the dual prices of ordinary linear 
programming. In particular, they possess one of the most important proper- 
ties of ordinary dual prices-they permit the construction of a decentralized 
decision making arrangement zehich, in principle, zewill achieve some of the 
possible efficient allocations of resources. We shall see, however, that the price 
system no longer suffices to achieve every efficient allocation, and that, when 
the consumer side of the market is taken into account, the entire ideal 
output theorem of perfect competition runs into difficulties. These integer 
dual prices also possess a number of peculiar features. First, they will them- 
selves be integers. Second, they are to some extent arbitrary and will vary 
with the procedure by which they are computed. Third, they will tend to 
impute a zero price to a number of resources to which the economist will 
want to assign a higher value. Fourth, the dual price of a resource will not 
always be equal to its marginal revenue product, and, in fact, the marginal 
revenue product of an input itself becomes a somewhat ambiguous concept. 

Before actually describing the method of integer forms it seems worth- 
while to state the result it produces, a result very similar to the one produced 
by the ordinary simplex method. 

In the ordinary simplex method, starting with the integer inequalities in 
n original variables xj 

n 

(1.1) Eai,1xJ < Qi (i 1,.. ., m , a* integers) 
j=1 

and an objective function 

n 
z = a*,o + E a*, (-x>) (aO,j integers), 

J=1 

one introduces slack variables x', one for each inequality, converting them 
into equations 

n 
(i.2) x/ a= a* + E a*,; (- X>) (i= , ., 

where the a*,0 are the Qi of (1.1). 
In the usual language of linear programming the x' in (1.2) are the "basic" 

variables, the xj are the "non-basic" ones. In the simplex method one tries 
out in succession different sets of basic and non-basic variables, each time 
changing one variable from "basic" to "non-basic" and vice versa. Every 
such interchange of two variables is referred to as a "pivot step" of the 
simplex method. After a series of such steps (1.2) becomes (1.3) 
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n 
z a0,0 + ao,j(- tj) 

(1.3) n 
ai, so + E a,( )(i_,j . n), 

j=l 

where the t' are the current basic variables and the as,j are the coefficients 
used to express them in terms of the current non-basic ones, the tj. The 
simplex method guarantees that eventually we can reach an expression 
(1.3) in which all the aj,0, i = 1, . . ., m, are nonnegative and also all the 

a0',, j = 1, ..., n, are nonnegative. 
At this point we have obtained an optimal solution, for in order to 

maximize z all the non-basic variables (the tj) must then be set equal to 
zero since every nonzero tj must involve some subtraction from z (first equa- 
tion in (1.3)). Each basic variable t' must now be equal to the appropriate 
ai,o since all other terms in the equations drop out. This, then, is the solution 
to the programming problem where it will be noted that, since all aj,0 are 
nonnegative, all variables automatically get nonnegative values, as required. 
The ao,j also have economic significance, for, as will be noted later in this 
paper, they are the shadow prices of the dual problem. 

In the method of integer forms one proceeds exactly as in the simplex 
method, only from time to time certain new variables and inequalities, 
which will be described presently, are added to the problem. The result is 
again a final set of equations 

n 
z a0,0 + ao,j( tj) 

(1.4) n 
ts ai,o + E ai,j( ti) (i MI) . I , 

J=1 

with the aj,0 and ao,j (except possibly ao,o) nonnegative, and again the 
solution to the linear programming problem is obtained by setting t' = aj,o. 
But this time there is a different number of equations, i', (where M < m' < 
M + n). These involve m' basic variables t' all of which were present in the 
original equations. There are still only n non-basic variables, tI. However, 
while some of these are variables may appear in the original equations, 
others may be new variables added during the course of the computation. 
The essential point is that now all the ai,j are integers. Thus the solution 
is in integers. 

2. THE METHOD OF SOLUTION 

A geometric picture of the integer programming problem will give 
the reader an intuitive grasp of the method of solution. In Figure 1 we 
represent the feasible region, OA.BCD, of an ordinary linear programming 
problem, The dots within this region represent all feasible points both of 
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whose coordinates are integers (the integer lattice points). The solution 

to the ordinary programming problem will occur on the boundary of the 
feasible region and in the diagram none of the boundary (other than the origin) 

goes through an integer lattice point. Suppose, however, that the feasible 

t2 i R 
D ' 

H v_ 

0 E At 
FIGURE 1 

region could somehow be shrunk to the convex hull of the feasible lattice 

points (the shaded region). It is to be noted that this, too, would be the 

diagram of a linear programming problem-in fact, of the original problem 
modified by the addition of several supplementary linear constraints such 
as RR'. This new programming problem has two other important features: 

(1) it includes every integer feasible solution to the original program and (2) 

every basic (corner) solution of the new problem is an integer solution, for 
the boundary of the convex hull consists of linear segments which join 
lattice points. It follows at once that a (basic) optimal solution to the new 

programming problem must be an optimal integer solution to the original 
problem. 

In practice it is difficult to cut the feasible region down to the convex 
hull of the feasible integer lattice points. The MIF method of solution does 
consist of a sequence of steps involving the addition of constraints to the 

original linear program and the subsequent solution of this expanded 
linear program. These constraints are chosen in a way which gives them the 

following properties: (1) they normally reduce the feasible region; (2) their 

graph (e.g., SS') ordinarily goes through at least one lattice point (point 
G in the figure) but it must be emphasized that this lattice Point need not 
lie in the feasible region; (3) they never exclude from the new feasible region 
a lattice point which was originally feasible; and (4) they produce, in a finite 
number of steps, a new linear program whose solution is in integers and 
which is therefore the optimal integer solution of the original programming 
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problem (if any such solution exists). It is to be noted that the feasible 
region of this final programming problem will include OEFGH, the convex 
hull of the feasible lattice points, and will itself be included in the original 
feasible region, OABCD. In this diagram it is clear that, with a suitable 
objective function, an optimal integer solution will occur, e.g., at point G 
at the intersection of the additional constraint lines RR' and SS'. 

It remains now to describe the construction of these additional constraints. 
Consider any equation that occurs in the course of the solution of the prob- 
lem which we write as 

n 

(2.1) t ai, o + E ai, (- t) (i-0 ..., n) 
j=1 

in which we happen to have ai,j > 0 for j 0, . . ., n. (Slack variables have 
been included in the set of variables t where necessary so that each con- 
straint is an equation.) For later reference note that (2.1) may be the 
objective (profit) function z -= ao,o + lao,j (-tj), where z is the variable 
whose value is to be maximized (total profit). In other words, (2.1) need 
not be a constraint equation. For reasons which will later be emphasized, 
the t' are the current basic variables and the tj are the current nonbasic 
variables. 

Write ai,o . k + fi,o where k is an integer and 0 < ft,o < 1. Inserting 
this in (2.1) and rearranging we have 

(2.1a) Iai,1tj1 f,o + k -t4 

Since the ai,j are assumed > 0 and the t1 are required to be nonnegative, 
the left hand side in (2.1 a) must be a nonnegative number. The left hand side, 
however, differs from fi,o only by the integer k - t'. So the left side can only 
be one of the nonnegative numbers i,,O, 1 + fi,o, 2 + fI, . . ., etc. 

In every case 

(2.2) Eai,t1 > fi, o 

an additional inequality which must clearly be satisfied by any nonnegative 
integer solution to our original problem. 

Further, since we require the t1 to be integers, any change in the ai,j by 
an integer amount to, say, ai,j, where ad,j is also nonnegative, produces 
another valid inequality such as(2.2). For such a change in as,j must change 
aj,1t1 and hence E ai,1tj by an integer amount, so that ai,o + E a ,W (-tj) 
must still be an integer, call it t*. Repeating our reasoning with tf replacing 
t' and the a4,j replacing the at,> we obtain 

(2.3) ~ ~ w 
vi, a.t a: 
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The strongest possible inequality which can be obtained by this process 
is clearly 

(2.4) fi,o < Et/,;tj, all /w > 0 
j=1 

where the /j,j are the fractional parts of the a1,1 in (2.2). 
Note further that while in (2.1) we assumed as,> > 0 this restriction is 

unnecessary for the derivation of inequalities (2.4). For if in some original 
constraint we have, say, a ,k< 0, since tk is required to be an integer, we 
can increase the al,k by some integral amount to obtain a*,k > 0 and so, 
repeating this procedure for all other negative coefficients, we end up with 
an inequality of form (2.3) from which we can again obtain (2.4). These 
inequalities (2.4) or the corresponding equations 

(2.5) Si= - &,0 - Ef,(- tj) , si > 0, all /i,; > 0, 

where si is a slack variable, are the additional restrictions (corresponding 
to the equations of lines such as SS' in Figure 1) that are employed in 
solving the integer programming problem. Other restrictions can be obtained 
by adding together two or more equations or integer multiples of equations and 
then deducing a new restriction from the new combined equation. The class 
of possible restrictions is discussed in [6] where these restrictions are shown 
to form a finite group under certain simple rules of combination. 

