Mr. Stoelting’s second point is indeed
important. In developing the years per
stroke numbers in the section titled “Ar-
rester Discharge Current Magnitude,” an
isokeraunic level of 30 was assumed; that
is, it was assumed that 100 strokes per 100

miles per year would impinge on the line.
This assumption is also used in developing
the number of strokes and outages noted
in the disscussion in the first and second
paragraphs under the section titled ‘“Re-
sults.”

We agree with Mr. Stoelting that the
degree of protection is a function of the
storm frequency or isokeraunic level. As
pointed out, in areas of low isokeraunic
level, protection of equipment may be
uneconomical.

Power Generation Scheduling by

Integer Programming—Development

of Theory
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Summary: Power generation scheduling
involves the selection of units to be placed
in operation and the allocation of the load
between these operating units. This paper
presents the formulation of the economic
scheduling problem as an integer program
taking into account the discontinuous
input—-output characteristics and start-up
costs of the generators. A recently de-
veloped method for solving integer pro-
grams, linear programs with whole number
answers required, is successfully applied to
the solution of the scheduling problem.

HE ECONOMIC scheduling of elec-

tric generators is taken here to include
both the selection of the units to operate
at any time and the allocation of the
power demand among these operating
units. Knowledge of the minimum cost
schedule for a day would provide a meas-
ure of the performance of the present
selection and dispatching methods and
suggest ways to improve future schedules
to reduce the cost of electric energy.

The actual allocation of the load among
the operating units, often termed the
economic dispatch problem, has been
extensively investigated. At first only
the incremental costs of power from the
generators were considered.!-® More re-
cently the effects of transmission losses in
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the form of penalty factors have been
included.* The mathematical theory of
this portion of the scheduling problem is
well developed.

At present the selection of the genera-
tors to operate during any time interval
is done, not by analytical methods, but
by using a priority list which ranks the
generators in the order in which they are
to be started. This list is based on the
average cost of energy from each unit
and other individual considerations such
as location, type of steam cycle, etc. The
shape of the daily load cycle only can be
kept in mind as the priority list is made
up. Recent investigations of generator
start-up and shutdown include the use of
digital computers to search over the
many possible combinations of generators
and start-up rules to seek a minimum cost
schedule.®

This paper will describe how the eco-
nomic scheduling problem may be form-
ulated as an integer program. An integer
program is a plan of operation in which all
the quantities must be whole numbers,
For this problem it means that whole
numbers of generators will be scheduled
in the solution. The integer program

formulation includes the following:

1. The discontinuous power output charac-
teristics of the generators, i.e., either there
is no power output, or a minimum output.

2. The costs of starting and shutting down
each unit.

3. The dispatch of the load by incremental
costs.

The recent work of R. E. Gomory on the
solution of integer programs provides
a direct algorithm for the analytical
solution of the generator scheduling prob-
lem.® In this paper his all-integer
method will be referred to as the dual
Euclidean method. The basic steps of
this method will be described in the fol-
lowing paragraphs.

Mathematical Formulation

Steam-turbine generating units are
subject to at least three types of non-
linearities in the dollar-per-hour input to
power output characteristics. First, a
cost is incurred when the turbine is
started; second, the output is constrained
to lie between a minimum and maximum
rating; and third, the input-output rela-
tion is complicated by the presence of
valve loops. In order to demonstrate
how the economic scheduling of machines
with these characteristics may be formu-
lated as an integer programming prob-
lem, an illustrative example will be used.

Assume that we are given a power sys-
tem with just two generators. The start-
up costs, minimum output costs, and
incremental costs for these two units are
given in Table I. Fig. 1 is a graph
of the incremental cost characteristics
given in Table I. Such step char-
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Table 1.

Generator Cost Characteristics

Table 1. Capacity Requirements
Generator 1 Generator 2 Second
Symbol Name i=1 1=2 First Hour Hour
Symbol Name t=1 1=2
[ 28 P Maximum rating...................... 80mw................... 120 mw
Li................ Minimum rating...................... 20mw. ... ... 30 mw Dq..... Estimated load...... 50 mw....100 mw
€1L. i Cost at minimum rating............... $60/hr*.................. $85/hr Spinning reserve..... 15 mw.... 20 mw
27 P 1st incremental cost step............... $2.3/mw-hrt.............. $2.0/mw-hr Ri..... Total requirement. . .65 mw....120 mw
Ail................Power availableat ¢f;................. 0mw.................. 20 mw
[ TR 2nd incremental cost step.............. $3.0/mw-hr............. $2.8/mw-hr
Afeeeovveia. Power availableat ¢ia.................. 30mw.................. 70 mw
................ Start- b 8200 . . .
G Shutdown eost.... . S0, 5 constraint without affecting the method of
solution.
* Hour.

t Megawatt-hour.

acteristics have been found to give a lower
cost schedule than connected straight line
segments when the effects of valve loops
are considered.” Assume further that
these two units are presently operating
and that the estimated loads for the next
2 hours will be 50 mw (megawatts) and
then 100 mw. Table II summarizes the
load and spinning reserve requirements.

