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Abstract - Hopfield neural networks and interior point 
methods are used in an integrated way to solve linear 
optimization problems. The neural network unveils a warm 
starting point for the primal-dual interior point method. 
This approach was applied to a set of real world linear 
programming problems.  Results from a pure primal-dual 
algorithm provide a yardstick. The integrated approach 
provided promising results, indicating that there might be a 
place for neural networks in the “real game” of 
optimization.  
Index Terms - Hopfield networks, interior point methods, 
neural networks, linear programming.  

I.  INTRODUCTION 

Tank and Hopfield [1] pioneered the use of neural 
networks to solve linear optimization problems, with 
Hopfield Networks [2]. Their results were extended by 
Kennedy and Chua [3] to non-linear optimization 
problems. Later, Xia and Wang [4], proposed a global 
convergent neural network for solving linear optimization 
problems. Recently Silva [5] coupled fuzzy logic with 
Hopfield networks to solve linear and non-linear 
optimization problems. All these approaches formulate an 
energy function to represent the original problem and use 
the gradient method [6] to minimize it.  
Problems used to illustrate them are all very small;  they 
are textbook examples that can be solved by hand 
calculations.  

 Indeed, it seems that the neural networks and 
optimization communities carry on their research in 
different habitats, with tiny links between each other. In 
one side, researchers in neural networks provided 
theoretical results for addressing optimization problems 
but did not go much beyond demonstrative examples. On 
the other side, the optimization community did not show 
to believe that neural networks could help to solve real-
life optimization problems.  

This paper unveils benefits from cross-fertilization 
between neural networks and optimization ideas. It 
proposes an approach to linear programming (i.e., linear 
optimization problems) where the Hopfield network 
developed by Silva [5] is improved to go half-way in the 
optimization process, wher e it passes the baton  to a 
primal-dual interior point method [7,8]. Neural networks 
are used to build feasible points close to the optimal 

solution. These points are used as warm start for primal-
dual methods. Application to a set of real-life linear 
programming problems gives guidelines on the 
possibilities of the approach. 

This paper is organized into six sections. Section II 
introduces the primal-dual interior point method for linear 
optimization. Section III reviews the Hopfield approach 
to solve optimization problems. Improvements in the 
Hopfield approach are presented in Section IV. The new 
approach is described in Section V.  Case studies are 
described in Section VI. Conclusions follow. 

II. PRIMAL-DUAL INTERIOR POINT METHOD 

For a long time the simplex method [6] was considered 
the only practical approach for solving large linear 
optimization problems. By 1985 the interior point method 
of Karmarkar [7] stepped in the optimization scene, with 
polynomial time properties and claims of better practical 
results than simplex. Few years later new methods 
developed under interior point basis supported fecundity 
of these grounds (e.g., [9]); interior point implementations 
could behave better than simplex. Many variants of these 
methods have been appeared. Among them, one of  the 
most successful variants is known as the primal-dual 
method [8]. 

Consider the primal linear optimization problem in the 
standard form: 
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(1) 
where nmA ×ℜ∈ . 

Associated to problem (1), there is the dual p roblem 
represented by: 
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(2) 
The optimality conditions for primal and dual problems 

are given by primal and dual feasibility together with the 
complementarity conditions: 



0eZX =⋅⋅  (3) 
where the notation ( )xdiagX =  for diagonal matrices 
formed from vectors is introduced and e is the vector of 
all ones of appropriated dimension. 

The majority of primal-dual interior point methods can 
be seen to be variants of the Newton method applied to 
the optimality conditions. The following outlines a 
framework for such methods.  

 

Given 0y  and ( ) 0z,x 00 >  (an interior point) 
For ,...,2,1,0k =  Do 

1) Choose [ )1,0k ∈σ  and set 







⋅=

n

k
kk γ

σµ  where, 

( ) kkk zx ⋅
′

=γ  and n is the size of x. 
 

2) Compute the Newton search directions, 
( )kkk z,y,x ∆∆∆ . 
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4) Compute the new interior point,  

( ) ( ) ( )kkkkkkk1k1k1k z,y,xz,y,xz,y,x ∆∆∆α ⋅+=+++ .  
 

The point ( )z,y,x  is interior if there are not binding 

variables (i.e., ( ) 0z,x > ). The step length ( kα ) computed 
in step 3 keeps such property.   

Next section presents a Hopfield neural network 
approach to solve optimization problems.  

III.  A REVIEW OF HOPFIELD APPROACH TO LINEAR 
OPTIMIZATION 

The Modified Hopfield Network (MHN) adopted by 
Silva [5] is illustrated in Fig.1, where each step is 
repres ented by a box. 