Several characteristics of (2.5) are to be noted: (1) si is itself required to be 
an integer for it is the of k-t' term of (2. la); (2) if the optimal solution of the 
original programming problem contains any noninteger values it will not satisfy 
(2.5) so that (2.5) normally excludes some of the original feasible region;3 

(3) by the nature of its construction any feasible integer solution of the 
original programming problem will satisfy (2.5) so none of the original 
feasible lattice points is excluded by (2.5); finally, (2.4) is usually satisfied as 
an equality by some (not necessarily feasible) lattice point (so that here si = 0 
in (2.5)).4 

3 For whenever the constants, aj,0, in (2.1) are nonnegative, the solution obtained 
by setting all the non-basic tj equal to zero is a feasible one. However, setting all tj 
equal to zero in (2.4) violates that inequality except in the case f,o == 0. If any solu- 
tion is noninteger so that /j, o 0, the formerly feasible point in which tj 0, all j, is 
thus excluded by the new inequality (2.4). 

This also shows that constraint (2.5) normally cuts off some of the "top" of the 
feasible region in Figure 1 (SS' cuts out optimal point C) despite the direction of the 
inequality in (2.4) which seems to make it cut off a bottom piece. The explanation is 
that Figure 1 and (2.4) are expressed in terms of different variables. The t's in the 
figure are all in the current basis and hence, usually, positive while the variables on 
the R.H.S. of (2.4) are all initially nonbasic so that no constraint can decrease their 
(zero) values any further. 

4 For suppose all the f's in (2.5) are rational. Then that equation may be rewritten 
as si = Ft, - jFj,j (-t1) where all the Fi,j are integers. The greatest common 
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The algorithm for solving an integer programming problem is then: 
step 1, solve the original problem; step 2, if the solution is noninteger add 
any additional constraint (2.5); step 3, repeat this process until an integer 
solution (if any exists) is obtained. It should be noted that some of the 
additional constraints will become redundant and can be dropped so that no 
more than n additional constraints will ever be required at any one time. 

It is also important from the practical point of view to realize that the 
sucessive reoptimizations usually require only a few steps.5 

It will be noted that at any intermediate stage of this process there will 
usually be a number of possible constraints of the form (2.5). Any one of them 
can be used.6 The solution process may be hastened, however, if in some sense 
the inequality (2.5) is chosen so as to make some sort of average f as 
large as possible. The reason for this is most easily seen geometrically. In 
terms of Figure 1, our objective is to choose (2.5) is such a way that its 
associated graph SS' cuts off as much as possible of the "redundant" 
feasible region (the unshaded portion of the original feasible region). But at 
the old optimal point, C, all of the tj in (2.5) were zero, i.e., this constraint is 
expressed in terms of the old non-basic variables. In other words, to move as 
far as possible from point C we require these formerly zero t1 to be increased 
as much as they can be. That is, we wish the hyperplane in these t1 obtained 
by setting si = 0 in equation (2.5) to be as far from the origin in their 
subspace as is possible. But fi, o/f , is the nonzero coordinate of this plane 
on the t, axis, so that by making these fractions as large as possible we 
bring this plane as far as we can from the origin. 

In the illustrative computation below we shall employ only the roughest 

divisor, G, of the Fj,j i : 0, can be represented as an integer combination of these 
numbers so that we have G = - I Fi,j (-t;) with the t; integers. If the Fi,1 have no 
common divisor we obtain G =1 so that multiplying through by the integer Fj,0 and 
writing t* = t'Fi,0 we have the integer solution F',0 - - Fi,j (-tj) for which si 
and hence si = 0. 

5 This is because the problem, before the additional constraint has been added, 
has been brought into optimal form, i.e., it is both primal feasible (all ai,o > 0, i # 0) 
and dual feasible (all ao,j > 0, j # 0) (see Section 6, below). After the constraint is 
added it is still dual feasible, and only one aj,0, the -fj, added is negative, conse- 
quently, using the dual simplex method, the problem can usually be brought back 
to optimal form quite rapidly. 

6 The proof that the process terminates in a finite number of steps given in [6] 
actually requires that new inequalities be chosen by a certain rule. The proof can 
easily be extended so that the rule need be followed only once every p steps, p a 
fixed integer, and a free choice made the rest of the time. In actual computations so 
far what has been done was to choose a large fo as described above. Some recent 
computations indicate, however, that the finiteness rule may have to be followed on 
larger problems. 
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approximation to this ideal by choosing that inequality (2.5) for which f, 

is as large as possible. 

3. THE DUAL PRICES AND MARGINAL VALUATION 

The solution to the integer programming problem which has just been 
described involves the solution to an ordinary linear programming problem 
which is identical with the original program except for the addition of 
several (at most n) "artificial" constraints. For convenience we may 
refer to this new program as the augmented linear program. Clearly, as to 
any linear program, there is a dual program which corresponds to this aug- 
mented program. Moreover, if the augmented program has a solution, i.e., 
if the original program has any integer solution, the dual problem, too, 
will have a solution which consists of the shadow prices corresponding to 
the constraints of the primal problem (where the primal problem is inter- 
preted as that of selecting the optimal levels of several activities). 

These dual prices are obtained just as they are in linear programming. 
If in the solution to an ordinary linear programming problem, the t1 in 
(1.3) is the slack of the kth constraint (the one involving the kth good), 
then the a0,1 for that j is the shadow price of the kth good. In (1.4) the t1 
may be slacks of original constraints or added ones, but the prices are deter- 
mined in just the same way. Since in (1.4) all of the ai,j are integers, the 
prices will be integers. 

Since these prices are the solution to an ordinary linear programming 
problem they will possess the usual characteristics of ordinary dual prices. 
They will be nonnegative; except in cases of degeneracy they will impute 
zero profits to any activity that is carried on at a nonzero level in an op- 
timal solution and negative profits to all other activities; they will make 
the total imputed value of all "scarce inputs" equal to the value of the 
optimum output combination; zero prices will be imputed to inputs that 
are not used to capacity, etc. 

In several respects, however, these integer programming prices will be 
peculiar. As just indicated, the prices will themselves be integers. More 
important, these prices will vary with the choice of additional constraints 
(2.5). Finally, we note that prices will be imputed not just to the scarce 
facilities of the original program: corresponding to each of the added 
constraints of the augmented program there will also be a shadow price. 
Before discussing the prices corresponding to these added constraints (call 
them the artifical capacity prices) let us see what happens to the prices 
of the original scarce facilities. 

Some of these prices may have risen. For example, in Figure 2 suppose C 
is the optimal solution to the noninteger program, that T is the optimal 
integer solution and that SS' is the added constraint of the augmented 
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program. Then the input associated with constraint AA' is not used to 
capacity at C but it is at T. Hence its price will be zero in the noninteger 
program and rise to some positive value in the integer program. 

t2 

D A A 
'0 1 

t ? ? ?\\ S o 0 T 

o 0 0 

0 A t 

FIGURE 2 

Many prices, however, which would be positive in a noninteger solution 
may be expected to fall to zero in the integer programming case. Thus the 
prices corresponding to constraint segments DC and CB are both positive 
when C is optimal, but they are both zero at the integer optimum T. The 
economic interpretation of these zero prices is easily given. If a warehouse 
has a capacity to store 36,463.4 cases of some item, an integer solution 
requires that the last 0.4 storage capacity be left empty-cases just do not 
come in fractional batches. But the calculation takes some of the ware- 
house's space to be idle, and hence labels it a free good-it is given a zero 
price.7 Clearly this is not a fully satisfactory imputed price. We will return 
to this issue presently. 