Before proceeding we will need to de-
fine the following variables:

(a) The on-off indicator for generator 1
in time period ¢ will be:

x4=1 if the generator is scheduled to
operate

x41=0 otherwise

(b) The start-up indicator for generator ¢
in period ¢ will be:

vy, =1 if the generator is scheduled to start
v4;=0 otherwise

(¢) The shutdown indicator for generator
1 in period ¢ will be:

wy;=1 if the generator is scheduled to be
shut down

wi; =0 otherwise

(d) The output from generator 7 at incre-
mental cost step 7 in period ¢ will be:

Yij¢=mw
Fig. 1 illustrates the output variable,

y1:.  The solution must satisfy the follow-
ing requirements:

1. All variables must be nonnegative.

2. All variables must assume only integer
values.

3. The operating units must have a
capacity greater than or equal to the total
capacity required for each period, R,.

80x1; + 120xy =65
80x12+ 120x95 = 120

4. The sum of the power output from each
unit must be equal to the estimated load, D..

20%1 4+ yin+ yiz1 + 30xn + yan + you = 50

202124 Y2+ Y122+ 30x 22+ yar2 4 Y220 = 100

5. The power output from each generator
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at each incremental cost step must be less
than, or equal to, the maximum available
capacity, and must be zero if the generator
is not operating.

30x1 Z 3y, 30x12 2 Yz
30x11 Z Y121, 30x12 = Y122
2021 Z Yo,  20%2 2 Yoo
70x9 Zyom, 70x22 = a2

6. When a generator is started its start
indicator for that period, v;;, must be 1.
When a generator is shut down its shutdown
indicator for that period, w;;, must be 1.

X1 = X10=vn—wWn
X1 — X20 = V21 — W
Xig— X1 =2 — W12
Xog— X21 = U2~ Wa2

Note that in these equations if x;;=0 and
x10=1, then v;; =0 and w;; =1, i.e., generator
one was initially operating and is scheduled
to be shut down in the first hour.

7. The on—off indicator for each generator
in each period must not be greater than 1.

xnsS1, xn=1

2251, xp=1

8. The object is to minimize the cost
function which is the sum of the costs of
starting, stopping, producing power at
minimum output, and producing power
above the minimum output for each time
period. Let the total cost be represented
by the symbol z.

2= 20011+ 30vn + 101, + 1 5wa +60x1 +
85x514+2.3y111+3.0y121 + 2.0y +
2.8v2n1 1+ 20012+ 3022+ 10w12+-
15wa0+ 60212+ 85x22+ 2.3 Y112+
3.0y122+2.0yn2+2.8ym2

This completes the formulation of the
generator scheduling example. Appendix I
contains the mathematical formulation in
generalized notation. This simplified ex-
ample does not include start-up costs
which vary with the length of time a genera-
tor has been shut down. Additional equa-
tions may be used to bring in this effect.
Also any special generator requirements,
such as keeping one unit on the line at a
station, could be entered as a further
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Method of Solution

In the previous section the economic
scheduling of generators is mathematically
formulated in terms of linear constraints
with the further requirement that all
variables assume only integer values.
Without the integer requirement the
problem is a linear programming problem
solvable by the simplex method or dual
method.’~1! In 1958 the first adequate
method for analytically solving linear
programs with the additional integer re-
quirement was presented by R. E.
Gomory.!? The key to his method was
the derivation of additional constraints
from those already present in the problem.
These additional constraints allow all of
the integer solutions to the original prob-
lem, but eliminate some of the noninteger
solutions.

Attempts to solve the generator sched-
uling problem as formulated using
Gomory'’s original integer algorithm and
hand calculations led to the discovery of
a more general algorithm which has been
named the Euclidean escalator method.
The name combines the words ‘“Euclid-
ean’’ because it is based on Euclid’s algo-
rithm for finding the greatest common di-
visor of two integers, and “‘escalator’’ be-
cause it escalates, or increases, the number
of constraints in the problem.!* This
method when combined with the dual
method of linear programming gives an
effective method for solving integer
programs. It is referred to as the dual
Euclidean method and is identical to the
method presented by Gomory in 1960.4
It is straightforward and can best be
understood by way of a simple example.

