MS715 - Planejamento e Controle da Produção Primeiro Semestre de 2008 - Prof. Moretti

O Modelo do Entregador de Jornal

Todo Domingo, o dono de uma banca de jornais compra um número de cópias do "Jornal da Informática". Ele paga R\$ 0,25 por cada cópia e a vende por R\$ 0,75. Cópias não vendidas durante a semana podem ser devolvidas para o fornecedor por R\$ 0,10. O dono fêz registros cuidadosos da demanda durante cada semana. As demandas observadas durante 52 semanas foram

Para estimar o número de cópias vendidas em uma semana qualquer podemos usar o histograma de freqüências.

Demanda	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Freqüência	1	0	0	0	3	1	2	2	4	6	2	5	4	1	5	5	1	3	3	3	0	0	1

Logo,

$$P(D=10) \ = \ \frac{\text{Número de vezes em que a demanda igual a 10 aparece nas 52 semanas}}{52}$$

$$= \ \frac{2}{52}$$

$$P(D=15) \ = \ \frac{5}{52}$$

$$P(D \le 9) \ = \ P(D=0) + P(D=1) + \ldots + P(D=8) + P(D=9)$$

$$= \ \frac{1+0+0+0+3+1+2+2+4+6}{52}$$

$$= \ \frac{19}{52} = 0.3659$$

Geralmente aproximamos a demanda observada por uma distribuição contínua. A mais usada é a distribuição Normal determinada por dois parâmetros:

- \bullet a média μ
- ullet a variância s^2

Estas podem ser estimadas pela média da amostra e pela variância da amostra

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i$$

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (D_i - \overline{D_i})^2$$

No exemplo, $\overline{D}=11.73$ e s=4.74 A função densidade Normal é dada por

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right] \text{ para } \infty < x < +\infty$$

Nós substituimos \overline{D} com uma estimativa para μ e s como uma estimativa para σ .

No exemplo acima do jornaleiro, se ele comprar na média, ele vai ficar sem jornal para vender na mesma freqüência que terá excesso de jornal, com o agravante de que a penalidade para a falta é muito maior do que a penalidade para o excesso:

- Cada jornal não vendido dá um prejuízo de R\$ 0,25 R\$ 0,10 = R\$ 0,15.
- Se ele não tiver jornal para vender, ele perde (na verdade, deixa de ganhar) R\$ 0,75 R\$ 0,25 = R\$ 0,50.

Portanto, Como comprar ???

Para responder a esta pergunta, considere

- $c_0 = \text{custo unitário por estoque positivo no fim do período;}$
- $c_u = \text{custo unitário por demanda não-atendida};$
- D= variável aleatória não-negativa com função densidade f(x) e função cumulativa de distribuição F(x);
- $F(x) = P(D \le x)$

$$\bullet \ f(x) = \left\{ \begin{array}{ll} \frac{dF(x)}{dx} & \text{para } D \text{ contínua} \\ \\ F(x) - F(x-1) & \text{para } D \text{ discreta} \end{array} \right.$$

 $\bullet \ \ \text{Valor Esperado da Demanda} = E(D) = \left\{ \begin{array}{ll} \displaystyle \int_{-\infty}^{\infty} x f(x) dx & \text{para } D \text{ contínua} \\ \\ \displaystyle \sum_{x=-\infty}^{\infty} x f(x) & \text{para } D \text{ discreta} \end{array} \right.$

Se g(x) é uma função real então $E(g(D))=\int_{-\infty}^{\infty}g(x)f(x)dx.$ Se $g(D)=\max\{0,Q-D\}$ então

$$E(g(D)) = \int_{-\infty}^{\infty} \max\{0, Q - x\} f(x) dx$$
$$= \int_{0}^{Q} (Q - x) f(x) dx$$

Assim, o nosso problema é determinar ${\cal Q}$ de tal maneira a minimizar o custo ESPERADO no fim do período. Ou seja, considere

$$G(Q, D) = \text{Custo Total incluindo penalidades}$$

= $c_0 \max\{0, Q - D\} + c_u \max\{0, D - Q\}$

E, a função de Custo ESPERADO é dada por

$$G(Q) = E(G(Q, D))$$

$$= c_0 \int_0^\infty \max\{0, Q - x\} f(x) dx + c_u \int_0^\infty \max\{0, x - Q\} f(x) dx$$

$$= c_0 \int_0^Q (Q - x) f(x) dx + c_u \int_0^\infty (x - Q) f(x) dx$$

E, assim, a política ótima é obtida da seguinte forma

$$\begin{array}{ccc} \frac{dG(Q)}{dQ} & = & c_0 \displaystyle \int_0^Q 1f(x) dx + c_u \displaystyle \int_Q^\infty (-1)f(x) dx \\ & = & c_0 F(Q) - c_u (1 - F(Q)) \\ & = & \\ \frac{d^2 G(Q)}{dQ^2} & = & (c_0 + c_u) f(Q) \geq 0 \quad \text{pois } f(x) = \frac{dF(x)}{dx} \end{array}$$

Logo, G(Q) é convexa e o ótimo global é o ponto em que

$$\begin{array}{lll} G'(Q^*) & = & (c_0+c_u)F(Q^*)-c_u=0 \\ & \text{ou ainda} \\ F(Q^*) & = & \frac{c_u}{c_0+c_u} \\ F(Q^*) & = & P\{D\leq Q^*\} \quad \text{probabilidade de que a demanda não exceda } Q^* \end{array}$$

Observações:

- (1) $\frac{c_u}{c_0 + c_u}$ é conhecido como raio crítico
- (2) Quando $c_0=c_u$ temos que Q^* é a média da distribuição da demanda.

Exemplo 1:

No exemplo do jornaleiro, nós vimos que a demanda é distribuida com média $\mu=11.73$ e desvio padrão $\sigma=4.74$. Como o jornaleiro compra o jornal a R\$ 0,25 e retorna as cópias não vendidas a R\$ 0,10 temos que $c_0=$ R\$ 0,25 - R\$ 0,10 = R\$ 0,15. A sua penalidade pela não-venda seria $c_u=$ R\$ 0,75 - R\$ 0,25 = R\$ 0,50. Logo, o raio crítico será de $\frac{c_u}{c_0+c_u}=\frac{0.50}{0.65}=0.77$.

