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1. Introduction

Dengue disease is actually an important problem of public
health in the tropical regions of the word. The infective agent is
the Dengue virus of the family of Flaviviridae. Four serotypes have
been recognized, denoted by DEN-I, DEN-II, DEN-III, and DEN-IV.
Infection for any Dengue serotype produces permanent immunity
to it, but apparently only temporary cross immunity to other sero-
types [1]. Therefore, individuals that live in dengue endemic areas
can have the disease more than one time. The virus is transmitted
to humans by the bite of Aedes female mosquitoes, being Aedes ae-
gypti its principal transmissor [2].

Dengue infection by any of the four serotypes causes a spectrum
of illness in humans, ranging from clinically inapparent, to severe
and fatal hemorrhagic disease [1]. Due to the geographical expan-
sion of the vector and virus [3], the incidence of dengue infection in
all of its manifestations has been increasing in the last decades. In
2005, dengue was considered the more important viral vector
borne disease. Its world distribution is compared to malaria, and
it is estimated that more than 2.5 billion of persons live in trans-
mission risk areas.
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Since there is not vaccine to control dengue disease, all efforts
are directed to avoid the proliferation of the mosquito population.
The control mechanisms include

(1) Chemical control of adult population by dichloro-diphenyl-
trichloroethane (DDT) spraying, and ultra low volume
(ULV) spraying.

(2) Chemical control of larvae by larvicides.

(3) Reduction of mosquito breeding sites by elimination of dis-
carded tires, and litter, draining of unnecessary containers,
etc.

(4) Biological control by using parasites or/and predators of
mosquitoes.

(5) Genetic manipulation of mosquitoes to produce mosquitoes
refractory to infection of transmission, or sterile insects.

The sterile insect technique (SIT) is a biological control in which
the natural reproductive process of insects is disrupted by the use
of mutagens such as gamma radiation thus rendering the insects
sterile. These sterile insects are then released into the environment
in very large numbers in order to mate with the native insects that
are present in the environment. A native female that mates with a
sterile male will produce eggs, but the eggs will not hatch (the
same effect will occur for the reciprocal cross). If there is a suffi-
ciently high number of sterile insects, most of the crosses are ster-
ile, and as time goes on, the number of native insects decreases and
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the ratio of sterile to normal insects increases, thus driving the na-
tive population to extinction.

The SIT was first conceived by Knipling [4], and used success-
fully in 1958 in Florida to control Screwworm fly (Cochliomya
omnivorax) [5,6]. Since then, the release of sterile insects have been
used with varying success. Some examples are screwworm fly in
USA, Mexico and Libya; Mediterranean Fruit Fly (Ceratitis capitata
Wiedemann) in USA and Mexico; Melon Fly (Dacus cucurbitae
Coquillett) in Japan and Taiwan; Pink Bollworm (Pectinophora gos-
sypiella Saunders) in USA; Tsetse Fly (Glossina species) in Tanzania,
Zimbabwe and Upper Volta; Boll Weevil (Anthonomus grandis Boh-
eman) in Southeastern USA; Mexican Fruit Fly (Anastrepha ludens
Loew) in USA and Mexico; Gypsy Moth (Lymantria dispar Linnaeus)
in USA and Canada [7].

Mathematical models have been done to assist the effectiveness
of the SIT (see, e.g., [4,8-13]). Some of them contemplate combina-
tion of SIT with other control measures as pesticides [14], or re-
lease of parasitoids [15].

The goal of this paper is to use optimal control theory to evalu-
ate the effectiveness of the application of both SIT and insecticide
to mosquito population. We want to find the minimal effort neces-
sary to reduce the fertile female mosquitoes considering the cost of
insecticide application, the cost of the production of irradiated
mosquitoes, and the social cost. By social cost we mean all the ex-
penses related to the disease like infectives treatment, hospital
care, and even eventual death. This work is a continuation of [16]
where the authors formulated a model to analyze the application
of the SIT for the control of Aedes aegypti mosquitoes.

2. The basic model

The basic model is taken from [16] where a system of nonlinear
differential equations was formulated to assess the effectiveness of
the SIT technique applied to mosquito population. In this section
we present the model and a summary of the results.

We denote by A the population size of the immature phase of
the insect (eggs, larvae and pupae) at time t. For the adult form
we consider the following compartments: females before mating
(singles), I; mating fertilized females, F; mating unfertilized fe-
males, U; and male insects, M. The population size of sterile (irra-
diated or transgenic) insects at time t is denoted by Mr. The model
is given by the following system of ODE:

A:¢(1—§)F—w+uuA

' ppp— PML BMil

URLEES v iy R vy v :
g M (1)
_M+MT7:uF

M =(1-r)yA-puM

M/T:O(—IMTMT,

and the remaining decoupled equation for the mating unfertilized
females

’ /gTMTI _
U7M+MT uyU.