Let a small portion of the previous
example be abstracted, including require-
ments 1, 2, 3, 6, and a modified version
of 8. The problem is to minimize the
cost, z:

2=20v1+ 30va + 10wn + 15wy 4+ 60x1, +
85le+201)12+30w‘z+ 107.sz+
151022+60x12+85x22 (l )

Subject to:
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Table lll. Initial Matrix for the Abstracted Example Problem

Py ou " wn wn 2 8 12 o wi wa  an I s1 s
s..... 25...-30...—45...0...0...-60 -85...-30...~45...0...0...~-50 —70...0...0
Stevenn =65, ittt —80 L {0 O 1
St Fe - ~80...~-120....... 1
wu.. 1 -l 1....... 1
w. . ) —-1l....... B R
wis. . [N L WP —l. i 1....... 1
wn.. 0.ttt it i et e e, Lo DI ~1l....... ) 1

Table IV. Matrix After One Linear Programming Iterstion

Py o mm wn wn EXR® TR s un wa A xn st s
[ ZERN 70..-30..—-45...0...0...—10/3...0...~-30..—45...0...0...-50.. —70..—85/120..0
x 65/120.....000iiiiiiiiiiienns 80/120. . .0, ..ttt ittt i -1/120
S2..... L 0 R —80..-120............ 1
wi. . 1., =l..eenn... lo......
wn.... 55/120....... -1l....... 1...=8/12...0. . ittt iitiieaiaarissnanans 1/120
wi.... Ol —1...... —~1l......... ) S 1
wn. . 65/120. . ... . it 8/12...0......... ~1....... b 1.. -1/120

Table V. Initial Matrix Plus One Escalation Row

Py o tn wn wa  xn xn o3 P wi wm I I s s N
5..... 25...-30...—45...0...0...—60 —85..—-30..—45...0...0...-50 -70...0...0...0
Ste.o... L 15 =80..=120. ... i ittt et it 1
St.ae. B R R —80..-120....... 1
wi. 1 -l 1....... 1
wn. looee.n. B S Lovernnnns
w2 . L5 1. 0000 -1......... 1....... 1
we 0 —-1l........ —-1....... ) 1
3. L P -1 F PO 1

Table VI. Matrix After One Integer Programming lteration
Po v v wnEwn ru xm we . wn wm m s s 5

65 <80x1+ 120xn (2)
120 < 80x12+ 120x2 (3)
O=xn—1*—vy+wny (4)
O=xu—1*—vu+wn (5)
O=xp—xu—vetwe (6)
0=x2—xn—vnt+wn (7)

All variables must be nonnegative integers
when the solution is attained.

The requirements and cost function
are first put into the matrix form used for
linear programs, the simplex tableau,
ready to begin the dual method of solu-
tion. Table III gives the simplex tableau
for this example. Four steps were taken
to form this matrix:

1. All inequalities, such as in equations 2

and 3, were changed to equalities by
introducing nonnegative integer variables,

* The generators are assumed to be operating ini-
tially.
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si and s, termed slack variables. Thus
equations 2 and 3 become:

65=80xu+120x5— 5 (8)
120=80x12+120122—$z (9)

2. Each equation is now associated with a
positive variable appearing in the one
equation only. These positive variables

are termed basis variables. Thus equa-
tions 4 through 9 become:

1=2xn—vn+(wn) (10)
1=xn—va+(wa) (11)
0= x12— %1 —vi2+(wr2) (12)
0= 29— 2xn —voo+(w2) (13)
—65=—80x1— 120x21+(s1) (14)
— 120 = —80x12— 120x22+(52) (15)

The basis variable in each equation is
enclosed in parentheses.

3. Eliminate each of the basis variables

Garver—Power Generation Scheduling by Integer Programming

from the cost equation 1 by substitution.
For example, solving equation 10 for wy
and substituting into equation 1 gives:

£= 10430211+ 30v21+ 15wz + 50x1 + 85xn +-
20012+ 30v22+ 10w15+ 1522+ 6013+ 8528

Continuing the substitution and then
placing the constant on the left side of the
equation and the variables on the right
gives:

25=~— 30”11 - 450-11 - 60xu - 85x21 -—
30012 — 45v22 — 5021, — 70x2+2  (16)

4. The coefficients of equations 10 through
16 are now entered into the simplex tableau,
Table III, with each row containing the
coefficients for one equation and each
column the coefficients of one variable.
The constant terms are entered in the
column headed P,.