We see then that the requirement that the solution be in integers may 
increase some shadow prices and will normally reduce others. However, if we 

7 It is tempting to jump to the conclusion that "almost all" prices of original facili- 
ties will be driven to zero, for if, e.g., there is one capacity C, and one output each 
unit of which uses up X units of capacity, then between any two adjacent integer 
values of C/X, say n and n + 1, there will be a nondenumerable infinity of noninteger 
values of C/X for which it will be impossible to use up the capacity completely. In 
practice, however, this observation seems to be an exaggeration. Experience in 
problem solving shows that nonzero dual prices occur frequently. We seem to make up 
problems in a way which leads to this occurring. The same phenomenon is encountered 
elsewhere, say in the solution of linear difference equations where unit or multiple 
roots occur with a frequency which is surprising in view of the fact that the equations 
which possess such roots constitute a subset of measure zero of the set of all possible 
linear difference equations. 
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know that the capacities, Qi, of the scarce facilities, including the capacities 
associated with the additional inequalities, are all nonnegative (as is proved 
in Appendix A) it is easy to show that the arithmetic mean price of the 
original facilities (when each price is weighted by the capacity of the 
corresponding facility) must fall. For let the augmented program have m 
original constraints and n additional constraints. Let the optimal noninteger 
prices be P1, ..., Pm and let the optimal integer prices be P*, ...,P 

Finally let the capicities of the scare facilities be Ql, . . ., Qm+n. Then, since 
the additional constraints can never increase the maximum profit from the 
total output (equals the total imputed value of the scarce facilities), we have 

J=iPfQf ? ; PQ i 
m 
i P* Qi . Dividing through by ImL1 Qi we ob- 

tain the desired result. 
There is a lower bound to this fall in average price. For suppose of the 

various constraints that could have been added in the augmented linear 
program we had chosen those which correspond to the boundary EFGH 
of the convex hull of the lattice points (Figure 1). Since no constraint line SS' 
of our original augmented program has any points interior to this convex 
hull it can be added to the convex hull augmented program without affect- 
ing its solution. It follows that the convex hull augmented program consists 
of any other augmented program plus some additional constraints. It is 
then a direct consequence of the preceding theorem on average prices that 
the average dual price of the original capacities in any other augmented 
program will be greater than or equal to that of the convex hull augmented 
program. It is tempting to consider the latter to be the "true" integer pro- 
gramming prices since the convex hull of the integer lattice points represents 
the smallest convex body containing the entire integer feasible region (it can 
be shown though that even these prices may themselves not be uniquely 
determined. This is because what would be called degeneracy in ordinary 
linear programming is particularly likely to arise in integer problems). We 
would then say that the computed dual prices are usually overvalutions of 
the "true" dual prices. However, it will be shown, presently, that any such 
prices are themselves likely to be undervaluations of the marginal value 
product of a capacity. 

So much for the prices of the original facilities. There remains the problem 
of interpreting the prices which correspond to the addition constraints 
(2.5). These may be viewed as a measure of the opportunity cost of indivisibil- 
ity-e.g., the loss imposed on the businessman by a unit of the artificial 
capacity constraint which prevents him from seeking to stuff that last four 
tenths of a case into his warehouse. This interpretation, however, amounts 
to our thinking of these prices as the marginal revenue products of these 
inputs and we shall see now that, in the integer programming case, this 
concept runs into difficulties. 
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The basic difficulty involved in evaluating marginal revenue products in 
integer programming is that inputs come in indivisible units. For that 
reason we cannot speak, e.g., of the marginal profit contribution of a small 
change in input, i.e. we must deal with AR/AX rather than dR/dX where 
AX is an indivisible unit of input X and R is total profit. But the dual prices 
represent dR/dX which may change over the range of a unit change in X. 

More specifically, in Figure 3, we consider the effect of a unit decrease 
in the capacity, X, of the facility associated with constraint line UU where 

ta~~~~~~~S 
B"' 

' C 
B"\ B',L 

A 
0 u" U'U t, 

FIGURE 3 

B is the original optimal point. Suppose this produces a shift to constraint 
line U'U' which intersects CB at B'. This means that the new corner B' 
still lies on the intersection of the same constraint lines as before. The 
decrease in profits produced by the shift is strictly proportionate to the 
distance of the shift because the iso-profit lines such as LL' are all parallel 
straight lines. Hence dR/dX is constant over this range and equal to 
AR/AX so that the dual price is equal to the marginal profit contribution 
of X as it would be in an ordinary linear programming problem. 

But if a unit decrease in X shifts UU beyond U'U' to U"U" (past a 
corner, C, of the original feasible region) it is clear that dR/dX will change 
(more specifically, its absolute value will increase) beyond point C. In that 
case the marginal profit contribution of X, that is, AR/AX will no longer 
be equal to dR/dX at the optimal point, B, which is the value of the comput- 
ed dual price of X. 

This argument also indicates, incidentally, why the value of the com- 
puted dual price will vary with the choice of additional constraint (2.1). 
Thus let SS' be the graph of such a constraint. Note that there is consider- 
able choice in the slope of such a line, for so long as it goes through point B 
and has a negative slope less than that of the iso-profit line LL' it will still 
lead to the same optimal (integer) point B. But the value of the dual price of 
X, dR/dX at B, varies with the slope of SS' as we have just seen. 
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Normally, then, in integer programming there will be three marginal 
revenue product figures: dR/dX, AR/AX- where aX- is a unit decrease 
in X, and AlR/AlX+ where AX+ is a unit increase in X. 

For reasons which have just been indicated we shall normally have 
(in absolute value) AR/iIX- > dR/dX (the dual price), that is, a unit 
decrease in X will reduce the objective function by no less than its dual 
price. It can be shown by numerical examples, however, that RIR/AX+ 
may be either greater or smaller than dR/dX. The reason is that an outward 
shift in one of the constraints can change the shape of the feasible region 
in a fairly unpredictable manner, because the change in this constraint can 
in turn cause a shift in some of the artificial constraints which are derived 
from it. This phenomenon does not affect the value of zIR/ZIX- because 
when the feasible region is reduced any constraint which was initially valid 
will still be valid since its graph cannot lie inside the smaller feasible region. 

There is one last matter to be discussed in this section. As mentioned 
before, the prices we have obtained have the unsatisfactory feature that 
they give zero prices to goods not normally considered free goods, goods 
that would be useful if available in larger quantities. The positive prices 
tend to be awarded instead to new "artificial goods" (capacities) whose 
limited availability shows up in the new inequalities. However, as a generali- 
zation of equation (A. 1) of Appendix A to the n artificial constraint case 
shows quite clearly, the new inequalities are merely weighted sums (with 
nonnegative weights) of the old inequalities where we may use the symbols 
gi,j to designate the weight which is given the old inequality, j, in the 
expression for any new inequality, i. This suggests that the prices associated 
with the new inequalities might well be imputed or distributed back to the 
original goods (including some of those with zero prices) whose limited 
availability lies behind the scarcity of the artificial goods. 

Appendix B is an attempt in this direction. The method proposed there 
can be described as follows. Let ni represent the price of any artificial good i. 
In imputing back, we then add to the price, sr, of any initial input good 
(capacity) j the amount gi,1 ni. In other words, we obtain the recomputed 
prices 

.zX .7rX + Z g, all ,,3 > 0 , 

=0, 

for all artificial constraints i, where we note, incidentally, that we do not 
normally have 

=.z - H Sa .2 

These recomputed prices have the following desirable properties in 
common with ordinary linear programming dual prices, as is shown in 
Appendix B: 
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1. These prices are sufficiently high to eliminate the possibility of any 
profitable output, and an output will be produced if and only if it yields 
zero profits. 

2. Any input with a zero recomputed price will be a free good in the 
true economic sense. That is to say, an unlimited increase in the stocks 
of this good will make absolutely no difference to optimum output levels. 

Although the recomputed prices depend on the actual course of the 
calculation, as is shown in Appendix B, there is one case in which a type 
of uniqueness prevails. 

3. If there is some set of n original inequalities such that these n alone 
determine the same integer solution as does the full set of inequalities, then, 
if all other inequalities are dropped, the recomputed prices for the reduced 
problem are unique, and are identical with the prices obtained by solving 
the reduced problem as an ordinary noninteger linear programming prob- 
lem. 

Aside from this, virtually nothing is known about the possible range of 
recomputed dual prices and the interpretation of this range. 

The recomputed prices, however, will also have a number of unusual 
characteristics: 

1. The converse of the preceding proposition 2 does not hold; that is, 
some free goods may not be given zero recomputed prices. This is because 
more than one subset of the constraint set may suffice to produce the ultimate 
optimal integer solution. In that case any one constraint which is not com- 
mon to all such subsets can be considered redundant (i.e., to represent a 
free input) since elimination of that one constraint will make no difference 
to output levels. But it is not possible to eliminate all such constraints and 
so at least some of these must be chosen to receive a nonzero price. It 
should be noted that a similar situation can arise in an ordinary linear 
programming problem in cases of degeneracy. 