Portanto, pela tabela da distribuição Normal temos que o z padronizado é igual 0.74 (basta subtrair 0.77 de 0.50,pois, a área sob a curva da Normal é igual a 1, mas, a tabela foi gerada baseada na metade da área.Logo, devemos procurar na tabela o valor de 0.77 - 0.5 = 0.27, o que nos dá $z\approx 0.74$. Como este valor de z está normalizado calculamos $Q^*=\sigma z+\mu=4.74\times0.74+11.73=15.24\approx15$.Logo, ele deve comprar 15 jornais toda semana.

Exemplo 2:

Para o caso da demanda ser discreta precisamos calcular para o problema do jornaleiro, as funções de densidade e cumulativa.

\overline{Q}	f(Q)	F(Q)	Q	f(Q)	F(Q)
0	1/52	1/52 = 0.0192	12	4/52	30/52 = 0.5769
1	0	1/52 = 0.0192	13	1/52	31/52 = 0.5962
2	0	1/52 = 0.0192	14	5/52	36/52 = 0.6923
3	0	1/52 = 0.0192	15	5/52	41/52 = 0.7885
4	3/52	4/52 = 0.0769	16	1/52	42/52 = 0.8077
5	1/52	5/52 = 0.0962	17	3/52	45/52 = 0.8654
6	2/52	7/52 = 0.1346	18	3/52	48/52 = 0.9231
7	2/52	9/52 = 0.1731	19	3/52	51/52 = 0.9808
8	4/52	13/52 = 0.2500	20	0	51/52 = 0.9808
9	6/52	19/52 = 0.3654	21	0	51/52 = 0.9808
10	2/52	21/52 = 0.4038	22	1/52	52/52 = 1.0000
11	5/52	26/52 = 0.5000			

Assim, usando o raio crítico igual a 0.77, vemos que a demanda deve estar entre 14 e 15, arredondando temos $Q^*=15$.

Extensão para Incluir Estoque Inicial

Suponha que o estoque inicial seja u > 0. Neste caso, basta seguir a seguinte regra:

- Se $u < Q^*$ então basta pedir $Q^* u$.
- Se $u \geq Q^*$ então não peça.

Interpretação dos Custos de falta e excesso para um Problema com um único período

Considere

- S = preço de venda do item;
- c = custo do item;
- h = custo de manter em estoque;
- p = custo da perda de confiança;
- Q =quantidade encomendada;
- D = demanda durante o período.

Custo total no fim do período
$$= cQ + h \max\{0, Q - D\} + p \max\{D - Q, 0\} - S \min\{Q, D\}$$

Custo Esperado
$$= G(Q)$$

$$= cQ + h \int_0^Q (Q-x)f(x)dx + p \int_Q^\infty (x-Q)f(x)dx$$

$$-S \int_0^Q x f(x)dx - SQ \int_Q^\infty f(x)dx$$

Usando o fato de que

$$\int_0^\infty x f(x) dx = \int_0^Q x f(x) dx + \int_Q^\infty x f(x) dx$$

$$\int_0^Q x f(x) dx = \int_0^\infty x f(x) dx - \int_Q^\infty x f(x) dx$$
$$= \mu - \int_Q^\infty x f(x) dx$$

Portanto, o custo esperado pode ser escrito como

$$G(Q) = cQ + h \int_{0}^{Q} (Q - x) f(x) dx + p \int_{Q}^{\infty} (x - Q) f(x) dx - S(\mu - \int_{Q}^{\infty} x f(x) dx) - SQ \int_{Q}^{\infty} f(x) dx$$

$$= cQ + h \int_{0}^{Q} (Q - x) f(x) dx + (p + S) \int_{Q}^{\infty} (x - Q) f(x) dx - S\mu$$

Derivando G(Q) em relação a Q temos

$$G'(Q) = c + hF(x) - (p+S)(1-F(Q)) = 0$$

 $F(Q) = \frac{p+S-c}{p+S+h}$

Logo,
$$c_u = p + S - c$$
 e $c_0 = h + c$.

Sistemas com reposição

No caso de demanda incerta, nós devemos tratar Q e R como variáveis aleatórias independentes. As seguintes hipóteses serão assumidas para este caso:

- O sistema de reposição é contínuo: as demandas são registradas quando elas ocorrem e o estoque em mãos é conhecido a todo instante;
- Demanda é aleatória e estacionária:

Não podemos prever o nível da demanda;

O valor esperado da demanda durante um intervalo de tempo fixo é constante;

A taxa de demanda esperada é λ unidades por ano;

- Temos um tempo fixo de reposição au para fazer um pedido;
- Custos assumidos:

Custo de Setup;

Custo de manter estoque;

Custo de manter estoque negativo, ou seja, penalização pela "perda de confiança".

Considere

1. Demanda

D é uma variável aleatória com função densidade de probabilidade f(x) e função de distribuição cumulativa F(x). Assuma $\mu=E(D)$ e $\sigma=\sqrt{var(D)}$ como sendo, respectivamente, a média e o desvio padrão da demanda.

2. Variáveis de decisão

Q = tamanho do lote/qtde pedida;

R =nível do estoque quando feito o pedido de reposição;

3. Política

Quando o nível do estoque em mãos chega em R, um pedido de Q unidades é feito e chegará após au unidades de tempo

Derivação da Função do Custo Esperado

Custo de Manter em Estoque

Sejam

- $\lambda = \text{taxa de demanda média}$;
- $s = R \lambda \tau \equiv$ estoque de segurança, ou seja, nível de estoque em mãos quando chega um pedido;

A esperança do nível de estoque varia linearmente entre s e Q+s. A média da esperança da curva de estoque é $s+\frac{Q}{2}=R-\lambda\tau+\frac{Q}{2}$

Custo de Setup

Um ciclo é definido como o tempo entre chegadas de dois pedidos sucessivos. O custo fixo de setup é cobrado apenas uma vez em cada ciclo (independentemente do tamanho do ciclo). A Demanda esperada durante T é λT . Logo, o setup médio ao longo de T unidades de tempo é $\frac{K}{T} = \frac{K\lambda}{Q}$.

Custo de Penalização

Se houver penalização, ela ocorre entre o tempo em que o pedido é feito e o tempo em que ele chega. Ou seja, a penalização ocorre quando a demanda durante τ é maior do que R. Logo, a esperança do número de itens faltantes que ocorre em um ciclo é dado por

$$E(\max\{D-R,0\}) = \int_{R}^{\infty} (x-R)f(x)dx = n(R)$$

Assim sendo, a esperança do número de itens faltantes por unidade de tempo é $\frac{n(R)}{T} = \frac{\lambda n(R)}{Q}$.