In the equations above, 1, 1, Ug, Wy, ty and p; denote the mor-
tality rates of the immature form, unmating females, mating fertil-
ized females, mating unfertilized females, natural (or wild) males,
and sterile male insects, respectively; ¢ is the oviposition rate per
female mosquito which is proportional to female density, but it is
also regulated by a carryng capacity effect, C, related to the amount
of available nutrients and space.

The aquatic population becomes winged mosquitoes at a rate 7y,
and a proportion 1-r transforms in female, and 1 — r, in male.

A female mosquito mates once in its life, and oviposits its eggs
in different places during its entire life [17]. We assume that the
per capita mating rate of a unmating female with a natural male
mosquito is given by Mfi“,’\’/,T. Since irradiated insects are placed arti-
ficially, and the effective mating rate could be diminished due to
the sterilization, we assume that the per capita mating rate of a fe-
male with an irradiated male is given by A’;ﬂ”,(’/{r where f; = pqp, and
0<p,q< 1. In some extend, the parameter p is related to the
effectiveness of sterile male introduction regarded to the spatial
distribution of female insects, and q can be thought of as physio-
logical modifications induced by the sterilization technique.

Finally o« is the rate at which sterile males are recluted and
sprayed.

System (1) has a trivial equilibrium P, = 070,0,0,% corre-
sponding to the state where natural insects are absent, and there
is only a constant population of sterile insects. The non-trivial stea-

dy states (A, I, F,M,ﬁ) satisfy the following relations
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where A is a solution of the second degree equation
p(A) = aA’> + bA+c =0, (3)

with coefficients
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We define the average number of secondary female insects pro-
duced by a single female insect by

oryp
R=— 27 4
(a + ) (B+ )t @

and the ratio of mated but not fertilized female insects with respect
to the fertilized ones by

_ (ﬁT —‘y—,UI)MMO( (5)
B+ )1 =1)yCur’

In [16] it is proved that under the conditions

R>1 (6)

and

S<(R_1)2:SC (7)
X 4R - ’

system (1) has two positive equilibria P;_ and P, corresponding to
A_, and A, given by
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Notice that if equality holds in (7), P;_ and P;. collapse to an
equilibrium P; with A=®-1C, which provides the minimum

threshold condition

1

R =(1+25) Time >1

1+, /1- (10)

for the existence of the non-trivial equilibria.

The above results show that for natural (or wild) mosquitoes to
maintain in nature, condition R > 1 is necessary. However, in the
presence of sterile individuals, this could not be a sufficient condi-
tion since a proportion of the females would not actually being fer-
tilized. If S is sufficiently high (S > S°), the next generation of wild
mosquitoes would be lower than the actual one since a proportion
of eggs would not hatch. Spraying sterile males for a sufficiently long
period of time would drive the natural insect population to zero.

The stability properties of the equilibrium points are summa-
rized in the following theorem.

Theorem 1. The equilibrium P, — (0, 0,0, o,ﬂ%) of system (1) is

always stable. When R > 1 and % > 1, the non-trivial equilibria,
P; and P3_, are feasible. In this case P3 is always unstable and P3_,
stable.

According to Theorem 1, for a fixed R > 1,if S is above §° = &1
it is possible to control insects by sterile male release, indepen-
dently of their initial population size.

Fig. 1 represents the bifurcation diagram with respect to R. In
the diagram, the trivial equilibrium P, is represented by the R-axis.
In [16] it is shown that the stability of this point is global for
0 < R <R, and local for R > R", where R" is given by Eq. (10). When
R = R, the turning equilibrium point P; appears, and for R > R" and
o > 0, P; bifurcates to the non-trivial equilibrium points P;_ and
P;,, which are represented in the figure by the lower and upper
branch of the parabola, respectively. We call R* the threshold value
since it separates the region where we have only sterile insects
(R<R") from the region where natural and sterile mosquitoes
coexist at two different levels (R > R"). For R > R" the decreasing
branch of the parabola separates two attracting regions containing
one of the equilibrium points P, and Ps, . In other words, we have a
hyper-surface generated by the coordinates of the equilibrium
point P; ,e.g., f(A_, 7,,1_:,,M,,HLT = 0, such that one of the equilib-
rium points P, and Ps, is attractor depending on the relative posi-
tion of the initial conditions supplied to the dynamical system (1)
with respect to the hyper-surface.

It is interesting to notice that, from the ecological point of view,
the introduction of sterile mosquitoes could create an Allee effect
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Fig. 1. Bifurcation diagram of system (1) with respect to R.

in the natural mosquito population due to the difficulty of a female
to find a fertile male in order to mate. This Allee effect either limits
small population to a small area, or the population dies off.