2. Among the inequalities which make up the artificial constraints there 
may be included some of the final output nonnegativity conditions, xi > 0. 
It follows that some o/ the artilicial constraint prices may be reimputed, in 
part, to some of these linal outputs. In other words, the process of price 
recomputation may well result in some changes in the prices of final outputs 
(activities) from the values given by the coefficients of the objective func- 
tion. For purposes of the next section such a price change may conveniently 
be visualized as a per unit subsidy to the final outputs or activities affected. 

4. PRICING, RESOURCE ALLOCATION, AND COMPETITION 

Let us now see what role integer dual prices can play in welfare economics, 
and, in particular, in an arrangement for achieving an optimal allocation 
of resources through decentralized decision making. 
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Let us first note that the prices of the artificial constraints of the integer 
programming problem can be made very real to a firm by debiting them 
for the use of these artificial scarce resources. That is, if the fifth additional 
constraint involves the term 317, and the corresponding price is set at 
twelve dollars per unit, the firm would on this arrangement be charged 
36 dollars for the use of this "scare resource" for every unit of output 7 it 
produced. Alternatively. the same resource allocation effect could be 
achieved by the use of "imputed back" prices as described in the previous 
section. 

Suppose then that either a competitive market or a central planning 
authority were to compute the dual prices and output combinations neces- 
sary to maximize the value of total final output at any lixed set of commodity 
prices. It will be recalled that any such output combination must be an 
efficient output.8 Moreover, if individual firms are charged for the use of 
both real and artificial scarce resources either directly at the computed 
dual prices or indirectly at these prices as imputed back to the original 
scarce resources, they will be forced to produce only the outputs contained 
in this efficient bundle since, by the usual properties of dual prices, each 
unit of any other output will incur a loss. If these outputs are then expanded 
as far as possible it follows that the firms must end up producing the 
efficient output in question. 

We see then that every value maximizing (competitive) output will, by 
the usual argument, also be efficient, even in the integer programming 
case.9 Unfortunately, the converse does not hold. There may be efficient 
outputs which are not competitive,10 i.e., for which there exist no prices, 
Pi, at which this output combination maximizes the total value of output, 
ZPit. This is easily proved by counterexample, as shown in Figure 4. Here 

the shaded triangle, OBC, is the convex hull of the feasible lattice points. 
Point A, with coordinates (2.1), lies in the interior of this triangle. But 
(because the feasible points are isolated) it is possible for such an interior 
point to be efficient. This is in fact the case with A for there is no feasible 
lattice point which "dominates" A, i.e., no point which lies directly above 
it, directly to the right of it, or above it and to its right. Now consider 
any straight line, such as PP' (equation 2Piti k), through A. Any such 

8 For if the output combination Q were not efficient then there must, by definition, 
be some other output combination, Q', which contains larger outputs of some items and 
no smaller output of any item. Hence at the fixed prices the value of Q' must exceed 
that of Q, i.e., if Q is not efficient it cannot maximize the value of output. 

9 For the classic discussions of the problems of this section see Koopmans [8, 
Chapter 3], Arrow [1], and Debreu [4]. See also Dorfman, Samuelson and Solow [5, 
Chapter 14] and Koopmans [9, Essay 1]. 

10 This has already been suggested by Koopmans and Beckman [10]. 
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line must lie below either lattice point B or lattice point C. This means that 
there must exist another parallel line such as P"P"' ( 2Pti -k* > k), 
which lies above PP' and goes through one of these corners of the 
convex hull triangle OBC. In other words, in the case in Figure 4, at the 

t2 R 

p?g~~~~~ 

O I 3 4 ti 

FIGURE 4 

prices involved in the price (iso-output-value) lines shown, the value of 
output at point C exceeds that at A. And, similarly, at any other possible 
set of output prices the value of output at A will be smaller than that at B 
or that at C. This shows how there are, in the discrete programming case, 
likely to arise efficient outputs which are not competitive outputs and 
which cannot be enforced by the standard type of decentralized control 
procedure of the economic literature, in which the central authority makes 
only simple price decisions. 

It is to be noted, however, that it is possible to find families of nonlinear 
or piecewise linear price curves such as RR' for which the value of output 
is maximized at A. This has a simple interpretation. The prices which are 
set up are discriminatory and vary with the magnitude of output. Output 
combinations which are close to A are given relatively high prices but as 
outputs move further and further from A prices are made increasingly un- 
favorable to the seller so that there are sharply diminishing returns to de- 
partures from A. In other words, an output, t1, of any commodity at A is 
broken arbitrarily into a sum of sub-outputs tn1 + t12 +. . . . + tin = ti 

and each of the sub-outputs t1l is assigned a different price, P1l as just 
described. Such an arrangement could, in principle, be enforced by govern- 
ment fiat. But it is difficult to see much advantage to a decentralized con- 
trol procedure when it becomes so complicated, and in any event it would 
never result from the spontaneous operation of competitive market forces 
which preclude the existence of different prices for different units of a 
homogeneous product. 

The so-called basic theorem of welfare economics runs into even more 
serious trouble in integer programming. It is in this situation not generally 
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possible to attain a Pareto optimal point by means of a price system. 
This is obviously so for the case of interior efficient points such as A in 

Figure 4. For let RR' now represent a community indifference curve so 
that A is now the optimal feasible point. There obviously exists no line that 
separates the remainder of the feasible lattice points from the region socially 
preferred to or indifferent with A (the region above RR'). This means that 
with any fixed price arrangement producers will find it more profitable to 
manufacture either output combination B or C than to turn out the social 
optimum combination, A. 

Moreover, even if the optimum point Q is a corner of the convex hull of 
feasible lattice points there may well exist no hyperplane which separates 
the feasible (producible) points from the lattice points which are preferred 
to or indifferent with Q. A way in which this may arise is illustrated in the 
following three dimensional diagram (Figure 5). Here the shaded region is 

tt 

FIGURE 5 

the convex hull of the producible (feasible) lattice points such as B, C and 
the optimal point Q. Similarly let II'I"represent a portion of the convex 
hull of the lattice points which are preferred to or indifferent with Q. 
It will be noted that Q is indifferent with nonfeasible lattice point D. 
The segment QE of the line QD, which connects indifferent points Q and D, 
lies below triangle QBC which forms one of the faces of the convex hull of the 
feasible region. Q is the (unique) optimal point because no other feasible 
lattice point lies (on or) above "indifference surface" II'I". It is obvious 
that no plane surface can separate the feasible lattice points in the figure 
from the lattice points preferred to or indifferent with Q since any such 
plane must either lie above point D which is indifferent with Q or it must 
be below feasible points B and C, 
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Let us summarize the results of this section: 
1. Every competitive output combination is efficient and any such point 

can be attained by a system of fixed prices set by central authority, all 
other decisions being left to the individual firms in the economy. This is 
no different from the result for the ordinary linear programming case. 

2. Unlike the ordinary linear programming case, however, not every 
efficient output can be achieved by simple centralized pricing decisions or 
by competitive market pricing processes. 

3. Moreover, it is possible in the integer programming case that there 
exists no hyperplane which separates the feasible lattice points from those 
which are preferred to or indifferent with the optimal lattice point. In 
other words, there may exist no set of prices which simultaneously makes 
the optimal point, Q, the most profitable among those that can be produced 
and the cheapest among those that consumers consider to be at least as 
good as Q. That is, at any set of prices either producers will try to make, 
or consumers will demand, some other output combination. 

It should be observed, in conclusion, that these limitations on the price 
system in the integer programming case should not be entirely surprising. 
For, as has already been indicated, cases of increasing returns to scale can, 
at least in principle, be reduced to integer programming problems. And 
in such cases it has long been recognized that the price system runs into 
difficulties. 