A Função Custo

Vamos definir a função G(Q,R) como o custo anual médio esperado de manutenção, setup e falta. Assim sendo,

$$G(Q,R) = h(\frac{Q}{2} + R - \lambda \tau) + K\frac{\lambda}{Q} + p\lambda \frac{n(R)}{Q}$$

O objetivo como sempre é escolher Q e R que minimize G(Q,R)

$$\frac{\partial G}{\partial Q} = \frac{h}{2} - K \frac{\lambda}{Q^2} - p \frac{\lambda n(R)}{Q^2} = 0$$
 (1)

$$\frac{\partial G}{\partial R} = h + p \frac{\lambda n'(R)}{Q} = 0 \tag{2}$$

Como $n(R) = \int_{R}^{\infty} (x - R) f(x) dx$ temos que

$$n'(R) = -\int_{R}^{\infty} f(x)dx = -(1 - \int_{0}^{R} f(x)dx) = -(1 - F(R))$$

De (1) temos que $\frac{1}{Q^2}[K\lambda + p\lambda n(R)] = \frac{h}{2}$ ou ainda

$$Q^2 = \frac{2K\lambda + 2p\lambda n(R)}{h}$$

Portanto,

$$Q = \sqrt{\frac{2K\lambda + 2p\lambda n(R)}{h}}\tag{3}$$

De (2) temos $h-p\lambda\frac{[-(1-F(R))]}{Q}=0$. Ou ainda,

$$1 - F(R) = \frac{Qh}{n\lambda}. (4)$$

Para resolver o sistema formado por (3) e (4) aplicamos um processo iterativo, começando com $Q^{(0)}=EOQ=\sqrt{\frac{2K\lambda}{h}}$ e calculando $R^{(0)}$ a partir de (4). Com $R^{(0)}$ em mãos calculamos o valor de $n(R^{(0)})$ que por sua vez é substituido na equação (3) dando um novo valor para Q. O processo continua até que os valores de Q e R se estabilizem em algum valor.

Como calcular n(R) ?

Se a demanda segue uma distribuição Normal com média μ e desvio padrão σ então

$$n(R) = \sigma L(\frac{R - \mu}{\sigma}) = \sigma L(z)$$

onde $L(z)=\int_z^\infty (t-z)\phi(t)dt$ é a função de perda padronizada (veja tabela dada em classe). Após obter o valor de z pela tabela de L(z), calculamos R da seguinte forma

$$z = \frac{R - \mu}{\sigma} \Longrightarrow R = \sigma z + \mu$$

Exemplo: Um empório de comidas vende uma mostarda, a qual é comprada de uma companhia britânica. A mostarda custa ao empório R\$ 10,00 o pote e requer cerca de seis de meses para chegar após o pedido feito. O setor de contabilidade do empório usa uma taxa anual de 20% ao ano para calcular os custos de manutenção e estima-se que quando não tem mostardas nas prateleiras há uma perda de R\$ 25,00 por pote pela perda de confiança dos clientes. As despesas para se fazer um pedido é em torno de R\$ 50,00. Durante os seis meses para se repor o estoque, o dono do empório acha que se vende uma média de 100 potes, mas, há uma variação significativa de um pedido para o outro. O dono estima que o desvio padrão durante cada período de seis meses é 25. Assumindo que a demanda seja descrita por uma distribuição Normal, quanto e quando (em termos de nível de estoque) devem ser feitos os pedidos de tal maneira a minimizar o custo anual médio de manutenção, setup e penalização ?

Solução:

Os seguintes dados serão usados

- c = R\$ 10:
- $\tau = 6$ meses $= \frac{1}{2}$ ano;
- I = 20% ao ano;
- p = R\$ 25,00;
- K = R\$ 50.00:
- $\mu = 100$ por período de seis meses (média ao ano);
- $\sigma = 25$ por período de seis meses;
- $D \sim N(100, 25)$.

Em primeiro lugar, devemos calcular o EOQ

$$\mathsf{EOQ} = \sqrt{\frac{2K\lambda}{h}} = \sqrt{\frac{2 \times 50 \times 200}{0.2 \times 10}} = 100 = Q^{(0)}$$

Logo, este EOQ é a nossa aproximação inicial para $Q^{(0)}$. Com $Q^{(0)}$ em mãos, calculamos $R^{(0)}$

$$1 - F(R^{(0)}) = \frac{Q^{(0)}h}{p\lambda} = \frac{100 \times \times 0.2 \times 10}{2.5 \times 200} = 0.04$$

Logo, $F(R^{(0)}) = 1 - 0.04 = 0.96$. Agora, olhamos na tabela da distribuição Normal padronizada o valor que mais se aproxima de (0.96 - 0.5) = 0.46 e encontramos z = 1.75.

Assim sendo, $R^{(0)} = \sigma z + \mu = 25 \times 1.75 + 100 = 144.$

Até o momento, as nossas aproximações são

$$Q^{(0)} = 100$$
$$R^{(0)} = 144$$

Agora, vamos para a segunda iteração. Para tanto, precisamos calcular

$$Q^{(1)} = \sqrt{\frac{2K\lambda + 2p\lambda n(R^{(0)})}{h}}$$

que precisa o valor de $n(R^{(0)})$. Mas, $n(R^{(0)}) = \sigma L(z) = 25 \times L(1.75) = 25 \times 0.0162 = 0.405$. Para achar L(z) basta olhar na tabela dada em classe.

Portanto,

$$Q^{(1)} = \sqrt{\frac{2K\lambda + 2p\lambda n(R^{(0)})}{h}} = \sqrt{\frac{2 \times 200}{0.2 \times 10}} [50 + 25 \times 0.405] = 110$$

Para calcular $R^{(1)}$ fazemos

$$1 - F(R^{(1)}) = \frac{Q^{(1)}h}{p\lambda} = \frac{110 \times 0.2 \times 10}{25 \times 200} = 0.044$$

Logo, $F(R^{(1)}) = 1 - 0.044 = 0.956$. Assim devemos procura na tabela da distribuição Normal padronizada o valor de 0.956 - 0.5 = 0.456 se usarmos a **área pequena** ou de 0.956 se usarmos a **área grande**. Este valor corresponde a

- z = 1.70;
- L(z) = L(1.70) = 0.0183;
- $R^{(1)} = \sigma z + \mu = 25 \times 1.70 + 100 = 142.5 \approx 143;$
- $n(R^{(1)}) = \sigma L(z) = 25 \times 0.0183 = 0.4575.$

Como

$$Q^{(0)} = 100 \quad Q^{(1)} = 110$$

 $R^{(0)} = 144 \quad R^{(1)} = 143$

Temos que o processo ainda não se estabilizou.