3. The optimal control problem

In this section we formulate the optimal control problem ap-
plied to model (1). We want to minimize the insecticide cost, as
well as the cost of production and release of sterile mosquitoes.
For this end we consider as control variables:

1. The insecticide investment denoted by u;(t), and
2. The investment in production and release of sterile mosquitoes
denoted by u,(t).

The control variable u; gives information about the quantity of
insecticide that should be applied, meanwhile u, is related to the
number of sterile mosquitoes, My, that should be released at time
t.

Further, we want to minimize the number of fertilized females.
For this end, we consider the following performance index

1 T
J[u, ug] :5/ (cluf + U3 + c3F —c41v1§)dt (11)
0

where ¢, ¢, and c; are the cost of insecticide application, cost of
production and release of sterile mosquitoes, and social cost,
respectively, and c,4 is the penalty.

Social cost depends on the number of dengue infections which
are related directly with the number of mosquito bites. As other
mosquito species, fertilized females of A. aegypti are the only ones
that are hematophagous (that feed with blood), because they need
human or animal blood to mature their eggs. For this reason, we
assume that social cost is proportional to the density of fertilized
female mosquitoes.

In the control problem, we assume fixed final time, and free
dynamical variables at this time. Further, we assume a quadratic
functional cost [18-20] since we believe that the performance in-
dex is a nonlinear function. The quadratic terms act as a penaliza-
tion [21,22], amplifying the effects of great variations of the
variables. Each quadratic term is multiplied by a coefficient,
¢i,i=1,..4, which establishes the relative importance of the term
on dengue control cost. Notice that when we minimize the perfor-
mance index, J, the sterile mosquito population is maximized. This
is because we want that the insecticide u; does not reduce the pop-
ulation of released sterile males u,.

Mathematically, the optimal control problem is formulated as
the minimization of the functional (11) subject to the system

, A
A= ¢><1 ‘E)F‘ (7 + Ua)A,
BMI  BrMql

P=rA vy My Ht !
b (12
F =i~ e+ u)F

M =1 -nr)yA— (4, +u)M
M} = up — (g + ur)Mr,

where the initial conditions are the coordinates of the non-trivial
equilibrium of system (1) letting o = 0, which are

B 7C(R—1)
A) = Ay ==

., 1A
10 =h=0,+p

_ o (y+ 1a)CA
F(O)iFoiid)(C—AAo)
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M(0) = My = M
Uy

M;(0) = My, =0, (13)

and the control variables uy, and u, are non-negatives. This scenario
assumes that control mechanisms are introduced in a steady state
of the mosquito population at time t=0.

Since one of our objectives is to control the introduction of ster-
ile mosquitoes, Mr, the constant rate « in (1) is replaced by the con-
trol function u,. The insecticide control u; in (12) appears as an
extra mortality only in the equations corresponding to the adult
form of mosquitoes since it is assumed that insecticide is effective
only in the adult stage and not in the aquatic phase.

3.1. Characterization of the optimal control problem
We use the Pontryaguin Maximum Principle [23] to determine
the formulation of our optimal control uj and u;. To this end, we

note that the Hamiltonian for our problem is given by

H :% [cl W + coud + csF? — C4Mﬂ

+ 4 {q&(l —2>F— (y+/¢tA)A}

+ s~ e+ ]
+ 74 [(1 =)A= (U + u)M] + Zs[uy — (p +u)Mg). (14)

In(14), 4, j=1,...,5, are the adjoint variables; they determine
the adjoint system which, together with the state system (12),
gives the optimality system. We shall consider all possible non-
negative values for the control variables, including the case
U =u = 0.

Pontryaguin Maximum Principle [23] states that the uncon-
strained optimal variables u3, and u3 satisfy

OH oH
ou;  ous

We find % and solve for uj,i = 1,2, by setting the partial deriv-
atives of H equal to zero. Thus, from

oH . ) ,
%:Clui_AZI_ABF_MM_ASMT:O
ﬁfc u,+4s=0
8u§— 2Uy T+ A5 = U,
we obtain
. ol + J3F + J4M + J5M7p
1=
L (15)
T
2 C2'

The Pontryagin Maximum Principle establishes that the follow-
ing equations

di OH
@ (16)
H(x(£), u*(£), A(t), t) = max H(x(t), u(t), A(t), t) (17)

uel

are necessary conditions that must be satisfied by the optimal con-
trol u(t) and the state variable x(t) [24]. System (16) is referred as
the adjoint system. In our problem it becomes

OH oH , oH oH , oH

—a—A,}vzi——,Agi—— and /Lsi—a—lvlT.