5. NONCONVEX FEASIBLE REGIONS AND CONCAVE PROGRAMMING 

Several of the nonnumber-theoretical applications of integer programming 
should be clear to the economist. The choice of magnitudes of indivisible 
outputs obviously calls for integer programming, though here ordinary 
programming methods will often do as an approximation (e.g., an answer 
which calls for a retailer to carry 47.9 automobiles in stock may reasonably 
be taken to indicate that 48 is the optimal car inventory). Such an easy 
compromise is not available in "yes or no" problems like the traveling 
salesman problem or the following problem of "choosing the largest harmoni- 
ous expedition." Suppose an expedition is to be made up from n candidates 
with the condition that no two candidates who can't get along with each 
other are to be taken. Assigning a variable xi to the ith candidate, we 
shall interpret a value of 0 to mean that that candidate is included in the 
expedition, a value of 1 to mean that he is excluded. The variable Xi is to 
be restricted to these two values. The problem of constructing the largest 
harmonious expedition then is the problem of minimizing E=i Xj, the 
number left out subject to restrictions 

Xi + Xj > 1 
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for all pairs i,j of candidates who can't get along. The effect of each such 
restriction is to insist that at least one candidate in the i,j pair is left out. 
It is not hard to see that if the problem is solved as an integer programming 
problem, the variables in the minimum solution will not only be integers, 
but actually O's and l's, for if any larger integer is included in the minimal 
solution it could be decreased to 1 without violating any constraints. 
This would produce a solution with a still smaller objective function. Thus 
the problem can be solved as an integer programming problem, but it will 
be noted that an ordinary linear programming solution involving fractions, 
has no obvious meaning. 

Less obvious are the more general applications of integer programming 
to nonconvex feasible regions and to concave programming problems. 
An example will now be described briefly. 

It will be recalled that fixed costs are defined as costs which do not vary 
with the magnitude of some operation (at least within limits), and that 
these costs can therefore be escaped only by closing the operation down 
altogether. We will see now what computational problems expenses of 
this type can produce. 

Figure 6 represents part of the profit function of a multi-branch firm 
showing how company profits will vary when the scale of operation of one 
of its branches, B, varies, the outputs of all other branches being given. 
This relationship is profit curve TRR'. 

TOTAL 

TOTAL PROFIT 

PROFIT TO 
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FIGURE 6 FIGURE 7 

As the diagram shows, if this branch is kept in operation, the larger its 
output, Q, the larger will be the firm's profits (RR' slopes upill toward the 
right). But in the case shown, if the branch goes out of operation altogether, 
the fixed costs which it escapes are so large that company profits will suddenly 
jump from R to T. In fact (assuming that there is some upper limit, OM, 
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to the demand for its product) even if the branch produces every bit that it 
can sell, the profit contribution of this branch will not suffice to cover the 
fixed cost, because point R', whose height represents profit at the maximum 
saleable output, lies below T, where OT represents company profit when 
the plant is closed down altogether. 

We see, then, that point R' is a local maximum but T is the global 
maximum. However, any computation which tells us to go uphill along the 
profit curve will move us in the wrong direction. Even at a point like W 
which is very close to R there is not the slightest hint in the shape of the 
curve that profits can be increased by reducing output. This is a particularly 
nasty feature of the fixed charges problem. An ordinary increasing (marginal) 
returns profit curve (a convex objective function maximization problem), 
such as curved line TVR, will at least indicate the direction of the global 
maximum point when we get close enough to it-at point V going uphill 
takes us toward global optimum T, even if starting further to the right the 
"go uphill" rule would take us in the wrong direction. 

It is, of course, only because we are dealing with a multi-branch firm 
that our problem is really difficult. As a result, even our graph is likely not 
to give us the right answer. Perhaps it is best not to close our branch B 
after all. Instead it might be better to close some other branch, C, and 
save the fixed charges at C, meanwhile serving C's former customers from 
B, for this increases the maximum demand for branch B's products and 
so permits us a higher move along our profit curve to the right of point R'. 
With a large number of branches the problem of examining the possibilities 
case by case, to decide how many and which to close, leads us into an 
enormous problem of permutations and combinations which rapidly grows 
astronomical. A more systematic computation is required. 

A similar problem arises in the search for optimal investment criteria. 
Suppose, for example, that a country has limited investment funds to be 
divided between two competing projects. The first yields a low rate of 
return but has low fixed costs of entry into production, and the reverse is 
true of the second project. Which of the projects should be chosen will 
clearly depend on the magnitude of the fixed costs. 

The role of integer programming in such a problem is easily represented 
schematically. For this computation it is necessary to introduce an artificial 
variable, A. In the three dimensional diagram, Figure 7, point T from the 
original profit function is placed where A = 0, while line RR' is moved to 
where A 1. The three points T, R, and R' are then connected by the 
plane TRR' which can now serve as the feasible portion of an artificial linear 
programming objective function. But if we include the constraint A > 0 
and A < 1 in the problem and require that A take only integer values it is 
clear that we can only have either A 0 or A 1. We can end up only at 
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point T or on line segment RR', i.e., we must remain somewhere on the 
original profit curve TRR' of Figure 6. Thus by use of integer programming 
we have been able to substitute for our original fixed charges problem 
another ordinary linear programming problem which gives the same an- 
swers. I 

In principle, this translation can be made for all of the company's branches 
at once and so the entire problem can be transformed into one large linear 
integer programming problem and thus be solved. Unfortunately, in 
practice this has not so far proved practical for even moderately large scale 
problems where the number of artificial variables which must be added can 
make the computation prohibitively time consuming and expensive. 

6. THE SIMPLEX CALCULATION: A CONDENSED FORM 

Before giving numerical examples of the integer programming computa- 
tion it is convenient to call attention to a number of short cuts in the 
simplex computation in which we follow the work of A. W. Tucker. 

The problem is set up in the form 

Imax z - ao0o + ao,i(-ht) + ... + ao,n(-tn) 

subject to 

(6.1) ti al,o + ai,i(-ti) + A+ al,n(-tn) 
.................................... 

tm= amo + am,i(-ti) + * + am,n(- tn) 

with all of the variables required to take nonnegative values. First we note 
that if all the elements in the first column (the constant terms) are nonneg- 
ative a (basic) feasible solution is given byl2 

(6.2) tia,o, . . ., tm-am,o, ti .. 
= 

n 
- 

(. 

Thus the system is said to be primtal feasible if for all i : 0 we have aj,0 > 0. 

11 Note that as described this is a "mixed" problem in which some but not all of 
the variables are required to be integer values. The MIF method does not apply 
directly to such problems. The difficulty can be evaded, at least in principle, by measur- 
ing outputs in very small units and taking their optimal integer values as approxima- 
tions to their true optimal values. By making the units of measurement small enough 
this approximation can, in principle, clearly be made as close as possible, though we 
do not yet have enough computing experience with the MIF algorithm to know how 
rapidly it converges when dealing with the large numbers which are likely to result. 
There has also been some promising work on the mixed problem. Cf. Beale [2] and 
Gomory [8]. 

12 We note again that in this computation the basic variables are expressed as 
functions of the variables outside the basis. This is the reverse of the more usual view- 
point. It permits us to solve directly for the values of the basic variables at the relevant 
corner, as shown. 
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Similarly, for obvious reasons, it is said to be dual feasible if the coefficients 
of the objective function ao,j are nonnegative. 

It should be clear by inspection that if the system is transformed into 
a form that is both primal and dual feasible then (6.2) is also an optimal 
solution. The primal simplex method then proceeds by starting with the 
problem in primal feasible form and then transforming it by a sequence of 
steps in a way which leaves the ai,0 nonnegative while increasing the ao,i 
until (6. 1) becomes both primal and dual feasible. 