Assim, vamos para a Iteração 3:

$$Q^{(2)} = \sqrt{\frac{2K\lambda + 2p\lambda n(R^{(1)})}{h}} = \sqrt{\frac{2 \times 200}{0.2 \times 10}} [50 + 25 \times 0.4575] = 110.85 \approx 111$$

e os cálculos se repetem

- $1 F(R^{(2)}) = \frac{Q^{(2)}h}{p\lambda} = \frac{111 \times 0.2 \times 10}{25 \times 200} = 0.0444;$
- $F(R^{(2)}) = 0.9556;$
- z = 1.70;
- $R^{(2)} = R^{(1)} = 143$:

Como

$$Q^{(0)} = 100 \quad Q^{(1)} = 110 \quad Q^{(2)} = 111$$

 $R^{(0)} = 144 \quad R^{(1)} = 143 \quad R^{(2)} = 143$

Podemos parar, pois, a diferença de 1 unidade em Q está mais do que razoável.

Exemplo:

Para o exemplo acima, vamos determinar

1. O estoque de segurança;

$$s = R - \mu = 143 - 100 = 43$$
 potes.

2. o custo anual médio de manutenção, setup e penalização;

Custo médio de manutenção: $h[\frac{Q}{2} + R - \mu] = 2 \times [\frac{111}{2} + 143 - 100] = 197$ por ano;

Custo médio de setup: $K\frac{\lambda}{Q} = 50 \times \frac{200}{111} = 90.09$ por ano;

Custo de penalização: $p\lambda \frac{n(R)}{Q} = 25 \times 200 \times \frac{0.4575}{111} = 20.61$ por ano;

Portanto, o Custo Total é R\$ 307.70;

3. o tempo médio entre os pedidos;

$$T = \frac{Q}{\lambda} = \frac{111}{200} = 0.556$$
 anos;

4. a proporção do ciclo em que as demandas são satisfeitas;

 $P(D \le R) = F(R) = 1 - 0.044 = 0.956 \equiv$ Probabilidade de que a demanda não exceda o ponto de reposição;

5. a proporção de demandas não satisfeitas;

A demanda esperada por ciclos deve ser Q e o número esperado de estoque é n(R). Então, a proporção da demanda que não é satisfeita é $\frac{n(R)}{Q} = \frac{0.475}{111} = 0.004$

Níveis de Serviço em Sistemas (Q, R)

Embora os modelos descritos até agora sejam razoavelmente realistas, muitos gerentes têm dificuldades em determinar o valor exato do custo de penalização p. Em muitos caso, o custo de penalização inclue componentes tais como "perda-de-confiança", atrasos acarretados em outras parte do sistema produtivo, etc. Um substituto usado para o custo de penalização é o nível de serviço. Embora exista uma infinidade de definições de serviço, geralmente elas se referem a probabilidade que uma demanda seja satisfeita.

Serviço do Tipo 1

Neste caso, é a probabilidade de não haver falta (isto é, estoque negativo) durante o tempo de reposição. Vamos usar α para representar esta probabilidade. A especificação de α determina o valor de R, então os cálculos de R e Q podem ser feitos separadamente. O cálculo dos valores ótimos de (Q,R) sujeitos a uma restrição de serviço do Tipo 1 é muito fácil.

A. Determine R que satisfaça a equação $F(R) = \alpha$;

B. Fixe
$$Q = EOQ$$
.

Interprete α como a proporção dos ciclos em que não há estoque negativo. Um serviço do Tipo 1 é apropriado quando a ocorrência de estoque negativo tem a mesma conseqüência independentemente de sua duração e quantidade. Por exemplo, uma linha de produção fica parada se faltar 1 unidade ou 100 unidades do subproduto necessário. No serviço de Tipo 1, dizer que temos 95% de serviço significa que satisfazemos 95% da demanda quando elas ocorrem e não que toda demanda é satisfeita 95% dos ciclos. Uma desvantagem do Serviço do Tipo 1 e que como itens diferentes têm tamanhos

de ciclos diferentes então esta medida não é consistente entre produtos diferentes, fazendo a escolha do α uma tarefa difícil.

Serviço do Tipo 2

O serviço do Tipo 2 mede a proporção da demanda que é satisfeita pelo estoque, vamos denotar por β esta proporção. Como vimos anteriormente, $\frac{n(R)}{Q}$ é a fração média das demandas que não são satisfeitas durante cada ciclo. Portanto, $\frac{n(R)}{Q}=1-\beta$. Esta restrição é mais complexa que a do Serviço do Tipo 1, pois, envolve R e Q. Sabemos que o EOQ não é ótimo neste caso, mas, é uma aproximação muito boa. Se usarmos $Q^*=\mathrm{EOQ}$ podemos estimar R pela fórmula $n(R)=\mathrm{EOQ}(1-\beta)$.

Exemplo:

Considere o exemplo anterior, o dono do empório não gosta do valor de R\$ 25,00 usado como penalização pela perda de confiança e decide usar um critério baseado em Nível de Serviço. Suponha que ele escolha um objetivo de 98% de serviço.

Se o Serviço usado for do Tipo 1 então teríamos que $\alpha=0.98$ e precisaríamos resolver a equação F(R)=0.98,o que nos dá z=2.05 e portanto, $R=\sigma z+\mu=151$.

Se o Serviço utilizado for do Tipo 2, teríamos $\beta=0.98$ e precisamos resolver $n(R)=\mathrm{EOQ}(1-\beta)$, o que é equivalente a $L(z)=\mathrm{EOQ}\frac{(1-\beta)}{\sigma}$. Substitutindo $\mathrm{EOQ}=100$ e $\beta=0.98$ temos $L(z)=100\times\frac{0.02}{25}=0.08$. Da Tabela dada em classe temos que z=1.02 e $R=\sigma z+\mu=126$.

Exemplo:

Considere a tabela abaixo que nos dá as demandas e ó número de itens que faltam no estoque no ciclo.