The MHN is a cycle of two phases: a feasibility process 
and an updating one via search direction. The process 
stops when it reaches a minimum. In the feasibility 
process the vector x is updated to compute a feasible 
point. The updating process computes a new vector x 

from the search direction and the step length. Let us 
discuss it with some more details. 

I. Feasibility. It is made iteratively in a cycle of two 
steps:  
1) Projection in valid subspace [10]. The new 

feasible point, px , is computed using  
sxTx p +⋅=   

(4) 
where T  is a projection matrix that represents the 
connection among the neurons and is computed 
from the constrains of the original optimization 
problem; the vector s is orthogonal to the matrix 
and is computed, in a similar way, from the 
constrains of the problem [8,10].  

2) Application of the activation function ( )( )xg ; the 
point is constrained over a feasible hypercube, 
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(5) 
where u is the upper bound for variable x. 

 
II. Updating by search direction. The feasible variable x 

is updated as follows:  
1) A fuzzy controller computes the step kα ; 

2) The search direction ld  is computed; 
3) The vector x is updated, 

lll1l dxx ⋅+=+ α   
(6) 

 
The search direction is computed from an energy 

function associated to the original problem. For linear 
problems the search direction at each iteration is fixed 

( cd l = ). 
The convergence of the MHN is very slow, even for 

small instances that do not represent real-life linear 
optimization problems. Three drawbacks can be identified 
in this methodology: 

1) The search direction, cd l = , is fixed  - it should 
be updated with information from each new point. 
2) The step size is obtained by a cut-and -try method 
in the fuzzy controller, what leads to a high 
computational cost. 
3) The floating-point operations to carry on the 
projection process get too expensive as the size of 
the problem grows.  
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Modified Hopfield Network 
 
 

IV.  IMPROVEMENTS IN THE MODIFIED HOPFIELD 
APPROACH 

The MHN and the primal-dual interior point method 
are used in an integrated way to solve linear optimization 
problems. The MHN is used to obtain an “intelligent” 
initial point for the primal-dual interior point method.  

A few modifications are introduced in the MHN to 
enhance the warm start process.  Namely,  

1) the feasibility process is modified to produce a 
feasible interior point;  

2) the projection process is enhanced; 
3) the MHN is tailored to provide a feasible dual 
interior point; 

4) a fixed step is used and, thus the fuzzy controller 
is eliminated; 

5) search directions are computed by an interior 
point method. 

 
The first three points will be further discussed. 

 
1) The Feasibility Process 

The feasibility cycle is modified to obtain points inside 
the feasible hypercube ( ux0 ≤≤ ) and a tolerance is 
introduced.  

In this work, the upper bound u is ∞ . Therefore we 
have only a tolerance for the lower bound,  named lower 
interior tolerance (It). It is used by the activation function 

( )( )xg It  of box I (Fig.1) as follows. 
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This new function ( )( )xg It  modifies step I of the 
MHN. Its choice leads to a point that is both feasible and 
interior. 

 
2) Improving Efficiency in the Projection Process 

The matrix T and vector s  for primal linear 
optimization problems are computed by the following 
equations. 
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where I is the identity matrix and A and b are given by 
(1).  

Matrix T is never computed - it has few elements 
different of zero and large number of floating point 
operation are made when it is computed. 

The projected vector px  is computed using Equations 
(4), (8) and (9), 
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which can be written as,  
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where, the Cholesky factorization of TAA ⋅ , RP  is 
computed only once, before starting the iterating process.  

TT
RR AAPP ⋅=⋅   

(12) 
  
3) Computing a Feasible Dual Interior Point 

For the dual problem, the matrix T and the vector s are 
computed by the following equations: 
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( ) T1T AAAAIT ⋅⋅⋅−=
− ,  

(13) 

( ) cAAAs
1T ⋅⋅⋅=

−   
(14) 

Variables y and z need to be projected.  New projection 
equations are computed using equations (4), (13) and 
(14). 

wAcAzAGAyAAyy TTTTTp ⋅−⋅+⋅−⋅+⋅⋅−= ,  
(15) 

wcyAGz p −+⋅−= ,  
(16) 

where G and w  are computed by the following Equations. 
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Equations (18) and (19) are also computed only once, 
before starting the iterative process. 

V. WARM START WITH NEURAL NETWORKS  

The primal-dual interior point methods are used in an 
integrated way with the MHN. We will call it the 
Hopfield-primal-dual method. 

The methodology can be outlined as follows.  
1) The feasibility process described in last section 
gives an initial interior point 0x . 

2) A “warm point” wx  is computed with a fixed 
number of the following cycle of steps.  