To describe the simplex steps consider the following two illustrative 
constraint equations of the problem 

t a, al, + ai,i(-ti) + al,2(-t2) + al,3(-t3) 
t2 a2,0 + a2,1(-ti) + a2,2(-t2) + a2,3(-t3) 

Suppose that the computations have reached a stage where there is to be 
a change in basis from cl, c2 to, say, Cl, t3 (we say that we Pivot on coefficient 
a2,3, i.e., we replace c2 by t3 in the basis). Then we solve for t2 by dividing 
the second equation through by a2,3 and substitute the result into the 
first equation to obtain 

t4= (al,0 - a a2,o) 0 (a,,, - a2,1) (-ti) + (al,2 -a a2,2) (-t2) 
a2,3 

~~~~a2,3 
a, 

- ' (-t2) 
a2,3 

More generally, the reader may readily verify that a pivot on element at,> 
will replace element aV,, (v # i, w #& j) by 

ai, w 
av, W - ' av,j 

A slight extension of the argument leading to the preceding equation 
shows that any pivot step will lead to the following changes in the values 
of the coefficients in (6. 1) (the elements of the matrix of the system): 

a) The pivot element, ai,1, will be changed to a',= I /a ,a. 
b) Any other element a,,j in the pivot column j will be changed to 
I a,> av,j1ai,j . 

(6.3) c) Any element ai, in the pivot row i will be changed to 
a.w a=wlai,. 

d) Any other element aVvw will, by the preceding argument, be 
changed to av,w -a,wav,j1ai, . 

One feature of the method we are using is that the same transformation 
(6.3) is applied to the objective function as to the constraints. This has the 
effect of expressing the objective function always in terms of the non-basic 
variables (the ti) only, so that we always end up with an objective function 
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of the form taken in (6.1). As a result, as soon as the system is transformed 
into both primal and dual feasible form the solution (6.2) is immediate. 

The primal simplex method seeks to increase the value of the objective 
function, ao,o, and so, like the dual simplex method, it pivots in a column 
with the first element negative, but unlike the dual method, it always pivots 
on a positive element. For with at,j > 0, ao,j < 0 and ai,0 > 0 (by primal 
feasibility) it follows from (6.3d) that a',0 > a0,0 as required. The corre- 
sponding result for the dual simplex method in which we seek to reduce 
(minimize) the value of the objective function, is obvious. 

The procedure used in the solution of the integer programming problem is, 
then, the following: 

A. The condensed form primal simplex calculation. 
1. Set up the matrix (simplex tableau) for a primal feasible system (6.1). 
2. Choose a column, j, with the first element ao,j negative (in the illustra- 

tive computation we always choose the largest such element in absolute 
value). 

3. Choose as the pivot that positive element in this column which minimizes 

ai,o/al,a. (This element is chosen to keep the next matrix dual feasible. 
For suppose instead we chose as pivot ak,; such that akl,0/akl, > ai,o/a1,j. Then 
by (6.3d) we would have al,o a1,o - ai,jak, o/ak,; < 0.) 

4. Transform the matrix in accord with (6.3). 
5. Repeat steps 1-4 until the matrix becomes dual feasible so that 

optimal solution (6.2) applies. 

B. The addition of an MIF constraint. 
If solution (6.2) contains noninteger values, form an additional constraint 

(2.5). This is done by choosing a row j and writing an additional constraint 
with the same variables but whose coefficients are the negative fractional 
parts of the corresponding elements in row j. (In this computation we 
choose row j to be the one whose first element has the largest fractional part 
for reasons indicated at the end of Section 2, above.) 

C. The dual simplex calculation. 
The problem is now in dual feasible form (since the last step of the 

primal simplex computation put it in that form). However, it is no longer 
in primal feasible form since the new constraint (2.5) enters the negative 
element -fi,, into the first column. The new optimum is therefore found 
most conveniently by the dual simplex method which differs from the primal 
method only in the choice of pivot element. Here select we a row i whose 
first element ai,o is negative and from that row select we a negative pivot 
element ai,j which minimizes -ai,o/ai,1. Once the new optimal solution is 



INTEGER PROGRAMMING AND PRICING 543 

found, if it contains noninteger elements we repeat steps B and C until an 
optimal integer solution is found. 

7. EXAMPLE 

Maximize z - 4xi + 5x2 + X3 

subject to: 3xi + 2x2 < 10, 
xi + 4x2 < 11, 

3xi + 3x2 + X3 < 13. 

Introducing slack variables Xi, X2, X3 we obtain the following sequence 
of simplex tableaux, where the asterisk indicates the pivot element and the 
arrow indicates the row from which the new inequality is formed: 

1 -X1 -X2 -X3 1 -Xi -X2 -X3 

z= 0 -4 -5 -1 4 2 4 
z 19- - - 1 

xl 10 3 2 0 10 10 10 
8 4 2 

x2 11 1 4* 0 xl = 1- -- 0 
10 10 10 

R3= 13 3 3 1 13 1 3 
________________ -X2 = 2- -- - 0 

TABLEAU 1 10 10 10 
7 9 3 

X3 = _ _ _ - I 
10 10 10 

1 -X1 -X2 -X3 

3 3 1 ~~ ~~ ~~~~~~~7 1 7* 
z= 13- -23 1- -1 Si= --1 -- -- 0 

4 4 4 10 10 10 

2 2* 2 
x= 42 - 

4-- 
0 TABLEAU 4 (L.P. optimal)13 

x2 4 4 4 X3= LX 21 1 
X2 22 - - 0 

4 4 4 R S R 
3 1 ~~31 

-;' -S X 

X3= 4S 2 -- 
4 4 4 ~~~~~~~~~I1 4 

7 7 
TABLEAU 2 3 2 

Xi.= 2 + -- 0 
7 7 

1 -Ri --X2 -X3 1 3 
X2 = 2 -- - 0 

7 7 
7 1 7 

z~ 18- 1 - -- -16 3 
10 10 10 X3 = 1 -- -- 1 

7 7 
8 2 

x= 1- - -- 0 X2 1 3 
10 10 10 R 1 

7 7 
3 1 3 

X2= 2- -- - 0 _ _ _ _ _ _ _ _ _ 
10 10 10 

7 9 3 ~~~1* 4 
- - - - - I ~~~S2 U -- - - 0 R3 

10 10 10 7 7 

TABLEAu 3 TABLEAu 5 (integer solution) 

13 In the original coordinates the inequality si ? 0 becomes the new integer in- 
7 7 

equality (see Appendix A) - - ?- (10 - 3x, - 2X2) ? -- (11 - 4X2) > 0. 
10 10 10 

.e., xi + 3X2 < 8. 
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1 -S2 -Si -X3 

z = 19 1 0 1 
X1= 2 3 2 0 
X2= 2 -1 -1 0 
X3= 1 -6 3 1 
X2 1 1 -2 0 
X1 0 -7 4 0 

TABLEAU 6 (all integer matrix) 

APPENDIX A 

SOME PROPERTIES OF THE ADDED INEQUALITIES 

To fill the gap in the proof in Section 3 that the average price of the original capac- 
ities is reduced by the artificial constraints (2.5) we must show that the Qi ? 0. We can 
assume this for the Qi of the original problem because of their capacity interpretation, 
but it remains to be shown for Qi, i > m. We adopt a method of proof that brings out 
some interesting properties of the added inequalities. 

If we express the new variables, t, in (1.4), above, in terms of the original variables 
x in (1.1) and substitute the result into the new inequalities, these inequalities are 
rewritten entirely in terms of the original variables. We will show now that they are 
then all-integer inequalities, i.e., all coefficients and constants are integers. To see this 
we will first assume that the inequality under consideration is the first new inequality 
to be added. It is derived from an equation 

n 

ai,o + I ai,1 (-t1) 
1=1 

where the variables, t, are either x's or slack variables of the original problem. For each 

tj on the right we substitute its original expression in terms of the xi, i.e., if tj is xk(j) 

the kth slack, we substitute Qk - Eil ak,JxJ (= Xk (J)) and if tj is some xi (j) we simply 
substitute xi(y). We thereby obtain an expression giving ti in terms of the x;. As the 
expression for any variable in terms of the original non-basic variables is unique, this 
be one of the original all-integer equations if t; is a slack, or the expression xi = xi if 

t is one of the x's. In any event, the new right hand side is all integer. If the same 

process is applied to the new equation 

n n n 
(2.5) Si = - - E 1h'J- tJ) = i'0 + E ui,1(-tJ) - i, + E ai, (-tj) 

J=1 J=1g= 

where the ui,j are the integer parts of the ai,1, the result is again an all-integer right 
hand side. This is obviously so for the all-integer expressions involving the u,, and 
we have just shown the same thing for the second parenthesis. We conclude that the 
new inequality si > 0, is an all-integer inequality when it is expressed in the original 
variables. 
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Looking at the substitution process in more detail, using J for the set of indices j 
whose t1 are original variables xi,j, we have 

n 
(A.1) Si = -fi,o + E fi,JXk(J) + 2 ti, dQi, - ia(j), kXk 

ieJ ieJ k=1 

or, assembling constant terms and the coefficients of the various xk, the inequality 
si > 0 becomes 

n 

-hfi + >Jti,JQ ?J - i hxk () + ( f,aJ) k Xk 
ieJ jeJ k=1 ?eJ 

The left hand side contains only nonnegative terms except for -f/ O, hence it is > -1. 