Ciclo	Demanda	Número de itens que faltam
1	180	0
2	75	0
3	235	45
4	140	0
5	180	0
6	200	10
7	150	0
8	90	0
9	160	0
10	40	0
Total	1450	55

Baseado no Serviço do Tipo 1 temos que a fração de períodos em que não há estoque negativo é $\frac{8}{10}$. Isto é, a probabilidade de que as demandas são satisfeitas em um único ciclo é 0.8. Já se seguirmos o Serviço do Tipo 2 teríamos

$$\beta = \frac{\text{número totalde demanda satisfeita}}{\text{número total de demanda}} = \frac{1450 - 55}{1450} = 0.9621$$

O termo "taxa de preenchimento" geralmente é usado para descrever o Serviço do Tipo 2.

Política (Q,R) Ótima sujeita a restrição do Tipo 2

O EOQ é uma boa aproximação como tamanho do lote ótimo quando o Serviço é do Tipo 2, mas, um valor mais preciso pode ser obtido da seguinte maneira

1. Considere as equações

$$Q = \sqrt{\frac{2K\lambda + 2p\lambda n(R)}{h}} \text{ e } 1 - F(R) = \frac{Qh}{p\lambda}$$

2. Resolvendo a segunda equação para p temos

$$p = \frac{Qh}{(1 - F(R))\lambda}$$

3. E, substituindo este resultado na primeria equação

$$Q = \sqrt{\frac{2\lambda(K + Qhn(R))}{h\lambda(1 - F(R))}}$$

que é uma equação quadrática em Q. A raiz positiva desta equação é da forma

$$Q = \frac{n(R)}{1 - F(R)} + \sqrt{\frac{2K\lambda}{h} + \left(\frac{n(R)}{1 - F(R)}\right)^2}.$$
 (5)

A equação acima é chamada de SOQ (service level order). Ela é resolvida simultâneamente com $n(R) = (1 - \beta)Q$.

Para obter os valores de Q e R, o procedimento é o seguinte

- 1. Comece com $Q_0 = EOQ$;
- 2. Calcule R_0 a partir de $n(R) = (1 \beta)Q$ e $L(z) = \frac{(1 \beta)Q}{\sigma}$;
- 3. Substitua o valor de R_0 em (5) para calcular Q_1 ;
- 4. Repita o processo até que os valores de Q e R se estabilizem.

Exemplo:

Considere o exemplo anterior.

- $Q_0 = 100 \text{ e } R_0 = 126;$
- $n(R_0) = 0.02 \times 100 = 2;$
- $L(z) = \frac{n(R_0)}{\sigma} = \frac{2}{25} = 0.08;$
- Logo, z = 1.02;

•
$$Q_1 = \frac{n(R_0)}{1 - F(R_0)} + \sqrt{\frac{2K\lambda}{h} + \left(\frac{n(R_0)}{1 - F(R_0)}\right)^2} = 114$$

- $n(R_1) = 114 \times 0.02 = 2.28$ o que é equivalente a $L(z) = \frac{n(R_1)}{25} = 0.912$
- Da tabela temos z = 0.95 e $1 F(R_1) = 0.171$;
- Portanto, $R_1 = \sigma z + \mu = 124$;
- Continuando o processo obtemos $Q_2 = 114$ e $R_2 = 124$.;
- \bullet Como os valores de Q_2 e R_2 são os mesmo de Q_1 e R_1 o processo termina.

Assim, os valores ótimos de (Q, R) satisfazendo 98% de taxa de preenchimento são $(Q^*, R^*) = (114, 124)$.

Custo de Penalização

Para calcular o valor de p, basta resolver a equação $p=\frac{Q^*h}{(1-F(R^*))\lambda}$ No exemplo anterior temos

- Para o caso do Serviço do Tipo 1, obtivemos $(Q^*,R^*)=(110,151)$ com $\alpha=0.98$ O custo de penalização $p=\frac{100\times 2}{0.02\times 200}=50$
- Para o caso do Serviço do Tipo 2, obtivemos $(Q^*, R^*) = (114, 124)$ com $\beta = 0.98$ O custo de penalização $p = \frac{114 \times 2}{1.71 \times 200} = 6.67$

Escalonamento do Tempo de Reposição da Demanda

Em todos os exemplos tínhamos a demanda durante o tempo de reposição. Na maioria dos casos, isto não acontece, pois, a demanda é prevista mensalmente. Portanto, nestes casos, precisamos converter a distribuição da demanda para corresponder ao tempo de reposição. Assuma que as demandas sejam normalmente distribuidas, como a soma de variáveis aleatórias Normais também é normalmente distribuida então temos que a distribuição da demanda no tempo de reposição também é uma Normal. O que precisamos fazer é recalcular a média e variância correspondente ao período de reposição.

Seja a demanda periódica uma Normal com média λ , desvio padrão ν e tempo de reposição τ . Portanto, a média durante o tempo de reposição é $\mu = \lambda \tau$ e a variância da demanda é $\nu^2 \tau$.

Exemplo

A demanda semanal para uma vela de um tipo carro é uma N(34, 12). O tempo de reposição é de 6 semanas. Determine a distribuição da demanda no tempo de reposição.

Solução:

A demanda no tempo de reposição é Normalmente distribuida com média $34\times 6=204$ e desvio padrão $12\times\sqrt{6}=29.39$

Variabilidade do Tempo de Reposição

Nós assumimos que τ é constante. Contudo, pode haver uma variabilidade na prática. Suponha que o tempo de reposição τ seja uma variável aleatória com média μ_{τ} e variância σ_{τ}^2 . Além do mais, assuma que a demanda tem média λ e variância σ^2 . Logo, a média e a variância da demanda durante o tempo de reposição é dada por

$$\mu = \lambda \mu_{\tau} \qquad \sigma^2 = \mu_{\tau} \nu^2 + \lambda^2 \sigma_{\tau}^2$$

Exemplo:

O dono de uma mercearia faz alguns pedidos de um azeite de oliva grego. Ao longo dos anos, ele notou que há uma certa variabilidade no tempo que leva para o azeite chegar às suas mãos. Na média, o tempo de reposição é de 4 meses e o desvio padrão é de 6 semanas (1.5 meses). A demanda mensal é uma N(15,6). Qual é a distribuição da demanda durnate o tempo de reposição?