I. Compute a primal-dual interior point 
search direction, ld . 
II. Compute a new point in the search 
direction ld , using a fixed step size  

lα = 1. 
III. Use again the feasibility process to 
convert the new point into a feasible 
interior point with the feasibility process - 
the point computed in the previous step is 
not an interior point.  

3) A primal-dual interior point method takes over the 
optimization process, from the warm point wx . 

It can be argued that the full step size lα = 1 is the best 
step size. Three points may be invoked:  (1) it leads to a 
feasible point with respect to the equality constraints; (2) 
there is no reason for smaller step size, which would lead 
to both smaller improvement and to unfeasibility with 

respect to the equality constraints; (3) a larger step size 
would also lead to unfeasibility (also,  it would be to trust 
too much on “luck”, since the quadratic convergence 
properties of Newton method are proved for the full step 
size). 

It should be remarked that, for the primal-dual interior 
point method, the initial point 0x  and the point lx  
computed at each iteration do not need to be feasible. 
Nevertheless when a feasible point is computed the 
number of iterations is reduced (compared to cases when 
only an interior point is computed).  

VI. CASE STUDIES 
This section presents a set of comparative test between 

the approach defined in the previous section and the 
corresponding interior point method. The implementation 
of both methods was made in MATLAB.  

The set of problems comes from Netlib [11] 
(http://www.netlib.org). This set of real-life for linear 
programming problems is widely adopted for comparison 
purposes.  

Three parameters are used to computed the warm initial 
point:  

1) k - the number of iterations of the Hopfield-
interior-point-method to obtain the warm initial 
point. Its value was set to 3. 

2) T - tolerance for convergence of feasibility 
process. Its value was set to 410− . 

3) It - lower interior tolerance used by the 
activation function ( )( )xg It . A good value was 
found for each case. 

 
The classic primal-dual method and the Hopfield 

primal-dual approach (which includes the warn 
initialization) were applied to a subset of the Netlib 
collection of problems. Table I presents a summary of 
results. 

We can observe in Table I that the Hopfield primal-
dual approach always reached a solution with a smaller 
number of iterations than the classic primal-dual method. 
This feature shows that the new methodology is able to 
uncover a better path to optimality. 

On the other side, the improvement in the path to 
optimality did not lead to better overall times for most of 
the problems. However, there is a general trend of better 
processing times as the size of the problems increase.  

 



TABLE I. RESULTS FOR  NETLIB LINEAR PROGR AMMING PROBLEMS 

PROBLEMS  

(mxn) 

PRIMAL -DUAL 

ITERATIONS 

HOPFIELD PRIMAL -
DUAL  

ITERATIONS 

PRIMAL -DUAL 

TIME (seconds) 

HOPFIELD PRIMAL -
DUAL  

TIME (seconds) 

STOCFOR1 
(128X184) 21 14 4.26 4379.0 

BLEND 
(74X 114) 19 14 2.21 184.49 

SHARE2B 
(96X 162) 21 12 2.82 104.4 

SC105 
(104X162) 15 9 1.78 32.14 

ADLITTLE 
(55X 137) 20 10 1.56 205.71 

SCAGR7 
(128X184) 19 16 2.26 176.2 

SHIP12S 
(466X2293) 48 26 52.99 76.53 

25FV47 
(798X1854) 

46 44 206.07 243.20 

SCSD8 
(397X2750) 18 11 4.281 22.80 

SCFXM2 
(644X1184) 40 38 12.254 25.134 

FFFFF800 
(501X1005) 127 54 373.81 135.01 

 

VII.  CONCLUSIONS  

This paper uncovered benefits from cross-fertilization 
between neural networks and optimization ideas to solve 
linear programming problems. A Hopfield neural network 
approach is used to go part of the way in the optimization 
process, where it passes the baton to a primal-dual interior 
point method. In other words, Hopfield networks are used 
to build feasible points close to the optimal solution; these 
points are used as warm start for primal-dual methods.  

Application of these new ideas to a set of real-life 
linear programming problems from Netlib indicates that 
neural networks can have a place beyond demonstrative 
examples  in the optimization arena. 

In all case studies, the Hopfield primal-dual interior 
point approach reduced the number of iterations to obtain 
an optimal solution.  

The overall processing time improved as the size of the 
problems increased  -  in one of the large problems 
solved, the Hopfield primal-dual approach was almost 
three time faster than the classic prima-dual method.  

We are not yet ready to state that the ideas presented 
here will provide a better way to solve large optimization 
problems. However, we can affirm that mutual benefits 
will be achieved if the neural network and optimization 
communities strengthen their links. 
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