As with linear programming methods,
matrix row operations will be performed
in Table III to change the values in the
Py column. The minimum cost solution
will be given when all the Py-column en-
tries become positive and the z-row entries
are still zero or negative. Let us investi-
gate what would happen if Table III
were to be operated on with the usual
dual method rules which are:

(a) Select a row with a negative entry in
the Py column and designate this row P,.
Let us select row s; to be designated P,.

(b) For those columns with negative
entries in the P, row compute the ratio
(2 row entry) (P, row entry)

Designate the column with the smallest
ratio as Px. This choice will assure that
the z-row will continue to contain only
nonpositive entries.

For the s; row the ratios become for column
X1

—60/—80=18/24

and for the xn column
—85/—~120=17/24

Thus column xy, is designated Px.

(¢) Use matrix row operations to produce
the number one at the intersection of the
P,-row and P; column and zeros elsewhere
in the P, column. Recall that a row
operation may be the multiplication of the
coefficients in any row by a nonzero constant
or it may be the columnwise addition of a
multiple of the coefficients in one row to
the coefficients in another row.

Thus for our example we first multiply
row s, by —1/120 giving the row termed
%1 in Table IV. Next 85/—120 times the
coefficients in row s; are added to row sz
and the s-row of Table IV resulted. For
example in column xy

—60+(85/—120)(—80)= —31/;

Similarly the other rows of Table III are
modified, and Table IV results. This
partial solution indicates why the usual
dual method of linear programming cannot
be used. In Table IV x4 =65/120 which
indicated the scheduling of a fraction of
unit 2 during the first hour, Since this is
physically impossible another method of
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solution is needed. It has been found that
the addition of one more step to the dual
method rules will allow the solution of a
linear program for integers.

(d) 1If the intersection of the P,-row and
Pi-column does not contain a —1, then
an additional row of coefficients must be
derived and added to the matrix. This
additional row will be derived from the
P,-row and will contain a —1 in the P;-
column and other integer entries elsewhere.

To derive the entries for this additional
row we use the same equation Euclid used
to determine the greatest common divisor
of two integers.'*

a;=bj(e)+r,

where

0=r<e 17)

ay is the integer entry in the jth column of
row P,

b; is a new integer entry to be used in the
jth column of the additional row

e is an appropriately chosen escalation
number, greater than 1

r is the remainder

The appropriate choice of the escalation
number e is a value which will produce a

—1 in the Pj-column. In the example
the g, for the Pi-column is ¢;= —120 and
any value of e greater than or equal to
120 is satisfactory. Let us select e=120.
Then the other coefficients become:

For the Po-column b;= —1 from
—65=—1(120)+55
For xjj-column  b;=—1 from
—85=—1(120)+35
For the s;-column b;=0
1=0(120)X1

In Table V the s; row containing these
coefficients has been adjoined to the
bottom of the matrix. Also a new column
of zeros and a 1 has been adjoined to com-
plete the equation represented by this
row. In Appendix IT a more detailed
explanation is given of the escalation pro-
cedure. The solution now proceeds with
row s; designated as P,. Using steps b
and ¢ of the dual method column xy is
designated P; and Table VI results from
the necessary row operations. Since not

all entries in the P, column are positive,
steps a through d must be repeated.
When all P, entries are positive the
optimum solution is achieved.

The original example problem con-
taining power allocation as well as the
reserve requirements are displayed in
matrix form in Table VII. This problem
has been solved by the dual Euclidean
method, whose basic steps have already
been outlined as steps a through d.  After
15 repeated applications of these rules,
of which only seven involved step d, the
solution shown in Table VIII resulted.
The minimum cost schedule is thus to
operate both units for both hours. Dur-
ing the first hour each unit will generate
power at its minimum rating. During
the second hour units no. 1 and 2 should
both produce 50 mw. The total cost of
production for the 2 hours is $399.

Conclusions

The generator scheduling problem can
be expressed as an integer program taking

Table VII. Initial Matrix for the Complete Example Problem
PO 2133 yn yui ym 1 2z m o1 s Mn s m x12 xn s O3
..., 25...-2.3...-3.0...-2.0...—~2.8....—60.... —85..,.—30....~45....~2.3...~3.0...—-2.0...—2.8....—50.... —=70....-30....—-5

S12 Y2 Se S1e 712 o1
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into account start-up costs, minimum
rating costs, and incremental costs. Al-
though not illustrated here the com-
plications introduced by the time de-
pendence of the start-up costs may be
treated by the addition of more variables
and equations. Also, scheduling con-
siderations such as the supply of steam,
charging reactive volt-amperes or reserve
in remote areas of the system may be
easily expressed in equation form and
added to the matrix.