Solução:

- $\mu_{\tau} = 4 \text{ e } \sigma_{\tau} = 1.5;$
- $\lambda = 15 \text{ e } \nu = 6$;
- Logo, $\mu = \mu_{\tau} \lambda = 4 \times 15 = 60 \text{ e}$
- $\sigma^2 = \mu_\tau \nu^2 + \lambda^2 \sigma_\tau^2 = 4 \times 36 + 225 \times 2.25 = 650.25$

Exercícios

- [1] Uma loja de Auto-Peças estoca uma variedade de peças que são vendidas às lojas vizinhas. Em particular, um tipo de filtro de óleo, é comprado a R\$ 1,50 cada. Estima-se que o custo de processamento e recebimento do pedido seja de R\$ 100,00 por pedido. A empresa usa uma taxa de juros de 28% ao ano. A demanda mensal do filtro é uma N(280,77) O tempo de reposição é de 5 meses. Assuma que não há perda de venda quando não se tem o filtro e que o cliente espera o filtro chegar ao invés de comprar em outro lugar. A penalização para estoque negativos é de R\$ 12,80. Determine
- (A) Os valores ótimos de Q e R;
- (B) O custo anual médio de manutenção, setup e penalização;
- (C) Compare o custo da incerteza deste processo. Isto é, compare o custo encontrado em (B) como o custo do processo se demanda durante o tempo de reposição tivesse variância zero
- [2] Uma loja de tintas usa o sistema (Q,R) para gerenciar seu estoque. Uma tinta branca tem um histórico de dados que indica que sua demanda mensal segue uma N(28,8). O tempo de reposição para esta tinta é de 14 semanas. Cada lata de tinta custa R 6,00. Embora, as demandas não satisfeitas não gerem perda de venda, o gerente estima que o custo por demanda não satisfeita seja de R\$ 10,00 cada. Os custos fixos de reposição de R\$ 15 por pedido e a taxa de juros é da ordem de 30%.
- (A) Quais são os $Q \in R$ ótimos?
- (B) Qual é o estoque de segurança?

- [3] O dono da casa de Tintas citada acima, acha que o custo de penalização usado por ele (i.e.,R\$10,00) não é preciso e ele prefere usar o modelo de Nível de Serviço. Ele decide usar o tamanho de lote dado pelo EOQ e determinar o ponto de reposição de tal maneira que não haja demanda não satisfeita em 90% dos ciclos.
- (A) Calcule os valores de Q e R para esta situação.
- (B) Suponha que ele deseje satisfazer 90% de sua demanda (isto é, 90% de taxa de preenchimento). Qual seria a taxa de preenchimento que ele teria se usasse a resposta do item (A)?
- $[\ 4\]$ Suponha agora que a penalização seja substitutida por um Serviço do Tipo de 95%. Quais seriam os Q e R ótimos?
- $[\ 5\]$ Suponha que no Problema 1, um Serviço do Tipo 2 com um objetivo de 95% seja usado para substituir o custo de penalização de R\$ 12,80. Calcule Q e R para este caso. Qual seria o custo de penalização neste caso?

Políticas (s, S)

O modelo (Q,R) assume que o os níveis de estoque são controlados de forma contínua. Nesta seção vamos desenvolver um modelo em que o nível de estoque é controlado periodicamente. A dificuldade neste sistema se deve ao fato de que em um ponto de checagem estamos acima do nível R e no próximo ponto estamos abaixo de R, perdendo o ponto do pedido de reposição. Para contornar esta dificuldade, mudamos a política de operação. Definimos dois números s e S de tal maneira que

- 1. Se $u \leq s$ então peça S u;
- 2. Se u > s então não peça.

Determinar os valores de s e S é extremamente difícil. Uma aproximação seria calcular a política (Q,R) e fixar s=R e S=R+Q.

Níveis de Serviço em Sistemas de Revisão Periódica

Considere um objetivo de Serviço do Tipo 1. Ou seja, queremos resolver a equação $F(Q) = \alpha$. Isto é, F(Q) é a probabilidade de que a demanda não execeda Q durante o período.

Para achar Q que satisfaça o objetivo de Serviço do Tipo 2, precisamos primeiro encontrar uma expressão que nos dê a fração da demanda que não é atendida em cada período. Assim, definimos

$$n(Q) = \int_{Q}^{\infty} (x - Q)f(x)dx$$

Observe que n(Q) representa o número esperado da demanda que não foi satisfeita no período. Como a demanda média por período é μ então temos que a proporção da demanda não satisfeita cada período é $\frac{n(Q)}{\mu}$. Portanto, o valor de Q que satisfaz à "taxa de preenchimento" é $n(Q) = (1 - \beta)\mu$.

Exemplo:

Suponha que o jornaleiro descrito num dos exemplos anteriores, deseja usar um Serviço do Tipo 1 com nível de 90% para controlar a compra dos "Jornal da Informática". O valor de z que corresponde a 90% da Normal unitária é z=1.28. Portanto,

$$Q^* = \sigma z + \mu = 4.74 \times 1.28 + 11.73 = 17.8 \approx 18.$$

Usando um Serviço do Tipo 2 com 90% de nível temos $n(Q)=(1-\beta)\mu=0.1\times 11.73=1.173$. Logo, $L(z)=\frac{n(Q)}{\sigma}=\frac{1.173}{4.74}=0.2475$. Da Tabela dada em classe temos que $z\approx 0.35$ e, portanto,

$$Q^* = \sigma z + \mu = 4.74 \times 0.35 + 11.73 = 13.4 \approx 13.$$

Exercícios

[1] Uma tipografia imprime um cartão de Natal uma vez por ano e o distribue pelas papelarias do país. A tipografia gasta cerca de R\$ 0,50 para imprimir os cartões e ela os vende a R\$ 0,65. Como os cartões impressos contêm o ano, as sobras são descartadas. Baseado nas experiências dos anos anteriores temos a distribuição de probabilidade de vendas para o próximo ano.