We have already shown, however, that all terms are integers. Hence the left hand side 
must be > 0, and this left side is the Qi of the new inequality. 

In this argument we assumed we were dealing with the first added inequality. How- 
ever, now that we have established this inequality as an all integer one with nonnegative 
Qi we can go on without any difficulty to the second, third, etc. 

We obtain one more piece of information by a similar argument. Suppose that the 
coefficients aj,k, i = 1, . . ., m, of some variable xk are all nonnegative in the original 
problem, then the coefficients of xi are also nonnegative in the new inequalities. For the 
coefficient is either 

f. ai(j), k 
jeJ 

or, if Xk is one of the Xk,J, jeJ, the same expression with the additional term -/,' 

If the ai j,k are all > 0, as we assume, this term, too, is > -1 and an integer and 
hence > 0. 

In particular, if the original inequalities involved only nonnegative terms, this is 
also true of the added inequalities if these are written in terms of the original variables. 

APPENDIX B 

IMPUTING BACK THE PRICES OF THE ARTIFICIAL CONSTRAINTS 

It will be observed that each parenthesis on the right in equation (A. 1) of Appendix 
A, if set > 0, gives one of the original inequalities (1.1). Thus, each of the new inequalities, 
sj > 0, differs by a constant, -fi, from a weighted sum of the original constraints. 
(Note that this statement refers both to the explicitly given inequalities such as 

- , ai,1xj > 0 and to the implicit final output nonnegativity inequalities, x > 0.) 
This suggests that the prices associated with the new inequalities can be distributed 

back to the original inequalities which compose them. This is not hard to do. To 
simplify the exposition we will first consider the case where only one new inequality 
has been added. This extends easily to the general case. 

Suppose, then, that on solving the integer programming problem we obtain prices 
ni for all the original goods (capacities) and for the artificial capacities. We already 
have "prices" for the final goods-these are the unit profits of the activities-the 
coefficients of the activity levels in the objective function. 
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To display this price information symmetrically we write the original inequalities 
augmented by the conditions, xj > 0, together with the associated prices a: 

E al>, Xi < Q1 1r 

J=1 

E a2,j xj < Q2 72 

M xi ? Qm 21m 

< 0 7rm+i 

-X2 < 0 2m+2 

Xn < 0 7rm+n. 

The additional inequalities, as (A.1) shows, can be thought of as being obtained by 
adding together nonnegative multiples of the preceding inequalities and then reducing 
the right hand side by a certain constant to obtain the new integer inequality 

n 

am+n+k Xi < Qm+n+k 21m+n+k - 
J=1 

For simplicity let us suppose further that the integer solution has been obtained 
after the addition of our single new inequality. Extension of the method to the more 
usual situation will not require any additional effort. 

We have then prices i, i -1, ., m + n + 1, and m + n + I inequalities 

n 

E aj* xi _< Qi (i = 1, Mm+n+1) 
1=1 

where we include the inequalities -xj < 0. 
The prices obtained from the solution have the usual linear programming property 
m+n+l * 

zi=1 7t ai,j xi _< nixi 
i.e., m+n+l * 

(B.1) iaf j,1 <0 (j = 1. 

with equality required for all j having xj i 0, this last requirement of equality being 
equivalent to 

m+n+l 

(B.2) z Qt Q=O 

with Q the amount of the ith capacity or input good used up or, if i is a final good, Q* 

represents the amount produced. 
(B. I) represents the requirement that cost exceed or at best equal the value of the 

final good produced, and (B.2) asserts that at the prices 2t the value of input goods 
used equals the value of output goods produced. This is equivalent to the requirement 
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that equality must hold in (B. 1) in all cases where the final good, j, is actually produced 
in a positive amount, for 

m+n+l m+n+l n 
O = Qii 1 ai,x , 

i=1 {=1 J=1 

n m+n+l 
O = Yi fi ni aw, Xi . 

J=1 i=l 

Since each parenthesis is < 0, the only way for the zero total to be achieved is for 
m+n+l * 

(i-1 n2 ai,j) to be zero for each nonzero x>. 
In this situation in the case of an input good it makes no difference in (B.2) if we 

use the Qi*, the amount used, or the Qi, the amounts available, as these quantities will 
differ only for goods of price zero. 

Let us now describe a procedure for imputing the prices of the artificial constraints 
back to the original constraints of which they are linear combinations. If we denote 
the row vector of coefficients (ai*,i, a*i2, 2, ai', .) by Ri, we know by (A. 1) that Rm+n+i 

is a nonnegative combination of the preceding Ri, i.e. 

m+n 
Rm+n+l = z giR- 

4=1 

(Here, because only one inequality has been added, the nonzero gi are the f/ used in 
forming the new inequality.) (B. 1) requires 

m+n+l m+n m+n 
0 > 7 i RT = 21m+n+l Rm+n+l + i R2 = (7tm+n+l gi + 7ri)Ri. 

This equation shows that if new (increased) prices a' = 7m+n+l gi + 2if are assigned 

to the original goods, and the additional inequality disregarded, i.e., given zero price, 
m +n +l 

the condition of profitless production is still maintained. Also since 1i=1 2itR = 
m+n . m+n+l * , m+n , * 
i=1 2 RR, i.e., =1 i aj,j = Zi=1 ai,1 = profit per unit of final good j for 

every j, the same final goods as before are made at zero loss, so the property (B.2) still 

holds with recomputed prices i.e., Zm* 1n ;iQ* = ? 
To obtain these prices in the case where more than one inequality has been added 

one takes the last added inequality, which represents a known weighted combination 
of earlier inequalities, and uses the explicit expression for this inequality to generate 
new prices just as above. Having thus gotten rid of this inequality one proceeds to 
the next to last, and so on until only original inequalities remain. The prices obtained 
by this process will have another desirable property: 

Result (1). An original input good receiving a zero price will always be a free good 
in the sense that if unlimited amounts of it were available, the output of final goods 
would still not be affected. 

To see this we consider the computation which has been gone through to obtain 
the original dual prices noting first that a nonartificial input with a zero recomputed 
price must always also have a zero dual price because the price recomputation process 
never lowers the price of such an item. 

The original computation can be repeated step by step with the zero-priced inequality 
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removed simply by regarding the slack xi of that inequality as an unrestricted 
variable rather than a nonnegative one. 

When the computation has been completed the zero-priced slack variable x, even 
if it is non-basic, must, as we have noted, have a zero dual price (zero coefficient in the 
top row). In either of these cases, despite the presence of an unrestricted variable, the 
final tableau still gives the old optimal solution to the problem because of the nonne- 
gativity of the ai,0 and a,,, provided only that we still know that those non-basic si 
having nonzero coefficients in the top row, i.e., nonzero prices before any redistribution 
of prices, are still required to be nonnegative. Now the nonnegativity of each si stems 
from its being given be an equation 

Since si is an integer, and if the tj arenonnegative, we have si > -fi, and hence sj > 0. 
If, however, x' was among the tj accompanied by a nonzero tj, this reasoning fails, and 
we can no longer require si > 0 and the final tableau no longer gives an optimal 
solution. But if the ith inequality received a final redistributed price of 0, this undesir- 
able situation can not have occurred. For if si received a nonzero price at, then, upon 
redistributing, the inequality with slack x' would have received an increase in price 
of itfi and so its price could not be zero after redistribution. 

The situation is somewhat more complicated if si is originally expressed in terms of 
other earlier s-variables whose nonnegativity has been endangered by the unrestricted 
sign of x. However, the same argument, though it requires more words, does go through 
step by step. 

Result (2). A second conclusion is the following. If there is some set of n original 
inequalities such that these n alone yield the same integer solution as does the full set 
of inequalities, then it is possible to redistribute prices in such a way that the prices of 
all input goods are simply the ordinary linear programming prices, i.e., the prices 