= ol OF T T oM’

Taking the partial derivatives of H in (14) and substituting them
above we obtain

) F )
= <¢>E+ Y+ ,uA> =Tyl — (1 =1)p4

v _ (M BrMr . pM
A2*<M+MT+M+MT+”'+”1 KV I v

y A

iy = —csF — ¢<1 _f>)”1 + (U +Uu1)3 (18)

/ , ) Myl .
dg=[(B— Pr)i2 — ﬁ/@]er (Mg +U1) g

A5 = CaMr — [(B = fr) A2 — Pi3] 5+ (U +U1)2s.

MI
(M + Mr)
Finally we analyze the transversality conditions for the adjoint
variables. Since in our problem there are not terminal values for
the state variables, these conditions are given at the final time T by

MW(T)=0, i=1,...,5, (19)

3.2. The optimality system

The optimality system describes how the system behaves under
the application of the controls that minimize J. It is obtained taking
the state system (12), with the adjoint system (18), the optimal
control uj, and u3 (15), the initial conditions (13), and the transver-
sality conditions (19), which gives:

A= ¢<1 %)Ff (v + Hp)A

;o BMI Myl
P=mA—sem o Wt
. pMI

F=srm, ~ Wt wF

M = (1 —-1)pA— (fy +ui)M
My = uy — (g + u1)My

, F
2= <¢E+ 7+ M)M =1l = (1=1))4

= (e

+ U ) — M
M+M;  MiM, HtH)%a

M+M; "

, A
;.3 = —3F — q’)(] —E>l1 + (,LlF +U1)ﬂ.3

/ . Mrl X
;“4 = [(ﬁ - .BT)/“Z - ﬂ)@»] (M +71-Vlr)2 + (,UM + ul)/u;
)% = C4Mr — [(B — fr)i2 — B3] W + (U +ur)is

. ol + A3F + 24M + /sM7

1= 2
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Ao
10) =1y, =
O =b =05
(7 + 1) CAo
FO)=Fy=~—+2——
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M(0) =M, = A =rh
Hy
Mr(0) = Mr, =0

J(T)=0,i=1,...,5. (20)
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4. Numerical results

In this section we discuss the method to solve numerically the
optimality system (20), and we present the obtained results.

4.1. Methodology

The numerical method deals with a two-point boundary-value
problem with separated boundary conditions at time t =0 and
t = T. In our simulations we use a period of T = 120 days. This va-
lue was chosen to represents the time (in days) at which the re-
lease strategy of mosquitoes is applied (around 4 months).

Since the optimality system (20) has fixed conditions at the fi-
nal time for the adjoint variables, it turns out that it is difficult to
solve numerically. One method is to use a finite difference ap-
proach. In [19] the authors used the software package COLDAE
[25] that solves boundary-value differential and differential-alge-
braic equations evaluated at Gaussian points. Here, we used the
software package bvp4c [26] of Matlab® that solves ODE systems
with two boundary conditions.

An important factor to consider is that the optimality system is
in general a nonlinear problem, hence it needs an initial approxi-
mation to begin the Newton’s method. It is well known that the
convergence of the Newton's method depends critically on the
closeness of the initial approximation to the solution. For our opti-
mality system (20) is practically impossible to guess an initial
approximation that guarantees this convergence. One way to solve
the problem is to use the method of analytic continuation [27,28].
This is a standard and powerful technique used to solve nonlinear
two boundary value problems.

The idea behind the analytical continuation is to transform the
problem in a one-parameterized family of related problems. For
the optimality system (20), we use the time T as a parameter.
When T = 120, we recover the original problem. For T =1 the
problem is easily solvable, and the solution can be used as an initial
approximation for the nearby problem T = 1 + AT, with AT suffi-

Table 1

ciently small. This process is continued until the desired problem
is solved. The successive values of the parameter chosen are known
as a homotopy path.

4.2. Results

Our aim is to understand the effect of two conflicting mecha-
nisms of control, named, insecticide application and the release
of sterilized male mosquitoes. For the epidemiological and demo-
graphic parameters in all simulations, we use the values given in
[29] (see Table 1); the initial conditions for the state variables
are given by Ag = 2.95,1y = 0.24,Fy = 4.99, M, = 2.97 and My, = 0.

We will determine the optimal strategies obtained for different
set of values of the costs defined in the functional (11). As a refer-
ence we use the values c; = 1,i = 1, ..., 4. For this case, the value of
J = 0.6625. Figs. 2a and 2b illustrate the optimal trajectories u; and
u3, showing, respectively, chair (bottom of the chair is almost a
constant plateau) and bell (top of bell is almost constant plateau)
shapes. Interestingly, Fig. 2 shows that the maximum insecticide
induced mortality rate (a measure of insecticide application) is
ten times higher than the maximum sterile insects release rate. An-
other remarking feature is that a great quantity of insecticide must
be applied during the first days, while the sterile insects are releas-
ing at almost constant rate.