Quantidade Vendida	Probabilidade
(em milhares)	
[100 – 150]	0.10
(150 - 200]	0.15
(200 - 250]	0.25
(250 - 300]	0.20
(300 - 350]	0.15
$(\ 350-400\]$	0.10
(400 – 450]	0.05

- A. Determine o número de cartões a serem impressos para este Natal;
- B. Suponha que a tipografia deseja usar um serviço com probabilidade de 90% de satisfação da demanda durante todo o período de Natal. Quantos cartões eles devem imprimir?
- C. Suponha agora que a probabilidade seja de 97%. Quantas unidades você recomendaria?
- [2] Uma concessionária vende um tipo de carro importado chamado EX123. De três em três meses, uma encomenda é feita para a loja. Um carregamento de emergência pode ser feito entre esses três meses para completar o estoque quando este fica pequeno. O carregamento de emergência demora 2 semanas para chegar e os compradores não se importam de esperar este tempo, mas irão comprar em outro lugar se eles tiverem que esperar pelo carregamento padrão de três meses. Baseado em dados históricos a demanda no intervalo de reposição é uma N(60,36). O custo de manutenção de um EX123 é de R\$ 500,00 por 1 ano. Carregamentos de emergência custam R\$ 250,00 por carro acima do preço padrão.
 - A. Quantos carros a concessionária deve comprar a cada três meses;
 - B. Repita os cálculos, assumindo que o excesso de demanda seja satisfeito de um período de três meses para o outro. Assuma que o custo da " perda-de-confiança" seja de R\$ 100,00 por cliente que espera e que a despesa do pedido seja de R\$ 50,00 por carro;
 - C. Repita os cálculos; asssumindo que caso haja excesso de demanda o cliente irá comprar o carro em algum outro lugar. Neste caso, assuma que os carros custem em média R\$ 10000,00 e são vendidos na média por R\$ 13500,00. Ignore os custos de "perda-de-confiança";

- D. Quantos carros a concessionária deve comprar caso queira satisfazer a demanda durante todo o período de três meses com probabilidade de 95%?;
- E. Quantos carros devem ser comprados caso o objetivo seja satisfazer 95% das demandas
- [3] Uma loja de tintas usa o sistema (Q,R) para gerenciar seu estoque. Uma tinta branca tem um histórico de dados que indica que sua demanda mensal segue uma N(28,8). O tempo de reposição para esta tinta é de 14 semanas. Cada lata de tinta custa R\$ 6,00. Embora, as demandas não satisfeitas não gerem perda de venda, o gerente estima que o custo por demanda não satisfeita seja de R\$ 10,00 cada. Os custos fixos de reposição de R\$ 15 por pedido e a taxa de juros é da ordem de 30%. Suponha que o pedido de reposição da tinta seja feita mensalmente ao invés de uma maneira contínua.
 - A. Usando a solução (Q, R) que foi obtida anteriormente, determine os valores apropriados para (s, S);
 - B. Suponha que as demandas durante os meses de Janeiro a Junho foram

Mês	Demanda
Janeiro	37
Fevereiro	33
março	26
Abril	31
Maio	14
Junho	40

Se o estoque inicial em Janeiro era de 26 latas de tinta, determine o número de unidades que deveriam ter sido pedidas caso a política (s, S) calculada em (A) fosse usada.

Sistemas com MultiProdutos

Análise ABC

Uma questão que não foi discutida até agora é o "trade-off" entre os custos de se controlar um sistema de estoque e os benefícios que advêm deste controle. Em um sistema de multiproduto nem todos os itens são igualmente lucrativos. Por exemplo, suponha que se gaste R\$ 200,00 por ano para monitorar um item que renda R\$ 100,00 por ano, logicamente isto não é econômico.

Por esta razão é importante diferenciar itens lucrativos dos não lucrativos. O economista Vilfredo Pareto que estudou a distribuição de rendas no século 19, observou que uma grande parte da riqueza era pertencia a uma pequena parcela da população. Este "Efeito de Pareto" também se aplica ao controle de estoque, uma grande parcela do volume total de dinheiro investido é devido a número pequeno de itens diferentes no estoque. Assuma que os itens sejam ordenados em ordem decrescente de valores das vendas anuais.

Tipicamente, os primeiros 20% dos itens representam cerca de 80% do volume total de vendas, os próximos 30% dos itens para os 15% das vendas e os restantes 50% para os últimos 5% do volume de vendas. Estes números variam muito pouco de um sistema para o outro. Estes três grupos são chamados de A, B e C, respectivamente.

Como os itens do Grupo A representam a maior parte do lucro, eles devem ser monitorados precisamente e continuamente. Procedimentos mais precisos de previsão também devem ser usados.. Já para o itens do Grupo B, eles podem ser monitorados periodicamente. O menor grau de controle pode ser alocado aos itens do Grupo C, para itens que não são muito caros podemos pedir lotes

grandes de tal maneira a diminuir freqüência com que os pedidos são feitos. Para itens do Grupo C com demandas muito pequenas seria interessante não mantê-los em estoque, ou seja, pedi-los à medida que forem demandados.

Exemplo:

Uma amostra de 20 diferentes itens de uma Auto Peças é escolhido ao acaso. este itens variam de R\$ 0.68 a R\$ 24,99 e uma demanda média anual variando de 12 a 786. Veja a tabela abaixo

Peça	Preço	Demanda	Volume Investido
	(em Reais)	Anual	(em Reais)
4597J	2,25	260	585,00
3K62	2,85	43	122,55
88450	1,50	21	31,50
P001	0.77	388	298,76
2M993	4,45	612	2723,40
4040	6,10	220	1342,00
W76	3,10	110	341,00
JJ335	1,32	786	1037,52
R077	12,80	14	179,20
70779	24,99	334	8346,66
4J65E	7,75	24	186,00
334Y	0,68	77	52,36
8ST4	$0,\!25$	56	14,00
16II3	3,89	89	346,21
45000	7,70	675	5197,50
7878	$6,\!22$	66	410,52
6293L	0,85	148	125,80
TTR77	0.77	690	531,30
38SS5	1,23	52	63,96
93939	4,05	12	48,60

Já na tabela abaixo, os itens foram ordenados em ordem decrescente por volume de vendas anuais. Observe que 4 dos itens estocados representam cerca de 80% do volume total de vendas anuais. Observe também que há itens caros tanto no Grupo A bem como no Grupo C.