obtained for the goods if the program involving only these n inequalities were solved 
as an ordinary noninteger linear programming problem, omitted goods receiving zero 
price. 

A consequence of result (2) is the fact that, in general, the converse of result (1) is 
not valid. It is not always true that if an inequality can be removed without changing 
the solution, i.e., if it represents a free good, that this good will receive a zero price. 
The connection is illustrated in Figure 8 in which L1, L2, L3 represent constraints and 
the dashed line is an isoquant of the objective function. It is clear that restrictions 
L1 and L2 alone determine the solution P, and consequently, according to result (2), 
it is possible to redistribute prices so that L1 and L2 receive the ordinary (usually 
positive) linear programming prices that would result from an ordinary noninteger 
programming problem with L3 omitted, and L3 receives a zero price. However, in the 
problem L2is a free good in the sense that, since L1 and L3 also yield the same solution 
P, unlimited availability of the good involved in the restraint L2 would not alter the 
solution. 

This difficulty also arises in ordinary linear programming whenever several subsets 
of inequalities separately determine the answer. However, in ordinary linear pro- 
gramming this is comparatively rare since it must involve degeneracy (this is precisely 
what is meant by degeneracy). Such a situation is shown in Figure 9. 

We now take up the proof of result (2). To obtain the prices in question we simply 

ignore the constraints other than the N singled out, and proceed to solve the problem 

first as an ordinary noninteger linear programming problem, and then as usual, by 



INTEGER PROGRAMMING AND PRICING 549 

adding new inequalities to obtain the integer solution. At the solution point of the 
ordinary linear programming problem, all N inequalities are satisfied as equalities, i.e. 
all the slack variables are nonbasic (we may regard x as being the slack of the inequal- 
ity -x < 0, for if we introduce an x', with -x + x' = 0, we have x = x'). This 

L3 

/ V.. * ~CONVEX HULL Li P . ~~OF FEASIBLE 
LATTICE POINTS 
FL2 IS 

ELI MI NAT ED 

0 tI 0t 

FIGURE 8 FIGURE 9 

point may well not satisfy the inequalities that we are temporarily disregarding. This 
fact makes no difference, however, when it comes to generating the new inequalities 
whose validity is not affected. Of course when we reach the final integer solution, which 
is the same for the problem with or without these inequalities, the disregarded in- 
equalities will be satisfied by hypothesis. 

Now on redistributing the prices we distribute them back to exactly n inequalities, 
the original n inequalities. In other words we express each new variable in terms of 
the n slacks x, j1, . N: 

n 

(B.3) S = -g9i0 + X gi,Jx. 
11 

Thus all the final non-basic variables are expressed this way. 
If each non-basic variable (or the inequality it represents) receives a price aj in the 

usual linear programming way, then, on distributing the prices back to the x>, they 
receive prices 

N 

(B.4) Fa= z 9i,- 

To see that these are in fact the ordinary linear programming prices we note that 
the final set of equations can be augmented to express all the variables in terms of 
the non-basic ones. The basic variables are already given in terms of the non-basic 
ones, and the non-basic ones can certainly be given in terms of themselves. Having 
then an expression for all variables in terms of the non-basic ones, we substitute (B.3) 
for the si to obtain an expression for all variables in terms of the xs. 

The z-equation of the final tableau 
n 

z = a00 ?+ ir (-Si) 

becomes 
n n n \ 

z = ao, + ni afgi, + z z 2 gi,? (-x>.). 
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Note that the coefficient of (-z;) is the price given by (B.4). Now the expression for 
the variables in terms of the non-basic set x' is unique, so all the coefficients must be 
identical with those obtained in solving the n inequalities of an ordinary linear pro- 
gramming problem so that the ordinary linear programming price and the redis- 
tributed price coincide for input goods. 

REFERENCES 

[1] ARROW, KENNETH J.: "An Extension of the Basic Theorems of Classical Welfare 
Economics," Proceedings of the Second Berkeley Symposium on Mathematical 
Statistics and Probability, University of California Press, Berkeley, 1951. 

[2] BEALE, E. M. L.: "A Method of Solving Linear Programming Problems When 
Some but Not All of the Variables Must Take Integral Values." Statistical 
Techniques Research Group Technical Report No. 19, Princeton, N. J., July, 
1958. 

[3] DANTZIG, GEORGE B.: "On the Significance of Solving Linear Programming 
Problems with Some Integer Variables," (Ditto) The RAND Corporation, 
Paper P-1486, September, 1958. 

[4] DEBREU, GERARD: "The Coefficient of Resource Utilization," Econometrica, 
Vol. 19, July, 1951. 

[5] DORFMAN, ROBERT, PAUL A. SAMUELSON, AND ROBERT M. SOLOW: Linear Pro- 
gramming and Mathematical Analysis, McGraw-Hill, New York, 1958. 

[6] GOMORY, RALPH E.: "Outline of an Algorithm for Integer Solutions to Linear 
Programs," Bulletin of the A merican Mathematical Society, Vol. 64, September, 
1958. 

[7] : "An Algorithm for Integer Solutions to Linear Programs," (mineographed) 
Princeton-I.B.M. Mathematics Research Project, Technical Report No. 1, 
November, 1958. 

[8] : "A Method for the Mixed Integer Problem," in preparation as a RAND 
Corporation report. 

[9] KOOPMANS, TJALLING C., ed.: Activity Analysis of Production and Allocation, 
Cowles Commission Monograph 13, Wiley, New York, 1951. 

[10] : Three Essays on the State of Economic Science, McGraw-Hill, New York, 
1957. 

[11] KOOPMANS, TJALLING C. AND MARTIN BECKMANN: "Assignment Problems and 

the Location of Economic Activities," Econometrica, Vol. 25, January, 1957. 
[12] LAND, A. H. AND A. G. DOIG: "An Automatic Method of Solving Discrete 

Programming Problems," Econometrica, this issue. 
[13] MARKOWITZ, HARRY M. AND ALAN S. MANNE: "On the Solution of Discrete 

Programming Problems," Econometrica, Vol. 25, January, 1957. 


	Article Contents
	p. 521
	p. 522
	p. 523
	p. 524
	p. 525
	p. 526
	p. 527
	p. 528
	p. 529
	p. 530
	p. 531
	p. 532
	p. 533
	p. 534
	p. 535
	p. 536
	p. 537
	p. 538
	p. 539
	p. 540
	p. 541
	p. 542
	p. 543
	p. 544
	p. 545
	p. 546
	p. 547
	p. 548
	p. 549
	p. 550

	Issue Table of Contents
	Econometrica, Vol. 28, No. 3 (Jul., 1960), pp. 497-747
	Front Matter [pp.  709 - 709]
	[Photograph]: Marcel Boiteux, President of the Econometric Society, 1959; Vice-President of the Econometric Society, 1958
	An Automatic Method of Solving Discrete Programming Problems [pp.  497 - 520]
	Integer Programming and Pricing [pp.  521 - 550]
	A Statistical Model of the Gross Analysis of Transaction Flows [pp.  551 - 572]
	A Monte Carlo Study of Alternative Simultaneous Equation Estimators [pp.  573 - 590]
	Tests of Equality Between Sets of Coefficients in Two Linear Regressions [pp.  591 - 605]
	Stability of Equilibrium and the Value of Positive Excess Demand [pp.  606 - 617]
	A "Short-Cut" Method for the Complete Solution of Game Theory and Feed-Mix Problems [pp.  618 - 634]
	An Alternative Proof of the Existence of General Equilibrium in a von Neumann Model [pp.  635 - 639]
	Some Remarks on the Equilibria of Economic Systems [pp.  640 - 646]
	Report of the Amsterdam Meeting, September 10-12, 1959 [pp.  647 - 669]
	Report of the Washington Meeting, December 28-30, 1959 [pp.  670 - 708]
	Book Reviews
	untitled [pp.  710 - 712]
	untitled [pp.  712 - 713]
	untitled [pp.  713 - 714]
	untitled [pp.  714 - 715]
	untitled [pp.  716 - 717]
	untitled [pp.  717 - 718]
	untitled [pp.  718 - 719]
	untitled [pp.  719 - 720]
	untitled [p.  720]
	untitled [pp.  721 - 722]
	untitled [pp.  722 - 724]
	untitled [p.  724]
	untitled [pp.  725 - 726]
	untitled [pp.  726 - 727]
	untitled [p.  727]
	untitled [pp.  727 - 729]
	untitled [pp.  729 - 730]
	untitled [pp.  730 - 731]

	Letters to the Editor [pp.  732 - 734]
	Errata
	Bilbao Meeting Report [p.  735]
	Stability of Equilibrium by the Brown-von Neumann Differential Equation [p.  735]
	On a Family of Lag Distributions [p.  735]

	Announcement of the Stanford Meeting [p.  736]
	Announcement of the European Meeting [p.  736]
	Announcement of the St. Louis Meeting [pp.  736 - 737]
	Election of Fellows, 1959 [pp.  737 - 739]
	Fellows of the Econometric Society [pp.  739 - 742]
	Deaths of Members [p.  743]
	Accountants' Opinion [p.  744]
	Treasurer's Report [pp.  744 - 746]
	Notes [pp.  746 - 747]
	Back Matter