Figs. 3a-3e present the optimal trajectories of the different
stages of the mosquito population. As was expected, the popula-
tion of the irradiated mosquitoes follows the same pattern than
the control u,. On the other hand, we observe that the curves cor-
responding to the aquatic phase, the mating fertilized females, the
male insects have similar shape to the inverted graph of the irradi-
ated mosquito investment u,, and the trajectory of the unmated fe-
males is similar to the inverted trajectory of the insecticide
investment u;.

Let us define the reduction in the variables (percentage) by
Dx = (Xo — X")100/X,, where X, stands for the initial values of
the state variables A, I, F and M, and X" is the quasi-constant pla-

Parameter values for the optimality system (20). Units are days~' except for r. The values for ¢, fi,, 1, fts, iy, Hy» and y are taken from [29] for an average temperature of 25 °C.
For irradiated mosquitoes we assume a higher mortality rate, and a reduction of around 27% in the mating rate with respect to the wild population.

¢ Ha Hy He Hy

Hm Hr Y r B Br C

6.353 0.0583 0.0337 0.0337 0.0337

0.06 0.07

0.121 0.5 0.7 0.5

Insecticide investment
a 0.45 T T

0 . . . .
0 0.2 0.4 0.6 0.8 1

" 4120 (days)

uy(®

Release of sterile mosquitoes

b 0.05 T T

0.045 b

0.04 b

0.035 b

0.025 b

0.015F b

0.01 b

0.005 b

0 . . . .
0 0.2 0.4 0.6 0.8 1

" 4120 (days)

Fig. 2. Optimal control trajectories for insecticide application (a), and release of sterile male mosquitoes (b) when all the costs are proportionally equal

(c1 = ¢ = ¢35 = ¢4 = 1). Both figures are taken as standard case.
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Fig. 3. Optimal trajectories for the state variables corresponding to the optimal control shown in Fig. 2: aquatic phase (a), unmated female mosquitoes (b), fertilized female
mosquitoes (c), wild male mosquitoes (d), and sterile male mosquitoes (e).

Relative decrease, Dy, for the stages comprising the mosquito population under equal costs. For T, u; and u5 we show the values of the plateau. The maximum value of u; from
which it decreases is 0.43. Units are omitted.
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teau reached by these variables. In Table 2 we summarize the find-
ings of the reference case.

Actually, the production and release of sterile insects are more
expensive than insecticide application, so we increase in ten times
the cost of the biological control (c; = 10) maintaining the other
costs unchanged. In this case, ] = 0.7796. In Figs. 4a and 4b we
show the optimal controls uj, and u;. We observe that insecticide
application is practically unchanged, but the insect release de-
creases ten times from the reference control. The behavior of the
mosquito population in the different stages follow the pattern of
the optimal controls uj, and u3 as in the standard case. The natural

Insecticide investment

a 045 T T

0.35 1

0.05 |

0 . . . .

0.4 0.6
/120 (days)

0.8 1

R.CA. Thomé et al./Mathematical Biosciences 223 (2010) 12-23

mosquito population classes increase slightly, and the sterile mos-
quito population decreases in ten times.

In Table 3 we summarize the findings of the high biological
cost. The reduction in the number of sterile insects decrease A
and F, but increase I and M in comparison with the reference case.
This is a result of spraying slightly higher insecticide (uj), but 10
times less delivery of sterile male insects (u3). Reduced number
of sterile insects tends to decrease proportionally the number of
mated female mosquitoes. The case above only diminish the cost
of the control measures, but do not take into account the reduc-
tion of the population size of fertilized females, which is related

x 1072 Release of sterile mosquitoes

b 5 T T

0 . . . .
0 0.2 0.4 0.6 0.8 1

/120 (days)

Fig. 4. Optimal control trajectories for insecticide application (a), and release of sterile male mosquitoes (b). In this case the cost of biological control is 10 times higher than
the other costs (c; = 10, and ¢; = ¢3 = ¢4 = 1). The release of sterile mosquitoes is around seven times lower than in the standard case.

Table 3

Relative decrease, Dy, in percentage with respect to the reference case of the stages comprising the mosquito population when c; is incremented 10 times. For T, u;j and u; we
show the values of the plateau. The maximum value of u; from which it decreases is 0.43. Units are omitted.