Peça	Preço	Demanda	Volume Investido	Volume Acumulado		
_	(em Reais)	Anual	(em Reais)	(em Reais)		
70779	24,99	334	8346,66	8346,66		
45000	7,70	675	5197,50	13544,16		
2M993	4,454	612	2723,40	16267,56		
4040	6,10	220	1342,00	17609,56		
JJ335	1,32	786	1037,52	18647,08		
5497J	$2,\!25$	260	585,00	19232,08		
TTR77	0,77	690	531,30	19763,38		
7878	$6,\!22$	66	410,52	20173,90		
16113	3,89	89	346,21	20520,11		
W76	3,10	110	341,00	20861,11		
P001	0,77	388	298,76	21159,87		
4J65E	7,75	24	186,00	21345,87		
R077	12,80	14	179,20	21525,07		
6193L	0.85	148	125,80	21650,87		
3K62	2,85	43	$122,\!55$	21773,42		
39SS5	1,23	52	63,96	21837,38		
334Y	0,68	77	52,36	21889,74		
93939	4,05	12	48,60	21938,34		
88450	1,50	21	31,50	21969,84		
8ST4	0,25	56	14,00	21983,84		

Observe que na tabela acima

- No Grupo A: 20% dos itens representam cerca de 80.1% do volume total;
- No Grupo B: 30% dos itens representam cerca de 14.8% do volume total;
- No Grupo C: 50% dos itens representam cerca de 5.1% do volume total.

Curvas de Trade-Off

Em todas as nossa análise anteriores, assumimos que os custos relevantes K,h e p são constantes com os seus valores "corretos". Por valores corretos entenda-se aqueles custos que geram um sistema de controle que satisfaça as necessidades da empresa e os objetivos de gerenciamento.

Em um sistema de multiprodutos, os valores de K e I são geralmente os mesmos para todos os itens. Mas, nós podemos tratar a proporção $\frac{K}{I}$ como uma váriável da política: Se a proporção é grande então os tamanhos dos lotes também o serão e o investimento médio em estoque será maior; Se a proporção é pequena então o número anual de reposições será maior.

Para ver exatamente como uma curva de troca funciona, considere um sistema detrminístico consistindo de n produtos com demandas $\lambda_1, \lambda_2, \ldots, \lambda_n$ e custos c_1, c_2, \ldots, c_n . Se o modelo EOQ for usado para gerenciar o sistema temos

$$Q_i = \sqrt{\frac{2K\lambda_i}{Ic_i}}$$

Para o produto i, o tamanho do ciclo é dado por $\frac{Q_i}{\lambda_i}$ e $\frac{\lambda_i}{Q_i}$ é o número de reposições por ano. O número total de reposições para o sistema como um todo é $\sum_i \frac{\lambda_i}{Q_i}$

O estoque médio do item i é de $\frac{Q_i}{2}$ e o valor deste estoque em unidades monetárias é de $c_i \frac{Q_i}{2}$. Portanto, o volume total investido é $\sum_i c_i \frac{Q_i}{2}$.

Para cada valor da proporção $\frac{K}{I}$ temos um número diferente de reposições por ano e de volume investido no estoque. À medida que $\frac{K}{I}$ varia temos a curva (estoque médio versus número de reposições por ano).

Esta curva nos mostra o trade-off entre o dinheiro investimento no estoque e a freqüência de reposições, ela nos ajuda a comparar estratégias com diferentes níveis de estoque de segurança e níveis de serviço. Por exemplo, considere um sistema no qual a taxa de preenchimento seja usada para todos os itens. Além do mais, suponha que a distribuição da demanda durante o tempo de reposição dos itens segue a Normal e que cada item tem o mesmo nível de serviço. O estoque de segurança custa $\sum_i c_i(R_i - \mu_i)$ e o valor anual da demanda não satisfeita é $\sum_i \frac{c_i \lambda_i n(R_i)}{Q_i}$. Um valor fixo β da taxa de preenchimento resultará em um conjunto de variáveis de controle $(Q_1, R_1), (Q_2, R_2), \ldots, (Q_n, R_n)$. Cada par de (Q, R) nos rende um par de valores para o estoque de segurança e demanda não satisfeita. Quando a taxa de preenchimento é aumentada, o investimento em estoque de segurança aumenta e a demanda não satisfeita diminui. Isto nos dá a seguinte curva de Trade-Off

Exemplo: Considere os 20 itens descritos nas duas tabelas anteriores, suponha que o dono da Auto Peças está reconsiderando suas escolhas de custo de setup de R\$ 50,00 e da taxa de juros de 20%. Ele usa o modelo EOQ para calcular o tamanho dos lotes para os 20 itens com $\frac{K}{I}$ variando de 50 a 500. A curva de Trade-Off resultante é a seguinte

Atualmente, ele opera em $\frac{K}{I}=\frac{50}{0.2}=250$, o que resulta em aproximadamente em 22 reposições por ano e um estoque médio anual de R\$ 5447,00 reais. Ao se reduzir $\frac{K}{I}$ para 100 o custo de estoque cai para R\$ 3445,00 reais e o número de reposições cresce para 34 por ano. Depois de pensar um pouco sobre o assunto, ele decidiu que o tempo adicional e as despesas gastas ao se fazer 12 pedidos a mais decididamente compensaria, pois, ele economizaria cerca de R\$ 2000,00 reais no custo de estocagem. Como ele está satisfeito com o valor da taxa de juros de 20%, isto significa que o seu custo de setup deveria ser R\$ 20,00 reais ao invés de R\$ 50,00 reais.

Exercícios

[1] Considere uma lista dos itens vendidos em uma pequena loja de presentes em um shopping

Item	Volume	Lucro Médio
	Anual	por Item
Cartões de Natal	3870	0.40
Camisetas	1550	$1,\!25$
Jóias Masculinas	875	4,50
Itens de decoração	2050	$12,\!25$
Roupas de criança	575	$6,\!85$
Chocolates	7000	0,10
Brincos	1285	3,50
Jóias femininas	1900	15,00

- A. Ordene os itens em ordem decrescente do lucro anaul. Classifique-os nas categorias A,B e C;
- B. Porque razão o dono da loja continua a vender chocolates mesmo sabendo que este item é menos lucrativo?
- [2] Considere os 8 itens em estoque decritos na tabela abaixo

Item	Custo
Cartões de Natal	0,50
Camisetas	3,00
Jóias Masculinas	8,00
Itens de decoração	$12,\!50$
Roupas de criança	8,80
Chocolates	$0,\!40$
Brincos	4,80
Jóias femininas	12,00

 $\overline{\text{Compare o número total de reposições anuais e o investimento em estoque destes itens para } \frac{K}{I} = \{100, 200, 500, 1000\}.$ Com os 4 pontos obtidos desenhe a curva de reposição verus volume de estoque.