The solution of the scheduling problem
requires the use of the dual method of
linear programming modified to produce
only integer values. This dual Euclidean
method will solve the scheduling problem
by matrix operations plus adjoining
additional rows to the matrix when
necessary. Only arithmetic operations
are needed and the answer is achieved
exactly in a finite number of steps. A
digital computer program to perform this
solution is presently being developed.

Appendix |

A summary of the constraints necessary
to formulate the generator scheduling
problem as an integer program including
start-up and shutdown costs.

Minimize:

Cost = zt:(z‘:(cmvu-l*cwwu'i'
¥t ; Cuyiﬂ)) (18)

Subject to:
P,= Z (thu+ jz J’m) (19)
1
R;= iz Upu (20)
0= AyX—Yist (21)
12xy (22)
Xy—X-1=vi— Wy (23)

All variables, vy, wy, %4, and y.j;, must
be nonnegative integers.

where

vy is the start indicator for unit ¢ in period ¢

wy; is the shutdown indicator for unit 7 in
period ¢

x4y is the on—off indicator for unit 7 in
period ¢

9y is the mw output of unit 7 at cost level
7 in period ¢

ciy is the start-up cost for unit ¢, in dollars

¢4a is the shutdown cost for unit 4, in dollars

¢y is the cost of generating the minimum
output of unit ¢ during period ¢ in
dollars

¢y is the incremental cost of a mw from
unit 7 at cost level j in dollars per mw

Py is the total estimated power demand for
period ¢ in mw
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R, is the total spinning capacity estimated
for period ¢ in mw

L; is the minimum output rating of genera-
tor ¢ in mw

Uy is the maximum output rating of genera-
tor ¢ in mw

Ag; is the mw of capacity available from
generator £ at incremental cost step j

Appendix [

The derivation of additional equations
that are solved by all the positive integer
solutions to an original equation can be
accomplished by using equation 17 and the
coefficients of the selected row. However,
let 2 new symbol be introduced in place of
the term b; in equation 17,

a;= [:—j:le+r, 0=r<e

where the brackets mean the largest integer
contained in the bracketed quantity. For
example,

[-23]=-3,

(24)

[2.3]=2

Row s, of Table III represents the require-
ment

—652 —80x“—120xz| (25)
The derived requirements will have the form

[ —657] —807] —120
— ;[’—_ xu+[ e ]le (26)

4 (4

If e is chosen to be 8 then equation 26
becomes the requirement that

[ —657]_ [ —807 —120
LT_'Z'[-B—_’CH-*-[ 3 ]le

"’9_2_ - 10xu— 15le

(27)

Any positive integer solution to requirement
25 is also a solution to 27. However, the
converse is not true.

In the example it was necessary to derive
a constraint in which the coefficient of
x5 was — 1. With =120 the requirement
26 becomes
—1Z —xnu—2xn (28)
and putting 28 in equation form by adding a
positive integer variable, s;,
(29)

—1=—axn—2xn+ss

The coefficients of this equation were used
as the elements of the additional row
adjoined to the matrix in Table V.
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Discussion

C. W. Watchorn (Pennsylvania Power &
Light Company, Allentown, Pa): The
paper proposes to expedite the complex
problem of determining the units that
should be scheduled for maximum economy
operation. This problem is one of long
standing; in the past a great deal of time
was required for the manual methods
then available to calculate for the various
conditions that might arise from time to
time, and one procedure was to develop
standard scheduling patterns which could
either be used directly, or provide a starting
point subject to modification, in accordance
with changing conditions. Although rea-
sonably good results were obtainable,
it is very desirable to find a method that
could be applied quickly to changing
conditions as they occur. It appears that
the paper proposes a method that meets
this criterion, particularly if the number
of units to be scheduled is not too great,
as could be the case with the present
ever-increasing loads and interconnection
of power systems.

The latter situations raise the question
whether it is possible to develop a method
of combining the generating capacity for
two or more areas or systems when they
are to be operated together, but after they
have been first scheduled separately.

K. M. Dale and C. A. DeSalvo (Westing-
house Electric Corporation, East Pitts-
burgh, Pa.): The author is to be con-
gratulated for developing this new approach
and thereby stimulating interest in the
problem of unit selection or generator
scheduling. The discussers also have been
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