C1 Cy C3 Cq J Dy Dr Dy T uy* uy*
1 10 1 1 0.7796 5.76 16.39 77.96 63.64 0.027 0.1 0.00451
Insecticide investment Release of sterile mosquitoes
a s . . b o . .
sl ] 0.12 1
0.1 1
41+ |
0.08 B
S 1=
0.06 1
2t i
0.04 B
! 1 0.02} 1
0 n n 0 . . . L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
/120 (days) /120 (days)

Fig. 5. Optimal control trajectories for insecticide application (a), and release of sterile male mosquitoes (b). Social cost is 100 times higher than the other costs (c; = 100, and
C1 =C, =c4 = 1). In order to decrease the fertilized female mosquitoes, both release of sterile mosquitoes, and insecticide application must be higher (10 times the
application of insecticide, and three times the release of sterile insects, in comparison to the standard case). Chemical and biological controls must be applied earlier.
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to the social cost. Dengue infection is in general a mild disease,
however in some cases it can evolved to dengue haemorrhagic fe-
ver. This form of the disease can be fatal if it is not adequately
treated, and for this reason, the social cost (hospitalization, treat-
ment) gets very high. We analyze two cases including the social
cost.

Immature phase

a s ‘ ‘

Al

2 L L L L
0 0.2 0.4 0.6 0.8 1
/120 (days)
Mating fertilized females

C6 T T
5r i
4 - 4
£3f 1
2F i
1 -

0 0.2 0.4 0.6 0.8 1
t/120 (days)

First, we put c; = 100 maintaining the other costs as in the ref-
erence case. Here, the cost is ] = 1.9427. It is interesting to notice
that huge amount of insecticide must be applied very early, and
similar behavior is observed respecting to the release of sterile
mosquitoes (see Figs. 5a and 5b). Interestingly, we observe an
oscillatory pattern in both controls. The curve corresponding to

Unmated females
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Fig. 6. Optimal trajectories for the state variables corresponding to the optimal control shown in Fig. 5: aquatic phase (a), unmated female mosquitoes (b), fertilized female

mosquitoes (c¢), wild male mosquitoes (d), and sterile male mosquitoes (e).
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the mating fertilized female and male mosquitoes are very similar In Table 4 we summarize the findings of the high social cost. We
to the insecticide investment graph, meanwhile the behavior of the observe a great reduction in the state variables A, F,  and M in com-
rest of the mosquito stages is similar to the release of sterile mos- parison with the reference case. In order to avoid dengue cases,
quitoes curve (Figs. 6a-6e). high number of fertilized female mosquitoes must be eliminated.
Table 4

Relative decrease, Dy, with respect to the reference case of the stages comprising the mosquito population when c; is incremented 100 times. All variables oscillate, for this reason
the plateau is the average value around which they oscillate. With respect to T,u; and u5, we show the values of the plateau. The maximum value of u; from which it decreases is
5.5. Units are omitted.

C1 (o) C3 Cy J Dy D, Dr Dy T uy* uy*
1 1 100 1 1.9427 18.64 38.52 96.99 84.85 0.17 0.1 0.038
Insecticide investment Release of sterile mosquitoes
a 5 T T T T b 0.06 T T T T

45F E
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Fig. 7. Optimal control trajectories for insecticide application (a), and release of sterile male mosquitoes (b). Social cost is 100 times higher, and biological control, 10 times,
than the other costs (c; = 10,c3 = 100, and ¢; = ¢4 = 1). The increasing cost of the biological control resulted in 2.5 times lower releasing of sterile mosquitoes at the
beginning (b).

Table 5

Relative decrease, Dy, with respect to the reference case of the stages comprising the mosquito population when ¢, and c; are incremented 10, and 100 times, respectively. All
variables oscillate, but less pronounced than the previous case. With respect to T, uj and u3, we show the values of plateau. The maximum value of u; from which it decreases is
5.0. There is an acute increase in u3; up to 0.05, following by a chair shape instead of a bell shape. Units are omitted.

C1 (o) C3 Cyq J Dy Dy D¢ Dy T uy* uy*
1 10 100 1 1.9427 18.64 27.46 99.80 84.85 0.124 0.1 0.018
Insecticide investment Release of sterile mosquitoes
a 0.14 T T T T b 0.16 T T T T
0.12 | 0.14
0.12
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Fig. 8. Optimal control trajectories for insecticide application (a), and release of sterile male mosquitoes (b). In this case the cost of insecticide is 10 times higher than the
other costs (¢; = 10, and ¢, = ¢3 = ¢4 = 1). Here, the release of sterile mosquitoes is around three times higher, and insecticide application is around three times lower in
comparison to the standard case.
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This is a result of higher insecticide application (the peak is thir- followed by an increase up to a plateau, and increases at final
teen times bigger), and high delivery of sterile male insects (with times. In the previous cases, the smallest values of I did not attain
respect to reference case, three times higher). The number of fe- 0.18, but I decreases below 0.08 when social cost is increasing. This
male mosquitoes is drastically reduced. means that a very strong perturbation is introduced to the dynam-

Let us discuss the oscillatory behavior of this case analyzing the ical system producing damped oscillations with high amplitudes in

immature female population trajectory, which has a rapid decay the trajectories returning to the new equilibrium value [30].
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Fig. 9. Optimal trajectories for the state variables corresponding to the optimal control shown in Fig. 8: aquatic phase (a), unmated female mosquitoes (b), fertilized female
mosquitoes (c¢), wild male mosquitoes (d), and sterile male mosquitoes (e).
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Table 6
Relative decrease, Dy, with respect to the reference case of the stages comprising the mosquito population when c;is incremented 10 times. All variables oscillate, for this reason
the plateau is the average value around which they oscillate. With respect to T, u; and u3, we show the values of plateau. The maximum value of u; from which it decreases is 0.13.

The oscillations are less regular, and chair and bell shapes are not maintained. Units are omitted.

1 C2 3 Cq J Dy

Dr Du T up uy*

10 1 1 1 1.5646 3.05

—5.74 68.94 3535 1.4 0.021 0.138

We present a second case taking into account the current situ-
ation, namely, sterile release is more expensive than the available
insecticide, and high incidence of the disease requires elevated so-
cial cost. We let ¢, = 10, and c;3 = 100. In Figs. 7a and 7b we illus-
trate the optimal trajectories uj and u; associated to this situation.
In this case, ] = 1.5646. From Fig. 7a, it is seen that insecticide
spraying must be concentrated at the beginning in a very high
amount (ten times the reference case) as in the previous case.
Increasing in ten times the biological control resulted in propor-
tionally small decreasing in release of mosquitoes at the beginning,
but presenting a small peak at the beginning in comparison of the
control case. Note that the controls present oscillatory behavior
with very small amplitudes comparing with the previous case.
The same behavior occurs for the subpopulations of mosquitoes.
The reason behind it is that combined intervention produces lower
disturbance on the dynamical system than the previous case (note
that u3 is quite the same, but the first peak of uj is three times low-
er than the previous case) [30].

In Table 5 we summarize the findings for high social and biolog-
ical control costs. We observe a reduction in A, F, I and M in com-
parison with the reference case. The results are similar to the
previous case, where A and M are equally reduced, while I is less
reduced, and the reduction in F increases a little bit. In this case
the insecticide application is slightly diminished, while the deliv-
ery of the sterile insects is reduced (in the first peak) three times
in comparison with the previous case. In order to avoid dengue
cases, high number of fertilized female mosquitoes must be elimi-
nated. This is a result of higher insecticide application (the peak is
thirteen times higher) and high delivery of sterile male insects
(with respect to reference case, three times higher). It is interesting
to notice that the delivery of less number of sterile insects in-
creases the reduction in the fertilized female mosquitoes, and that
the cost of this last case is lower than the previous case. The oscil-
latory behavior can explain this outcome. Hence, if a strong inter-
vention does not eliminate the infection, the amplitudes of the
damped oscillations are very intense, which is the reason to assure
an intervention that drives the transmission of the infection to
eradication [30].

It is observing an increasing trend of resistant mosquitoes to
insecticide, which let to the development of new products. Since
the cost of research, and development of new insecticides is very
expensive, we increase the chemical application cost in ten times
(c1 = 10), maintaining all other costs the same as the reference.
In this case, ] = 1.0589. Figs. 8a and 8b illustrate the optimal trajec-
tories uj, and u3, and Figs. 9a-9d the optimal trajectories of the dif-
ferent stages of the mosquito population. We observe that the
slope of uj is less stiff than the reference one, and has a minimum
followed by a small bump. Although the cost of insecticide in-
creases ten times, the maximum application decreases around
three times. With respect to the mosquito releasing, we observe
that it increases about three times the reference amount. Further,
the decreasing phase begins earlier and the slope is softer. Since
insecticide is expensive, more mosquitoes have to be released at
the beginning. The quantity of sterile mosquitoes diminishes as
time goes on, and the insecticide application has to be increased.
This explains the ending bump in Fig. 8a.

Figs. 9a-9e illustrate the behavior of the mosquito population
for the last case (c; = 10). We observe that the aquatic phase de-

creases monotonically, has a small peak, and increases during the
last time of the control. The unmated female mosquitoes after an
abrupt decrease, increase to a maximum and then decreases mono-
tonically again. On the other hand, the fertilized females F decrease
abruptly because the high initial release of sterile males. The nat-
ural male population initially follows a similar pattern than un-
mated females but it grows during the last time of the control.
The population of sterile male mosquitoes follows an the same pat-
tern of the control u3.

In Table 6 we summarize the findings of the high cost of insec-
ticide application. The stages A and M decreased half with respect
to the reference case, but F decreases moderately. However, the
amount of I increases with respect to Iy when a control is intro-
duced. This case presents the lowest insecticide application (uj),
but the largest delivery of sterile male insects (u3). Note that the
aquatic phase is practically unchanged, and the wild male popula-
tion decreases in a minor quantity in comparison with the initial
value M, (observe that Dy, is the lowest among all cases). As a re-
sult, the unmated female population grows above the initial value,
because the intervention changed the new equilibrium. However,
the fertilized female mosquitoes are reasonably decreased (in com-
parison with Fy, and also the lowest reduction) due to high amount
of sterile insects released in the environment.

The cost, J, in the two cases where social cost was considered is
higher than the cost in the other cases. This is explained by the
increment of the efforts to reduce the fertilized female mosquitoes.
For this reason, social cost is a very important factor that should be
considered in control strategies, because its incorporation drives to
the decreasing in the female mosquito population size.

5. Discussion

We developed an optimal control model to assess the effectivity
of two conflicting mosquito control measures. One of them is
chemical control which kills both natural and sterile mosquitoes;
the other is a biological control consisting in the release of sterile
insects. The dynamical model was formulated in [16].

One of the side effects of the chemical control is that it affects
ecosystem killing another insects, besides the development of
mosquito resistance to it. There is not residual effect and the effi-
cacy is very low, contrarily to the larvicide which has longer resid-
ual effect and higher efficacy. On the other side, the biological
control is a clean ecological control, but to be effective, a higher
proportion of sterile mosquitoes relative to the natural mosquitoes
should be released [16]. Additionally, the sterile mosquitoes must
be able to find the randomly distributed breeding sites where fe-
male mosquitoes emerged [31].

In this paper we analyzed the optimal control using the func-
tional J in terms of quadratic forms. Minimizing the cost we ob-
tained the optimal controls uj and u; where F was minimized
and M7 maximized. Additionally, we let the variables to be free
at the final time. Then, we compared the dynamical trajectories un-
der optimal controls, in order to assess the effects of relative costs
C1,C2,C3, and cy.

Possible control scenarios were assessed adjusting the control
parameters. We defined a reference scenario in order to compare
the different control strategies. First, we studied the effect of the



R.CA. Thomé et al. / Mathematical Biosciences 223 (2010) 12-23 23

sterile insect release cost, and for this end, we increased this cost
10 times. Further, the social cost was increased 100 time, and then
we analyzed the case when the sterile insect release increases 10
times, and the social cost, one hundred times. Finally, we analyzed
what happens if the insecticide cost increases 10 times.

One interesting result is that minimizing only the cost of the
control measures without considering social cost could lead to
incorrect strategies to minimize the occurrence of the disease.
For this reason, social cost should be considered in the control
strategies.

When an intervention is introduced in a population at endemic
equilibrium, oscillations can result depending on the strength of
intervention, even if the overall incidence of infection is always
lower than the endemic situation. The main trouble is the huge
number of infected individuals resulting in the next peak of epi-
demics (the inter epidemic period is large [30]), which is much
more pronounced under a strong intervention that not attain the
eradication condition. In general, there are limited resources (eg,
the number of beds in hospitals, specialized physicians and nurs-
ery) leading to poor health care, and treatable haemorrhagic fever
can result in death. Hence, interventions that avoid large oscilla-
tions must be chosen.

All the cases shown in this paper did not achieve the eradication
of dengue disease. Hence, the implementation of all optimal con-
trols analyzed in this paper is doomed to failure the task of elimi-
nating dengue transmission. However, optimal control as
mathematical results at least showed the relative amount of insec-
ticide and release of sterile insects must be introduced at different
costs. We can deal with optimal control problem by introducing a
strong constraint, that is, letting to the state variables assume fixed
values at the final time (should be fixed or not). By constraining the
values of the variables at the final time with the coordinates of the
small non-trivial equilibrium P;_, in such a way that the final val-
ues are moved to the attracting region of the trivial equilibrium
point, then the dengue disease can be controlled. This situation
illustrates the optimal control forecasted mathematically that is
biologically acceptable as feasible implementation in order to
cease the dengue epidemics, which will be analyzed in a future
paper.

The main conclusion based on the results furnished by all the
strategies is that high application of insecticide is needed at the
beginning of the control, with an exponential decay. Furthermore,
the release of insects in general follows a bell shape distribution
with an abrupt increasing and decreasing at the extremes, and a
plateau at the middle, except in the case when social cost is
increasing one hundred times. In a further work we will analyze
constant application of insecticide restricted to the first few days
followed by a constant release of sterile insects for the remaining
days. The reason behind this is that the application of discontinu-
ous control strategies by the health authorities are more feasible
than the optimal control uj and u; which vary continuously with
time.
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